▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lower Bounds on the Complexity of MSO₁ Model-Checking

Somnath Sikdar

Joint work with Robert Ganian Petr Hliněný Alexander Langer Jan Obdržálek Peter Rossmanith

> Theoretical Computer Science, RWTH Aachen University, Germany.

Faculty of Informatics, Masaryk University, Brno, Czech Republic.

Proof Overview

Outline

2 Main Theorem

3 Proof Overview

Algorithmic Meta Theorems

Theorems that identify **classes** of tractable problems, rather than a few isolated problems.

Examples

- All graph properties expressible in MSO₂ can be decided in linear time on graphs of bounded treewidth [Courcelle, 1990].
- All problems in MAX SNP have constant-factor approximation algorithms [Papadimitriou and Yannakakis, 1991].
- Compact parameterized problems expressible in CMSO admit polynomial kernels on graphs of bounded genus [Bodlaender et al, 2010].

Uses

• Quick way of checking whether a problem admits an algorithm of a particular kind.

Courcelle's Theorem

Theorem (Courcelle, 1990)

Any graph property definable in monadic second-order logic with quantification over sets of vertices and/or edges can be decided in linear time on any class of graphs of bounded treewidth.

• Linear-time algorithms for several NP-hard problems on graphs of "small" treewidth: Hamiltonian Cycle, Vertex Cover, 3-Colorability.

Hamiltonian Cycle There exists a set $C \subseteq E$ of edges that

- C induces a connected graph in which every vertex has degree exactly two;
- every vertex is in V(C).

The Model-Checking Problem

Definition (*L*-Model-Checking)

Let C be a class of graphs and let \mathcal{L} be a logic. The \mathcal{L} -modelchecking problem denoted by $MC(\mathcal{L}, C)$ is: given $G \in C$ and $\varphi \in \mathcal{L}$, decide whether $G \models \varphi$.

If $\mathcal{L} = MSO_2$ then this is the MSO-model-checking problem.

Courcelle's Theorem ...

... rephrased in the parlance of parameterized complexity:

Theorem (Courcelle, 1990)

Let $\varphi \in MSO_2$ and let C be the class of all graphs. Then MSO_2 model-checking problem $MC(MSO_2, C)$: "Does $G \models \varphi$?" is fixed-parameter tractable wrt the parameter $|\varphi| + tw(G)$.

Extended to (directed) graphs with vertex/edge labels (from a finite set) and problems involving evaluations of sets definable in MSO [Arnborg, Lagergren and Seese, 1991].

No lower bounds were known till recently.

Courcelle's Theorem ...

... rephrased in the parlance of parameterized complexity:

Theorem (Courcelle, 1990)

Let $\varphi \in MSO_2$ and let C be the class of all graphs. Then MSO_2 model-checking problem $MC(MSO_2, C)$: "Does $G \models \varphi$?" is fixed-parameter tractable wrt the parameter $|\varphi| + tw(G)$.

Extended to (directed) graphs with vertex/edge labels (from a finite set) and problems involving evaluations of sets definable in MSO [Arnborg, Lagergren and Seese, 1991].

No lower bounds were known till recently.

Courcelle's Theorem: Lower Bounds

Are there classes of **unbounded treewidth** for which Courcelle's Theorem holds?

YES!

Let $C = \{G \mid \mathsf{tw}(G) = \mathsf{log}^* |G|\}$. Given an MSO-formula φ and an *n*-vertex graph $G \in C$, time taken to decide $G \models \varphi$:

$$\exp^{(|\varphi|)}(\mathsf{tw}\,(G)) \cdot n \leq \exp^{(|\varphi|)}(\mathsf{tw}\,(G)) \cdot \exp^{(\log^* n)}(\log^* n) \leq n^2,$$

where $\exp^{(0)}(x) = x$ and

$$\exp^{(i)}(x) = 2^{\exp^{(i-1)}(x)}.$$

Question

How fast must the treewidth grow for Courcelle's Theorem to fail?

Courcelle's Theorem: Lower Bounds

Are there classes of **unbounded treewidth** for which Courcelle's Theorem holds?

YES!

Let $C = \{G \mid \mathsf{tw}(G) = \mathsf{log}^* |G|\}$. Given an MSO-formula φ and an *n*-vertex graph $G \in C$, time taken to decide $G \models \varphi$:

$$\exp^{(|\varphi|)}(\mathsf{tw}\,(G))\cdot n \leq \exp^{(|\varphi|)}(\mathsf{tw}\,(G))\cdot \exp^{(\log^* n)}(\log^* n) \leq n^2,$$

where $\exp^{(0)}(x) = x$ and

$$\exp^{(i)}(x) = 2^{\exp^{(i-1)}(x)}.$$

Question

How fast must the treewidth grow for Courcelle's Theorem to fail?

.

-

Courcelle's Theorem: Lower Bounds

Are there classes of **unbounded treewidth** for which Courcelle's Theorem holds?

YES!

Let $C = \{G \mid \mathsf{tw}(G) = \mathsf{log}^* |G|\}$. Given an MSO-formula φ and an *n*-vertex graph $G \in C$, time taken to decide $G \models \varphi$:

$$\exp^{(|\varphi|)}(\mathsf{tw}\,(G))\cdot n \leq \exp^{(|\varphi|)}(\mathsf{tw}\,(G))\cdot \exp^{(\log^* n)}(\log^* n) \leq n^2,$$

where $\exp^{(0)}(x) = x$ and

$$\exp^{(i)}(x) = 2^{\exp^{(i-1)}(x)}.$$

Question

How fast must the treewidth grow for Courcelle's Theorem to fail?

Courcelle's Theorem: Lower Bounds ...

Theorem (Makowsky and Mariño, 2004)

If C is a class of graphs of unbounded treewidth that is closed under topological minors and $G \in C$, then deciding whether $G \models \varphi$ is not in FPT wrt $|\varphi|$ as parameter unless P = NP.

- Closure under topological minors is a very strong restriction.
- Kreutzer and Tazari: Similar result without this restriction for graph classes with **moderately unbounded treewidth**.

Classes of Unbounded Treewidth

Definition (Bounded Treewidth)

Let $f: \mathbb{N} \to \mathbb{N}$. A class C of graphs have f-bounded-treewidth if for all $G \in C$, we have that $tw(G) \leq f(|G|)$.

Examples

- Courcelle's Theorem: f(n) := c, a constant.
- f(n) := n is the maximum function that makes sense.
- In Kreutzer and Tazari: f(n) := log^c n, for some constant c > 0.

Polylogarithmically Unbounded Classes

Definition (Kreutzer and Tazari)

The treewidth of a graph class C is polylogarithmically unbounded if for all c > 1 the following holds: for all $n \in \mathbb{N}$ there exists $G_n \in C$ with

- $\log^{c}(|G_{n}|) \leq tw(G_{n})$ (unboundedness);
- $n \leq tw(G_n) \leq n^{\gamma}$, for some fixed γ (density);
- G_n can be constructed in time 2^{n^ϵ}, for some fixed ϵ < 1 (constructibility).

Note

$$\log^{c}(|G_{n}|) \leq \operatorname{tw}(G_{n}) \leq n^{\gamma} \implies |G_{n}| \leq 2^{n^{\gamma/c}}.$$

Courcelle's Theorem: A Lower Bound

Theorem (Kreutzer and Tazari, 2010)

Let C be a graph class with the following properties:

- C is closed under subgraphs;
- the treewidth of C is polylogarithmically unbounded.

Then $MC(MSO_2, C)$ is not in $XP(|G|^{f(|\varphi|)})$ for any computable f, unless SAT can be solved in subexponential time.

High-level Proof Idea

Reduce Sat to $MC(MSO_2, C)$.

- Input: A SAT formula F of length n.
- Question: Is F satisfiable?

Reduction

- Construct $G_n \in C$ of treewidth n^d s.t. $\log^c(|G_n|) < \operatorname{tw}(G_n)$ and c > d.
 - Conditions 1 and 2: G_n exists in C.
 - Condition 3: G_n is efficiently constructible and $|G_n| < 2^{n^{d/c}}$.
- **2** Encode *F* in a subgraph of G_n (exists because tw $(G_n) \approx n^d$).
 - Using closure under subgraphs.
- Solution Define an MSO-formula φ (independent of F) s.t. F satisfiable iff $G_n \models \varphi$.
 - Deciding G_n ⊨ φ in XP takes time 2^{n^{c/d}⋅f(|φ|)}, subexponential in |F|.

A Critique of Kreutzer & Tazari's Result

- There are classes C closed under subgraphs with logarithmic treewidth s.t. MC(MSO₂, C) is in XP [Makowski and Mariño, 2004].
 - Threshold for treewidth is more-or-less strict.
- The constructibility clause in the definition of polylogarithmically unbounded treewidth is unnatural.
- Proofs are very technical and spread over several papers.

Outline

3 Proof Overview

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Main Theorem I

Theorem

Let C be a graph class s.t.

- C is closed under subgraphs;
- the treewidth of C is polylogarithmically unbounded.

Then the MSO_1 model-checking problem on vertex labeled graphs from C is not in XP, unless 3-Colorability is in time $2^{o(n)}$ with subexponential advice.

- The labels are from a fixed, finite set.
- Nonuniform ETH: SAT, 3-Colorability are not in 2^{o(n)} time with subexponential advice.

Major Differences Between the Two Results

- We use a weaker logic.
 - Our result: applies to MSO₁ model-checking on vertex-labeled graphs.
 - K & T's result: applies to MSO_2 model-checking on unlabeled graphs.
- No constructibility requirement.
 - We use a stronger complexity assumption: Nonuniform ETH.
- Easy proofs!

MSO_2 versus MSO_1 with Vertex Labels

 MSO_1 with vertex labels is weaker than MSO_2 .

• Hamiltonian Path/Cycle cannot be expressed in MSO₁ with vertex labels.

Results such as Courcelle's Theorem and Courcelle, Makowski and Rotics's Theorem for rankwidth can be extended to vertex-labeled graphs.

 Extending C,M,R's Theorem for rankwidth from MSO₁ to MSO₂ would imply EXP = NEXP.

On the Constructibility Clause

Our definition of polylogarithmically unbounded treewidth:

Definition

The treewidth of a graph class C is polylogarithmically unbounded if there is a constant γ s.t. for all c > 1 the following holds. For all $n \in \mathbf{N}$ there exists $G_n \in C$ with

• $\log^{c}(|G_{n}|) \leq tw(G_{n})$ (unboundedness);

•
$$n \leq tw(G_n) \leq n^{\gamma}$$
 (density).

Note: $|G_n| \leq 2^{n^{\gamma/c}}$.

- No constructibility requirement.
- At the expense of a stronger complexity-theoretic assumption: Nonuniform ETH.

ETH versus Nonuniform ETH (NETH)

Exponential Time Hypothesis [Impagliazzo, Paturi, and Zane, 2001]:

- *n*-variable 3-SAT cannot be solved in $2^{o(n)}$ time.
- Can be formulated using other problems such as Vertex Cover or 3-Colorability.
- **NETH**: *n*-variable 3-SAT not solvable in $2^{o(n)}$ time using:
 - a family of algorithms, one for each input length;
 - a circuit-family \mathcal{F} s.t. for each input length $n, \exists C_n \in \mathcal{F}$ with $|C_n| \leq 2^{o(n)}$;
 - an algorithm that receives oracle advice which depends only on the input length n and has $2^{o(n)}$ bits.

Can be formulated in terms of Vertex Cover or 3-Colorability.

Main Theorem II

Our result can be strengthened by assuming that the label set is arbitrary but finite.

Theorem

Let L be a finite label set and let $\varphi \in MSO_1[L]$. Let C be a graph class s.t.

- C is closed under subgraphs;
- the treewidth of C is polylogarithmically unbounded.

Then the MSO_1 model-checking problem on vertex labeled graphs from C is not in XP, unless all problems in PH can be solved in time $2^{o(n)}$ with subexponential advice.

Outline

3 Proof Overview

Main Theorem I

Theorem

Let C be a graph class s.t.

- C is closed under subgraphs;
- the treewidth of C is polylogarithmically unbounded.

Then the MSO_1 model-checking problem on vertex labeled graphs from C is not in XP, unless 3-Colorability is in time $2^{o(n)}$ with subexponential advice.

Proof. A multistage reduction from 3-Colorability.

Proof Idea: Stage I

Let $\varphi' \in MSO_1$ express 3-Colorability and let H' be an instance of this problem.

Reduce $(H', \varphi') \rightarrow (H, \varphi)$ in polynomial time s.t.

- *H* is {1,3}-planar;
- φ depends only on φ' and $|\varphi| = O(|\varphi'|)$.
- $H' \models \varphi'$ iff $H_{sub} \models \varphi$ for every subdivision H_{sub} of H.

Note that

- φ is an "interpretation" of 3-Colorability closed under edge subdivisions;
- |H'| = n and $|H| \le n^b$ for some constant b.

Proof Idea: Grid-Like Subgraphs

Polylogarithmic Unboundedness of tw (\mathcal{C})

• $\exists G_n \in \mathcal{C} \text{ s.t. } \operatorname{tw}(G_n) \ge \log^c(|G_n|) \text{ and } n^{5b} \le \operatorname{tw}(G_n) \le n^{5b\gamma}.$ • $|G_n| \le 2^{n^{5b\gamma/c}} \text{ for } c > 5b\gamma.$

Grid-Like Subgraphs [Reed and Wood, 2008]

- tw $(G_n) \ge n^{5b}$ implies G_n contains a grid-like subgraph Γ_{n^b} of order n^b .
- Γ_{n^b} "contains" a subdivision H_{sub} of H.

Closure of $\ensuremath{\mathcal{C}}$ under Subgraphs

• $\Gamma_{n^b} \in \mathcal{C}$.

Proof Idea: Stage II

Lemma

Let Γ_{n^b} "contain" K and let $\varphi \in MSO_1$. There is a fixed finite set L s.t. one can in poly time construct a labeling $\lambda : V(\Gamma_{n^b}) \to L$ and $\psi \in MSO_1[L]$ (depends only on φ) s.t.

$$K \models \varphi \text{ iff } (\Gamma_{n^b}, \lambda) \models \psi.$$

• Since Γ_{n^b} "contains" H_{sub} , we have:

 $H' \models \varphi'$ iff $H \models \varphi$ iff $H_{sub} \models \varphi$ iff $(\Gamma_{n^b}, \lambda) \models \psi$.

• $|\Gamma_{n^b}| \leq 2^{n^{5b/c}}$; supplied as advice of subexponential size. Time taken to decide $H' \models \varphi'$ is $|\Gamma_{n^b}|^{f(|\psi|)} = 2^{o(n)}$.

Outline

2 Main Theorem

3 Proof Overview

Consequences for Directed Width Measures

Extension of [Ganian et al., 2010].

Theorem

Unless NETH fails, there exists no directed width measure δ satisfying following three properties:

- δ is closed under subdigraphs;
- ② ∃ digraph class C of bounded δ-width with tw(C) polylogarithmically unbounded;
- for L-vertex-labeled digraphs D and φ ∈ MSO₁[L], deciding D ⊨ φ is in time O(|D|^{f(δ(D),|φ|)}).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

Main Contribution

• Strengthen and simplify Kreutzer and Tazari's impressive result.

Extending to Unlabeled MSO₁?

- **Open.** Is there is a (nontrivial) graph class where model-checking MSO₁ is easy but MSO₁[*L*] is hard?
- This indicates that the result might be extendable to unlabeled MSO₁.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Thank You!