Namespaces
Variants
Views
Actions

std::sqrt, std::sqrtf, std::sqrtl

From cppreference.com
< cpp‎ | numeric‎ | math
 
 
 
Common mathematical functions
Functions
Basic operations
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Exponential functions
(C++11)
(C++11)
(C++11)
(C++11)
Power functions
sqrt
(C++11)
(C++11)
Trigonometric and hyperbolic functions
(C++11)
(C++11)
(C++11)
Error and gamma functions
(C++11)
(C++11)
(C++11)
(C++11)
Nearest integer floating point operations
(C++11)(C++11)(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Floating point manipulation functions
(C++11)(C++11)
(C++11)
(C++11)
(C++11)(C++11)
(C++11)
Classification/Comparison
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Macro constants
(C++11)(C++11)(C++11)(C++11)(C++11)
 
Defined in header <cmath>
(1)
float       sqrt ( float arg );
float       sqrtf( float arg );
(since C++11)
double      sqrt ( double arg );
(2)
(3)
long double sqrt ( long double arg );
long double sqrtl( long double arg );
(since C++11)
double      sqrt ( IntegralType arg );
(4) (since C++11)
1-3) Computes the square root of arg.
4) A set of overloads or a function template accepting an argument of any integral type. Equivalent to (2) (the argument is cast to double).

Contents

[edit] Parameters

arg - Value of a floating-point or integral type

[edit] Return value

If no errors occur, square root of arg (arg), is returned.

If a domain error occurs, an implementation-defined value is returned (NaN where supported)

If a range error occurs due to underflow, the correct result (after rounding) is returned.

[edit] Error handling

Errors are reported as specified in math_errhandling

Domain error occurs if arg is less than zero.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • If the argument is less than -0, FE_INVALID is raised and NaN is returned.
  • If the argument is +∞ or ±0, it is returned, unmodified.
  • If the argument is NaN, NaN is returned

[edit] Notes

std::sqrt is required by the IEEE standard to be correctly rounded from the infinitely precise result. In particular, the exact result is produced if it can be represented in the floating-point type. The only other operations which require this are the arithmetic operators and the function std::fma. Other functions, including std::pow, are not so constrained.

[edit] Example

#include <iostream>
#include <cmath>
#include <cerrno>
#include <cfenv>
#include <cstring>
 
#pragma STDC FENV_ACCESS ON
 
int main()
{
    // normal use
    std::cout << "sqrt(100) = " << std::sqrt(100) << '\n'
              << "sqrt(2) = " << std::sqrt(2) << '\n'
              << "golden ratio = " << (1+std::sqrt(5))/2 << '\n';
    // special values
    std::cout << "sqrt(-0) = " << std::sqrt(-0.0) << '\n';
    // error handling
    errno = 0;
    std::feclearexcept(FE_ALL_EXCEPT);
    std::cout << "sqrt(-1.0) = " << std::sqrt(-1) << '\n';
    if(errno == EDOM)
        std::cout << "    errno = EDOM " << std::strerror(errno) << '\n';
    if(std::fetestexcept(FE_INVALID))
        std::cout << "    FE_INVALID raised\n";
}

Possible output:

sqrt(100) = 10
sqrt(2) = 1.41421
golden ratio = 1.61803
sqrt(-0) = -0
sqrt(-1.0) = -nan
    errno = EDOM Numerical argument out of domain
    FE_INVALID raised

[edit] See also

(C++11)(C++11)
raises a number to the given power (xy)
(function) [edit]
(C++11)(C++11)(C++11)
computes cubic root (3x)
(function) [edit]
(C++11)(C++11)(C++11)
computes square root of the sum of the squares of two or three (C++17) given numbers (x2
+y2
), (x2
+y2
+z2
)
(function) [edit]
complex square root in the range of the right half-plane
(function template) [edit]
applies the function std::sqrt to each element of valarray
(function template) [edit]