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Kernelization

A parameterized problem is fixed-parameter tractable iff it has
a kernelization algorithm.
Goal: obtain polynomial or linear kernels (whenever possible).

Basic technique
Devise reduction rules that preserve equivalence of instances; apply
them exhaustively; prove kernel size.

Algorithmic meta-theorems: algorithms for problem classes
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Previous work

Framework for planar graphs.
Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar
graphs

Meta result for graphs . . .

. . . of bounded genus.
Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
Kernelization

. . . excluding a fixed graph as a minor.
Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels

. . . excluding a fixed graph as a topological minor.
Kim, Langer, Paul, Reidl, Rossmanith, Sau and S.: Linear kernels and
single-exponential algorithms via protrusion decompositions

. . . of bounded expansion, locally bounded expansion and
nowhere-dense graphs using structural parameterization.
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The big picture
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Minors and topological minors
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Shallow minors and shallow topological minors
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Bounded expansion

GO r denotes the set of the r-shallow minors of G.

Definition (Grad, Expansion)

The greatest reduced average density of a graph G is defined as

∇r(G) = max
H∈GO r

|E(H)|
|V (H)|

.

The expansion of a graph class G is defined as

∇r(G) = sup
G∈G
∇r(G).

A graph class G has bounded expansion if for some function f and
all r ∈ N

∇r(G) ≤ f(r).
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Excluded minors vs Bounded Expansion

Excluded minors Bounded Expansion
d-degenerate (depends on ex-
cluded minor).

f(0)-degenerate (depends on
expansion).

Linear number of edges. Linear number of edges.

No large cliques. No large cliques.

No large clique-minors. Can contain large clique minors.

Closed under taking minors. “Closed” under taking shallow
minors.

Degeneracy of every minor is d. Degeneracy of r-shallow minors
at most 2 · f(r).

Techniques from H-topo-minor-free graphs don’t work! (They use
large (non-shallow) topological minors.)
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Natural parameters
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The problem

Treewidth-t Deletion
Input: A graph G, an integer k.
Problem: Is there a set X ⊆ V (G) of size at most k such that

tw(G−X) ≤ t?

Treewidth-1 Deletion = Feedback Vertex Set.
Model problem for previous results.
kf(t)-kernel on general graphs.
Probably none of size O(f(t) · kc) (c independent of t).

An f(k) kernel on bounded expansion graphs implies f(k)
kernel on general graphs.
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A kernel on general graphs from sparse graphs

1 Treewidth closed under subdivision of edges.

A treewidth-t modulator remains unchanged under edge
subdivision.
Instances of Treewidth-t Deletion closed under subdivision of
edges.

2 Any graph class C can be transformed into a class of bounded
expansion by edge subdivision.

For each G ∈ C, subdivide each edge |G| times.

A kernel on general graphs
Reduce (G, k) to (G̃, k) by subdividing every edge |G| times;
output kernel of (G̃, k).

For a meta-kernel result, the parameter must not be closed
under edge subdivision!
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Structural parameters
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The natural view

Bounded Genus

H-Minor-Free

H-Topological-
Minor-Free

Bounded Expansion

Quasi-compact

Treewidth-bounding

?

Bidimensional
+separation property
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The structural view

Bounded Genus

H-Minor-Free

H-Topological-
Minor-Free

Bounded Expansion

Treewidth-t Modulator

Treewidth-t Modulator

Treewidth-t Modulator

(implied by Lemma 3.2)

(implied by Lemma 9)

?
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Treedepth?

For a graph G with td(G) ≤ d:
G embeddable in closure of tree (forest) of depth d.

Graph does not contain path of length 2d.
tw(G) ≤ pw(G) ≤ d− 1.

Not closed under subdivision!

If X is a treedepth-d-modulator, G−X does not contain
long paths.
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Theorem
Any graph-theoretic problem that has finite integer index on graphs
of constant treedepth admits linear kernels on graphs of bounded
expansion if parameterized by a modulator to constant treedepth.

Kernelization possible in linear time.

And . . .

. . . quadratic kernels on graphs of locally bounded expansion;

. . . polynomial kernels on nowhere dense graphs.
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Protrusion anatomy

Definition
X ⊆ V (G) is a t-protrusion if

1 |∂(X)| = |N(X) \X| ≤ t (small boundary)
2 tw(G[X]) ≤ t (small treewidth)
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The magic reduction rule

We want to replace a large protrusion by something smaller.

Possible if problem has finite integer index.
Recursive structure of graphs of small treewidth (i.e.
protrusion) helps.
Lots of technicalities omitted . . .
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The magic reduction rule . . .

Our results assume finite integer index on graphs of bounded
treedepth.

How does one ensure that the graph obtained by replacing
protrusions is in the same class?

We can show that the replacements are always induced subgraphs
of the original protrusions.

Graphs of treedepth d are well-quasi-ordered wrt the induced
subgraph relation [Nešetřil and Ossona de Mendez, Sparsity].
Every equivalence class of the FII-relation is partitioned into a
finite number of posets.
The minimal elements of the posets of each equivalence class
are its representatives.
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Proof Idea: By a picture
Find approximate

treedepth-d-modulator

Reduce neighbourhood size

of   (     )-components

in
Reduce size of components

with same neighbours in  
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Using sparseness

Each Y ′
i for 1 ≤ i ≤ ` is a protrusion and has constant size

(after protrusion reduction).
|Y0| = O(|X|) (follows from degeneracy of 2d-shallow minors).
` = O(|Y0|) = O(|X|) (ditto).
Hidden constants depend on expansion ∇2d(G) ≤ f(2d).
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The result

Theorem
Any graph-theoretic problem that has finite integer index on graphs
of constant treedepth admits linear kernels on graphs of bounded
expansion if parameterized by a modulator to constant treedepth.

Kernelization possible in linear time.

Structural parameter enables us to relax the FII condition.
Kernels for problems like Treewidth and Longest Path.
Structural parameter helps to include decision problems like
3-Colorability and Hamiltionian Path.
Quadratic kernels on graphs of locally bounded expansion.
Polynomial kernels on nowhere dense graphs.
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Quadratic kernels on graphs of locally bounded expansion.
Polynomial kernels on nowhere dense graphs.
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Consequences

The problems. . .
Dominating Set, Connected Dominating Set, r-Dominating Set, Efficient
Dominating Set, Connected Vertex Cover, (Connected) Vertex Cover,
Hamiltonian Path/Cycle, 3-Colorability, Independent Set, Feedback Vertex Set,
Edge Dominating Set, Induced Matching, Chordal Vertex Deletion, Interval
Vertex Deletion, Odd Cycle Transversal, Induced d-Degree Subgraph, Min Leaf
Spanning Tree, Max Full Degree Spanning Tree, Longest Path/Cycle, Exact
s, t-Path, Exact Cycle, Treewidth, Pathwidth

. . . parameterized by a treedepth-modulator have . . .

. . . linear kernels on graphs of bounded expansion

. . . quadratic kernels on graphs of locally bounded expansion

. . . polynomial kernels on nowhere-dense graphs
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Conclusion
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Interpretation of meta-theorems

For meta-theorems up until H-topo-minor-free graphs, a small
treewidth modulator is crucial:

quasi-compactness on bounded genus graphs, and
bidimensionality + separability on H-minor-free graphs

are tangible properties which guarantee this on these classes.

Larger graph classes need stronger (structural) parameters.

Treedepth-modulator is a useful parameter (generalization of vertex
cover).
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Open questions

Which problems admit kernels on these classes with a natural
parameter?
Problem categories: closed under subdivision vs. not closed.
Weaker parameterization for latter?
Linear kernels for graphs with locally bounded treewidth?
Lower bounds!

Thanks!
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