Atomic types
Contents |
[edit] Syntax
_Atomic ( type-name )
|
(1) | (since C11) | |||||||
_Atomic type-name
|
(2) | (since C11) | |||||||
type-name | - | any type other than array or function. For (1), type-name also cannot be atomic or cvr-qualified |
The header <stdatomic.h>
defines 37 convenience type aliases, from atomic_bool to atomic_uintmax_t, which simplify the use of this keyword with built-in and library types.
_Atomic const int * p1; // p is a pointer to an atomic const int const atomic_int * p2; // same const _Atomic(int) * p3; // same
If the macro constant __STDC_NO_ATOMICS__
is defined by the compiler, the keyword _Atomic is not provided.
[edit] Explanation
Objects of atomic types are the only objects that are free from data races; that is, they may be modified by two threads concurrently or modified by one and read by another.
Each atomic object has its own associated modification order, which is a total order of modifications made to that object. If, from some thread's point of view, modification A
of some atomic M happens-before modification B
of the same atomic M, then in the modification order of M, A occurs before B.
Note that although each atomic object has its own modification order, there is no single total order; different threads may observe modifications to different atomic objects in different orders.
There are four coherences that are guaranteed for all atomic operations:
- write-write coherence: If an operation A that modifies an atomic object M happens-before an operation B that modifies M, then A appears earlier than B in the modification order of M.
- read-read coherence: If a value computation A of an atomic object M happens before a value computation B of M, and A takes its value from a side effect X on M, then the value computed by B is either the value stored by X or is the value stored by a side effect Y on M, where Y appears later than X in the modification order of M.
- read-write coherence: If a value computation A of an atomic object M happens-before an operation B on M, then A takes its value from a side effect X on M, where X appears before B in the modification order of M.
- write-read coherence: If a side effect X on an atomic object M happens-before a value computation B of M, then the evaluation B takes its value from X or from a side effect Y that appears after X in the modification order of M.
Some atomic operations are also synchronization operations; they may have additional release semantics, acquire semantics, or sequentially-consistent semantics. See memory_order.
Built-in increment and decrement operators and compound assignment are read-modify-write atomic operations with total sequentially consistent ordering (as if using memory_order_seq_cst). If less strict synchronization semantics are desired, the standard library functions may be used instead.
Atomic properties are only meaningful for lvalue expressions. Lvalue-to-rvalue conversion (which models a memory read from an atomic location to a CPU register) strips atomicity along with other qualifiers.
This section is incomplete Reason: more, review interaction with memory_order and atomic library pages |
[edit] Notes
Accessing a member of an atomic struct/union is undefined behavior.
The library type sig_atomic_t does not provide inter-thread synchronization or memory ordering, only atomicity.
The volatile types do not provide inter-thread synchronization, memory ordering, or atomicity.
Implementations are recommended to ensure that the representation of _Atomic(T) in C is same as that of std::atomic<T> in C++ for every possible type T
. The mechanisms used to ensure atomicity and memory ordering should be compatible.
[edit] Keywords
[edit] Example
#include <stdio.h> #include <threads.h> #include <stdatomic.h> atomic_int acnt; int cnt; int f(void* thr_data) { for(int n = 0; n < 1000; ++n) { ++cnt; ++acnt; // for this example, relaxed memory order is sufficient, e.g. // atomic_fetch_add_explicit(&acnt, 1, memory_order_relaxed); } return 0; } int main(void) { thrd_t thr[10]; for(int n = 0; n < 10; ++n) thrd_create(&thr[n], f, NULL); for(int n = 0; n < 10; ++n) thrd_join(thr[n], NULL); printf("The atomic counter is %u\n", acnt); printf("The non-atomic counter is %u\n", cnt); }
Possible output:
The atomic counter is 10000 The non-atomic counter is 8644
[edit] References
- C17 standard (ISO/IEC 9899:2018):
- 6.7.2.4 Atomic type specifiers (p: 87)
- 7.17 Atomics <stdatomic.h> (p: 200-209)
- C11 standard (ISO/IEC 9899:2011):
- 6.7.2.4 Atomic type specifiers (p: 121)
- 7.17 Atomics <stdatomic.h> (p: 273-286)
[edit] See also
C documentation for thread (Concurrency support library)
| |
C++ documentation for atomic
|