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Courcelle’s Theorem . . .

. . . states that problems expressible in a certain logic can be
efficiently solvable on graphs with a “nice” decomposition
structure.
More specifically,

Theorem (Courcelle, 1990)

If ϕ is a graph problem expressible in MSO2, then “solving” this
problem on a graph G takes time f(tw (G), |ϕ|) · |G|.

Here

tw (G) denotes the treewidth of G;

|ϕ| denotes the number of quantifier alternations;

f is a computable function.
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MSO2 and MSO1

Monadic Second Order (MSO) logic

allows one to quantify over sets of objects.

MSO2: quantifications over vertex and edge sets.

MSO1: quantifications over vertex sets only.

MSO2 has strictly more expressive power than MSO1.

Hamiltonian Cycle can be expressed in MSO2 but not in
MSO1.
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Courcelle’s Theorem . . .

immediately gives us linear-time algorithms for several NP-hard
problems on graphs of “small” treewidth:

Hamiltonian Cycle;

Vertex Cover;

3-Colorability.

Of immense practical use in parameterized complexity:

can check whether ϕ is fixed-parameter tractable wrt the
treewidth as parameter.
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Courcelle’s Theorem: Lower Bounds

Kreutzer and Tazari [2010] show that Courcelle’s Theorem fails if
the treewidth grows poly-logarithmically with the graph size.
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An Overview of Kreutzer and Tazari’s Result

Theorem (Kreutzer and Tazari, 2010)

Let C be a graph class that is

closed under subgraphs, and

has polylogarithmically unbounded treewidth.

Then solving an MSO2-expressible problem ϕ on a graph G from C
is not in XP, unless SAT can be solved in subexponential time.

XP: solvability in time |G|f(|ϕ|).

Exponential Time Hypothesis: SAT cannot be solved in
subexponential time.
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Aspects of Kreutzer & Tazari’s Theorem

I. Threshold for treewidth is more-or-less strict.

∃ subgraph-closed classes with tw (G) = log |G| that can be
model-checked in XP-time [Makowski and Mariño, 2003].

II. The proof requires certain witness structures to be constructed
efficiently.

Constructibility issues make the proofs very technical.
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The Setting

We consider:

Vertex-labeled graphs, where the labels are from a fixed, finite
set.

Problems expressible in MSO1 on such vertex-labeled graphs.

Non-uniform ETH: SAT, 3-Colorability are not in 2o(n) time
with subexponential advice.
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Main Theorem

Theorem

Let L be some fixed set of labels and let C be a graph class that is

closed under subgraphs;

and has polylogarithmically unbounded treewidth.

Then deciding whether a vertex-labeled graph G from C with labels
from L models an MSO1-expressible problem ϕ is not in XP, unless
3-Colorability is in time 2o(n) with subexponential advice.
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Major Differences Between the Two Results

I. We use a diferent logic.

Our result: MSO1 model-checking on vertex-labeled graphs.

K & T’s: MSO2 model-checking on unlabeled graphs.

The two logic classes not comparable: consider Hamiltonian Cycle
and Red-Blue Dominating Set.

II. We assume that witnesses are given as advice:

No constructibility issues but a stronger complexity
assumption: Nonuniform ETH.

Proofs are shorter and easier.
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ETH versus Nonuniform ETH (NETH)

Exponential Time Hypothesis [Impagliazzo, Paturi, and Zane,
2001]:

n-variable 3-SAT cannot be solved in 2o(n) time.

Can be formulated using other problems such as Vertex Cover
or 3-Colorability.

NETH: n-variable 3-SAT not solvable in 2o(n) time using:

an algorithm that receives oracle advice which depends only
on the input length n and has 2o(n) bits.

Can be formulated in terms of Vertex Cover or 3-Colorability.
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Main Theorem

Theorem

Let L be some fixed set of labels and let C be a graph class that is

closed under subgraphs;

and has polylogarithmically unbounded treewidth.

Then deciding whether a vertex-labeled graph G from C with labels
from L models an MSO1-expressible problem ϕ is not in XP, unless
3-Colorability is in time 2o(n) with subexponential advice.

Proof. A multistage reduction from 3-Colorability.
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Proof Outline
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Step 1: Reducing to a Subcubic Planar Graph

Given

ϕ: MSO1 formula expressing 3-Colorability.

H: n-vertex graph, instance of 3-Colorability.

Reduce (H,ϕ)→ (H̃, ϕ̃) in polynomial-time such that:

H̃ is planar and has vertices of degree only 1 or 3;

H |= ϕ iff H̃sub |= ϕ̃ for every subdivision H̃sub of H̃;

ϕ̃ depends only on ϕ and |ϕ̃| = O(|ϕ|).

H̃ may not be in the class C.

Goal: In order to contradict the XP model-checkability of C, want
a graph in C that “contains” H̃.
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Step 2: Finding a Graph in C containing H̃

|H| = n and |H̃| ≤ nb, for some constant b.

Polylogarithmic unboundedness of tw (C)
∃G ∈ C s.t. logc |G| ≤ tw (G) and |G| = 2n

ε
.

Grid-like subgraphs [Reed and Wood, 2008]

logc |G| ≤ tw (G) and |G| = 2n
ε

implies nO(1) ≤ tw (G).

nO(1) ≤ tw (G) implies G contains a grid-like subgraph Γn
of order n: Γn “contains” a subdivision H̃sub of H̃.

Closure of C under subgraphs

Γn ∈ C.

Summary so far

Can “embed” H̃ in a graph from C of size 2o(n).
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Step 3: Using Subexponential Advice

Supexponential advice

Γn has size 2o(n) and depends only on n: supplied as advice.

Using vertex labels to identify H̃sub in Γn
Γn “contains” H̃sub: can construct a vertex labeling λ and a
formula ψ ∈ MSO1[L] s.t.

H̃sub |= ϕ iff (Γn, λ) |= ψ.

Model-checking C in XP implies

deciding (Γn, λ) |= ψ in |Γn|f(|ψ|) time;

thereby deciding H |= ϕ in |Γn|f(|ψ|) = 2o(n)·f(|ψ|) = 2o(n)

time, contradicting nonuniform ETH.
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Summary

Contributed to Kreutzer and Tazari’s result.

Open. Can the result of Kreutzer and Tazari be extended to
(unlabeled) MSO1?
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Thank You!
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