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Algorithmic Meta Theorems

Theorems that identify classes of tractable problems, rather than a
few isolated problems.

Examples

All graph properties expressible in MSO2 can be decided in
linear time on graphs of bounded treewidth [Courcelle, 1990].

All problems in MAX SNP have constant-factor approximation
algorithms [Papadimitriou and Yannakakis, 1991].

Compact parameterized problems expressible in CMSO admit
polynomial kernels on graphs of bounded genus [Bodlaender
et al, 2010].

Uses

Quick way of checking whether a problem admits an algorithm
of a particular kind.
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Courcelle’s Theorem

Theorem (Courcelle, 1990)

Any graph property definable in monadic second-order logic with
quantification over sets of vertices and/or edges can be decided in
linear time on any class of graphs of bounded treewidth.

Linear-time algorithms for several NP-hard problems on
graphs of “small” treewidth: Hamiltonian Cycle, Vertex
Cover, 3-Colorability.

Hamiltonian Cycle There exists a set C ⊆ E of edges that

C induces a connected graph in which every vertex has degree
exactly two;

every vertex is in V (C ).
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The Model-Checking Problem

Definition (L-Model-Checking)

Let C be a class of graphs and let L be a logic. The L-model-
checking problem denoted by MC(L, C) is: given G ∈ C and
ϕ ∈ L, decide whether G |= ϕ.

If L = MSO2 then this is the MSO-model-checking problem.
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Courcelle’s Theorem . . .

. . . rephrased in the parlance of parameterized complexity:

Theorem (Courcelle, 1990)

Let ϕ ∈ MSO2 and let C be the class of all graphs. Then MSO2

model-checking problem MC(MSO2, C): “Does G |= ϕ?” is
fixed-parameter tractable wrt the parameter |ϕ|+ tw (G ).

Extended to (directed) graphs with vertex/edge labels (from a
finite set) and problems involving evaluations of sets definable
in MSO [Arnborg, Lagergren and Seese, 1991].

No lower bounds were known till recently.
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Courcelle’s Theorem: Lower Bounds

Are there classes of unbounded treewidth for which Courcelle’s
Theorem holds?

YES!

Let C = {G | tw (G ) = log∗ |G |}. Given an MSO-formula ϕ and an
n-vertex graph G ∈ C, time taken to decide G |= ϕ:

exp(|ϕ|)(tw (G )) · n ≤ exp(|ϕ|)(tw (G )) · exp(log∗ n)(log∗ n) ≤ n2,

where exp(0)(x) = x and

exp(i)(x) = 2exp(i−1)(x).

Question

How fast must the treewidth grow for Courcelle’s Theorem to fail?
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Courcelle’s Theorem: Lower Bounds . . .

Theorem (Makowsky and Mariño, 2004)

If C is a class of graphs of unbounded treewidth that is closed
under topological minors and G ∈ C, then deciding whether G |= ϕ
is not in FPT wrt |ϕ| as parameter unless P = NP.

Closure under topological minors is a very strong restriction.

Kreutzer and Tazari: Similar result without this restriction for
graph classes with moderately unbounded treewidth.
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Classes of Unbounded Treewidth

Definition (Bounded Treewidth)

Let f : N→ N. A class C of graphs have f -bounded-treewidth if
for all G ∈ C, we have that tw (G ) ≤ f (|G |).

Examples

Courcelle’s Theorem: f (n) := c, a constant.

f (n) := n is the maximum function that makes sense.

In Kreutzer and Tazari: f (n) := logc n, for some constant
c > 0.
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Polylogarithmically Unbounded Classes

Definition (Kreutzer and Tazari)

The treewidth of a graph class C is polylogarithmically unbounded
if for all c > 1 the following holds: for all n ∈ N there exists
Gn ∈ C with

logc(|Gn|) ≤ tw (Gn) (unboundedness);

n ≤ tw (Gn) ≤ nγ , for some fixed γ (density);

Gn can be constructed in time 2nε , for some fixed ε < 1
(constructibility).

Note

logc(|Gn|) ≤ tw (Gn) ≤ nγ =⇒ |Gn| ≤ 2nγ/c .



Motivation Main Theorem Proof Overview Consequences

Courcelle’s Theorem: A Lower Bound

Theorem (Kreutzer and Tazari, 2010)

Let C be a graph class with the following properties:

C is closed under subgraphs;

the treewidth of C is polylogarithmically unbounded.

Then MC(MSO2, C) is not in XP (|G |f (|ϕ|) for any computable f ),
unless SAT can be solved in subexponential time.
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High-level Proof Idea

Reduce Sat to MC(MSO2, C).

Input: A SAT formula F of length n.

Question: Is F satisfiable?

Reduction
1 Construct Gn ∈ C of treewidth nd s.t. logc(|Gn|) < tw (Gn)

and c > d .

Conditions 1 and 2: Gn exists in C.
Condition 3: Gn is efficiently constructible and |Gn| < 2nd/c

.

2 Encode F in a subgraph of Gn (exists because tw (Gn) ≈ nd).

Using closure under subgraphs.

3 Define an MSO-formula ϕ (independent of F ) s.t. F
satisfiable iff Gn |= ϕ.

Deciding Gn |= ϕ in XP takes time 2nc/d ·f (|ϕ|), subexponential
in |F |.
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A Critique of Kreutzer & Tazari’s Result

There are classes C closed under subgraphs with logarithmic
treewidth s.t. MC(MSO2, C) is in XP [Makowski and Mariño,
2004].

Threshold for treewidth is more-or-less strict.

The constructibility clause in the definition of
polylogarithmically unbounded treewidth is unnatural.

Proofs are very technical and spread over several papers.
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Main Theorem I

Theorem

Let C be a graph class s.t.

C is closed under subgraphs;

the treewidth of C is polylogarithmically unbounded.

Then the MSO1 model-checking problem on vertex labeled graphs
from C is not in XP, unless 3-Colorability is in time 2o(n) with
subexponential advice.

The labels are from a fixed, finite set.

Nonuniform ETH: SAT, 3-Colorability are not in 2o(n) time
with subexponential advice.
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Major Differences Between the Two Results

1 We use a weaker logic.

Our result: applies to MSO1 model-checking on vertex-labeled
graphs.
K & T’s result: applies to MSO2 model-checking on unlabeled
graphs.

2 No constructibility requirement.

We use a stronger complexity assumption: Nonuniform ETH.

3 Easy proofs!
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MSO2 versus MSO1 with Vertex Labels

MSO1 with vertex labels is weaker than MSO2.

Hamiltonian Path/Cycle cannot be expressed in MSO1 with
vertex labels.

Results such as Courcelle’s Theorem and Courcelle, Makowski and
Rotics’s Theorem for rankwidth can be extended to vertex-labeled
graphs.

Extending C,M,R’s Theorem for rankwidth from MSO1 to
MSO2 would imply EXP = NEXP.
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On the Constructibility Clause

Our definition of polylogarithmically unbounded treewidth:

Definition

The treewidth of a graph class C is polylogarithmically unbounded
if there is a constant γ s.t. for all c > 1 the following holds. For all
n ∈ N there exists Gn ∈ C with

logc(|Gn|) ≤ tw (Gn) (unboundedness);

n ≤ tw (Gn) ≤ nγ (density).

Note: |Gn| ≤ 2nγ/c .

No constructibility requirement.

At the expense of a stronger complexity-theoretic assumption:
Nonuniform ETH.
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ETH versus Nonuniform ETH (NETH)

Exponential Time Hypothesis [Impagliazzo, Paturi, and Zane,
2001]:

n-variable 3-SAT cannot be solved in 2o(n) time.

Can be formulated using other problems such as Vertex Cover
or 3-Colorability.

NETH: n-variable 3-SAT not solvable in 2o(n) time using:

a family of algorithms, one for each input length;

a circuit-family F s.t. for each input length n, ∃Cn ∈ F with
|Cn| ≤ 2o(n);

an algorithm that receives oracle advice which depends only
on the input length n and has 2o(n) bits.

Can be formulated in terms of Vertex Cover or 3-Colorability.
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Main Theorem II

Our result can be strengthened by assuming that the label set is
arbitrary but finite.

Theorem

Let L be a finite label set and let ϕ ∈ MSO1[L]. Let C be a graph
class s.t.

C is closed under subgraphs;

the treewidth of C is polylogarithmically unbounded.

Then the MSO1 model-checking problem on vertex labeled graphs
from C is not in XP, unless all problems in PH can be solved in
time 2o(n) with subexponential advice.
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Main Theorem I

Theorem

Let C be a graph class s.t.

C is closed under subgraphs;

the treewidth of C is polylogarithmically unbounded.

Then the MSO1 model-checking problem on vertex labeled graphs
from C is not in XP, unless 3-Colorability is in time 2o(n) with
subexponential advice.

Proof. A multistage reduction from 3-Colorability.
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Proof Idea: Stage I

Let ϕ′ ∈ MSO1 express 3-Colorability and let H ′ be an instance of
this problem.

Reduce (H ′, ϕ′)→ (H, ϕ) in polynomial time s.t.

H is {1, 3}-planar;

ϕ depends only on ϕ′ and |ϕ| = O(|ϕ′|).

H ′ |= ϕ′ iff Hsub |= ϕ for every subdivision Hsub of H.

Note that

ϕ is an “interpretation” of 3-Colorability closed under edge
subdivisions;

|H ′| = n and |H| ≤ nb for some constant b.
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Proof Idea: Grid-Like Subgraphs

Polylogarithmic Unboundedness of tw (C)

∃Gn ∈ C s.t. tw (Gn) ≥ logc(|Gn|) and n5b ≤ tw (Gn) ≤ n5bγ .

|Gn| ≤ 2n5bγ/c
for c > 5bγ.

Grid-Like Subgraphs [Reed and Wood, 2008]

tw (Gn) ≥ n5b implies Gn contains a grid-like subgraph Γnb

of order nb.

Γnb “contains” a subdivision Hsub of H.

Closure of C under Subgraphs

Γnb ∈ C.
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Proof Idea: Stage II

Lemma

Let Γnb “contain” K and let ϕ ∈ MSO1. There is a fixed finite
set L s.t. one can in poly time construct a labeling λ : V (Γnb )→ L
and ψ ∈ MSO1[L] (depends only on ϕ) s.t.

K |= ϕ iff (Γnb , λ) |= ψ.

Since Γnb “contains” Hsub, we have:

H ′ |= ϕ′ iff H |= ϕ iff Hsub |= ϕ iff (Γnb , λ) |= ψ.

|Γnb | ≤ 2n5b/c
; supplied as advice of subexponential size.

Time taken to decide H ′ |= ϕ′ is |Γnb |f (|ψ|) = 2o(n).
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Consequences for Directed Width Measures

Extension of [Ganian et al., 2010].

Theorem

Unless NETH fails, there exists no directed width measure δ
satisfying following three properties:

1 δ is closed under subdigraphs;

2 ∃ digraph class C of bounded δ-width with tw (C)
polylogarithmically unbounded;

3 for L-vertex-labeled digraphs D and ϕ ∈ MSO1[L], deciding
D |= ϕ is in time O(|D|f (δ(D),|ϕ|)).
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Summary

Main Contribution

Strengthen and simplify Kreutzer and Tazari’s impressive
result.

Extending to Unlabeled MSO1?

Open. Is there is a (nontrivial) graph class where
model-checking MSO1 is easy but MSO1[L] is hard?

This indicates that the result might be extendable to
unlabeled MSO1.
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Thank You!
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