▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Lower Bounds on the Complexity of MSO₁ Model-Checking

Somnath Sikdar

Joint work with Robert Ganian Petr Hliněný Alexander Langer Jan Obdržálek Peter Rossmanith

> Theoretical Computer Science, RWTH Aachen University, Germany.

Faculty of Informatics, Masaryk University, Brno, Czech Republic.

Motivation				
	IVI	otr	vati	on

Proof Overview

Outline

2 Main Theorem

3 Proof Overview

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Courcelle's Theorem ...

... states that problems expressible in a certain logic can be efficiently solvable on graphs with a "nice" decomposition structure.

More specifically,

Theorem (Courcelle, 1990)

If φ is a graph problem expressible in MSO_2 , then "solving" this problem on a graph G takes time $f(tw(G), |\varphi|) \cdot |G|$.

Here

- tw (G) denotes the treewidth of G;
- $|\varphi|$ denotes the number of quantifier alternations;
- f is a computable function.

MSO_2 and MSO_1

Monadic Second Order (MSO) logic

- allows one to quantify over sets of objects.
- MSO₂: quantifications over vertex and edge sets.
- MSO₁: quantifications over vertex sets only.

 MSO_2 has strictly more expressive power than MSO_1 .

• Hamiltonian Cycle can be expressed in MSO_2 but not in $\mathsf{MSO}_1.$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Courcelle's Theorem ...

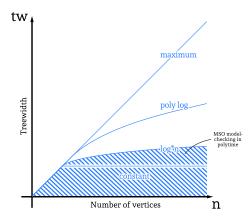
immediately gives us linear-time algorithms for several NP-hard problems on graphs of "small" treewidth:

- Hamiltonian Cycle;
- Vertex Cover;
- 3-Colorability.

Of immense practical use in parameterized complexity:

• can check whether φ is fixed-parameter tractable wrt the treewidth as parameter.

Courcelle's Theorem: Lower Bounds



Kreutzer and Tazari [2010] show that Courcelle's Theorem fails if the treewidth grows poly-logarithmically with the graph size.

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

An Overview of Kreutzer and Tazari's Result

Theorem (Kreutzer and Tazari, 2010)

Let ${\mathcal C}$ be a graph class that is

- closed under subgraphs, and
- has polylogarithmically unbounded treewidth.

Then solving an MSO_2 -expressible problem φ on a graph G from C is not in XP, unless SAT can be solved in subexponential time.

- XP: solvability in time $|G|^{f(|\varphi|)}$.
- Exponential Time Hypothesis: SAT cannot be solved in subexponential time.

Proof Overview

Aspects of Kreutzer & Tazari's Theorem

- I. Threshold for treewidth is more-or-less strict.
 - ∃ subgraph-closed classes with tw (G) = log |G| that can be model-checked in XP-time [Makowski and Mariño, 2003].
- II. The proof requires certain witness structures to be constructed efficiently.
 - Constructibility issues make the proofs very technical.

ΝA			
М	otr	vat	ıon

Main Theorem

Proof Overview

Summary

Outline

The Setting

We consider:

- Vertex-labeled graphs, where the labels are from a fixed, finite set.
- Problems expressible in MSO1 on such vertex-labeled graphs.
- Non-uniform ETH: SAT, 3-Colorability are not in 2^{o(n)} time with subexponential advice.

Main Theorem

Theorem

Let L be some fixed set of labels and let $\mathcal C$ be a graph class that is

- closed under subgraphs;
- and has polylogarithmically unbounded treewidth.

Then deciding whether a vertex-labeled graph G from C with labels from L models an MSO_1 -expressible problem φ is not in XP, unless 3-Colorability is in time $2^{o(n)}$ with subexponential advice.

Major Differences Between the Two Results

- I. We use a diferent logic.
 - Our result: MSO₁ model-checking on vertex-labeled graphs.
 - K & T's: MSO₂ model-checking on unlabeled graphs.

The two logic classes not comparable: consider Hamiltonian Cycle and Red-Blue Dominating Set.

- II. We assume that witnesses are given as advice:
 - No constructibility issues but a stronger complexity assumption: Nonuniform ETH.
 - Proofs are shorter and easier.

ETH versus Nonuniform ETH (NETH)

Exponential Time Hypothesis [Impagliazzo, Paturi, and Zane, 2001]:

- *n*-variable 3-SAT cannot be solved in $2^{o(n)}$ time.
- Can be formulated using other problems such as Vertex Cover or 3-Colorability.
- **NETH**: *n*-variable 3-SAT not solvable in $2^{o(n)}$ time using:
 - an algorithm that receives oracle advice which depends only on the input length n and has $2^{o(n)}$ bits.
 - Can be formulated in terms of Vertex Cover or 3-Colorability.

ΝA			
М	otr	vat	ıon

Outline

2 Main Theorem

3 Proof Overview

Main Theorem

Theorem

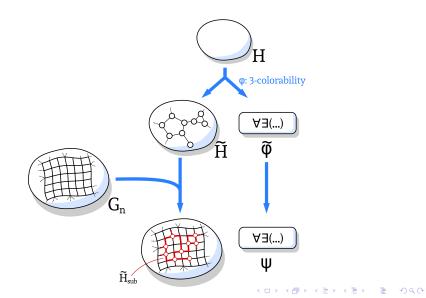
Let L be some fixed set of labels and let C be a graph class that is

- closed under subgraphs;
- and has polylogarithmically unbounded treewidth.

Then deciding whether a vertex-labeled graph G from C with labels from L models an MSO_1 -expressible problem φ is not in XP, unless 3-Colorability is in time $2^{o(n)}$ with subexponential advice.

Proof. A multistage reduction from 3-Colorability.

Proof Outline



Step 1: Reducing to a Subcubic Planar Graph

Given

- φ : MSO₁ formula expressing 3-Colorability.
- *H*: *n*-vertex graph, instance of 3-Colorability.

Reduce $(H, \varphi) \to (\widetilde{H}, \widetilde{\varphi})$ in polynomial-time such that:

- \widetilde{H} is planar and has vertices of degree only 1 or 3;
- $H \models \varphi$ iff $\widetilde{H}_{sub} \models \widetilde{\varphi}$ for every subdivision \widetilde{H}_{sub} of \widetilde{H} ;
- $\tilde{\varphi}$ depends only on φ and $|\tilde{\varphi}| = O(|\varphi|)$.

 \widetilde{H} may not be in the class \mathcal{C} .

Goal: In order to contradict the XP model-checkability of C, want a graph in C that "contains" \widetilde{H} .

Step 2: Finding a Graph in C containing H

|H| = n and $|\widetilde{H}| \le n^b$, for some constant b.

Polylogarithmic unboundedness of tw (\mathcal{C})

• $\exists G \in \mathcal{C} \text{ s.t. } \log^c |G| \leq \mathsf{tw}(G) \text{ and } |G| = 2^{n^{\epsilon}}.$

Grid-like subgraphs [Reed and Wood, 2008]

- $\bullet \ \log^c |G| \leq \mathsf{tw}\,(G) \text{ and } |G| = 2^{n^\epsilon} \text{ implies } n^{O(1)} \leq \mathsf{tw}\,(G).$
- $n^{O(1)} \leq \operatorname{tw}(G)$ implies G contains a grid-like subgraph Γ_n of order n: Γ_n "contains" a subdivision $\widetilde{H}_{\operatorname{sub}}$ of \widetilde{H} .

Closure of $\ensuremath{\mathcal{C}}$ under subgraphs

• $\Gamma_n \in \mathcal{C}$.

Summary so far

• Can "embed" \widetilde{H} in a graph from \mathcal{C} of size $2^{o(n)}$.

Step 3: Using Subexponential Advice

Supexponential advice

• Γ_n has size $2^{o(n)}$ and depends only on n: supplied as advice.

Using vertex labels to identify \widetilde{H}_{sub} in Γ_n

• Γ_n "contains" \widetilde{H}_{sub} : can construct a vertex labeling λ and a formula $\psi \in \mathsf{MSO}_1[L]$ s.t.

 $\widetilde{H}_{\mathsf{sub}} \models \varphi \text{ iff } (\Gamma_n, \lambda) \models \psi.$

Model-checking C in XP implies

- deciding $(\Gamma_n, \lambda) \models \psi$ in $|\Gamma_n|^{f(|\psi|)}$ time;
- thereby deciding $H \models \varphi$ in $|\Gamma_n|^{f(|\psi|)} = 2^{o(n) \cdot f(|\psi|)} = 2^{o(n)}$ time, contradicting nonuniform ETH.

Motivation				
	M	OT IN	/atio	n

Outline

3 Proof Overview

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Motivation	Main Theorem	Proof Overview	Summary
Summary			

- Contributed to Kreutzer and Tazari's result.
- **Open.** Can the result of Kreutzer and Tazari be extended to (unlabeled) MSO₁?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Thank You!