
Simpler Parameterized Algorithm for OCT

Daniel Lokshtanov∗ Saket Saurabh∗ Somnath Sikdar†

Abstract

We give a simple and intuitive fixed parameter tractable algorithm for the
Odd Cycle Transversal problem, running in time O(3k · k · |E| · |V |). Our
algorithm is best viewed as a reinterpretation of the classical Iterative Compres-
sion algorithm for Odd Cycle Transversal by Reed, Smith and Vetta [8].

1 Introduction

Iterative Compression is a tool that has recently been used successfully to solve a
number of problems in Parameterized Complexity. This technique was first introduced
by Reed, Smith and Vetta in order to solve the Odd Cycle Transversal problem.
In this problem we are given a graph G together with an integer k. The objective
is to find a set S of at most k vertices whose deletion makes the graph bipartite
[8], and a set S such that G \ S is bipartite is called an odd cycle transversal of G.
The method of Iterative Compression was used in obtaining faster fixed parameter
tractable (FPT) algorithms for Feedback Vertex Set, Edge Bipartization,
Chordal Deletion and Cluster Vertex Deletion on undirected graphs [2, 3,
6, 4]. The technique was also used by Chen et al. [1] to show that the Directed
Feedback Vertex Set problem is FPT, resolving a long standing open problem
in Parameterized Complexity.

While the algorithm of Reed, Smith and Vetta for Odd Cycle Transversal
was a breakthrough for parameterized algorithms, the algorithm and correctness proof
is quite hard to understand. In an attempt to remedy this, Hüffner [5] provided an
alternative algorithm for the problem. In this paper we give yet another algorithm for
OCT. We believe that our algorithm is simpler and more intuitive than the previous
versions.

∗The University of Bergen, Norway. {daniello|saket.saurabh}@ii.uib.no
†The Institute of Mathematical Sciences, India. somnath@imsc.res.in

1

2 The Method of Iterative Compression

The method of Iterative Compression was introduced by Reed et al. [8] in order
to solve the Odd Cycle Transversal (OCT) problem. The idea is to reduce
the problem in question to a modified version, where we are also given as input a
solution that is almost good enough, but not quite. For the case of Odd Cycle
Transversal, we are given an odd cycle transversal S ′ of G of size k + 1. We call
this problem the compression version of Odd Cycle Transversal. The crux of
the Iterative Compression method is that often the compression version of a problem
is easier to solve than the original one.

Suppose we could solve the compression version of the problem in O(f(k)nc)
time. We show how to solve the original problem in O(f(k)nc+1) time. Order the
vertices of V (G) into v1v2 . . . vn and define Vi = {v1 . . . vi} for every i. Notice that
if G has an odd cycle transversal S of size k then S ∩ Vi is an odd cycle transversal
of G[Vi] for every i ≤ n. Furthermore, if S is an odd cycle transversal of G[Vi]
then S ∪ {vi+1} is an odd cycle transversal of G[Vi+1]. Finally, Vk is an odd cycle
transversal of size k of G[Vk]. These three facts together with the f(k)nc algorithm for
the compression version of OCT give a f(k)nc+1 time algorithm for OCT as follows.
Call the algorithm for the compression version with input (G[Vk+1], Vk+1, k). The
algorithm will either report that (G[Vk+1, k]) has no odd cycle transversal of size k or
return such an odd cycle transversal, call it Sk+1. In the first case G has no k-sized
odd cycle transversal. In the second, call the algorithm for the compression version
with input (G[Vk+2], Sk+1 ∪ {vk+2}, k). Again we either receive a “no” answer or a
k-sized odd cycle transversal Sk+2 of G[Vk+2] and again, if the answer is negative then
G has no k-sized odd cycle transversal. Otherwise we call the compression algorithm
with input (G, Sk+2∪{vk+3}, k) and keep going on in a similar manner. If we receive a
negative answer at some step we answer that G has no k-sized odd cycle transversal.
If we do not receive a negative answer at any step, then after n − k calls to the
compression algorithm we have a k-sized odd cycle transversal of G[Vn] = G. Thus
we have resolved the input instance in time O(f(k)nc+1). We refer to [7] for a more
thorough introduction to Iterative Compression.

3 An algorithm for Odd Cycle Transversal

We now show how to solve the compression version of Odd Cycle Transversal
in time O(3k · k · |E|). From the discussion in Section 2 it will follow that OCT can
be solved in time O(3k · k · |E| · |V |). For two vertex subsets V1 and V2 of V (G) a
walk from V1 to V2 is a walk with one endpoint in V1 and the other in V2, or a single
vertex in V1 ∩ V2. The following is a simple fact about bipartite graphs.

Fact 3.1 Let G = (V1] V2, E) be a bipartite graph with vertex bipartition V1] V2.
Then

2

1. For i ∈ {1, 2}, no walk from Vi to Vi has odd length.

2. No walk from V1 to V2 has even length.

A walk in a graph is an alternating sequence of vertices and edges v0, e1, v1, e2, . . . , vn,
such that ei = (vi−1, vi) is an edge for i ∈ {1, . . . , n}. The length l of a walk is the
number of edges used in the sequence.

Recall that we are given a graph G and an odd cycle transversal S ′ of G of size k+1
and we have to decide whether G has an odd cycle transversal of size at most k. If
such an odd cycle transversal S exists then there exists a partition of S ′ into L]R]T ,
where T = S ′ ∩ S and L and R are subsets of the left and right bipartitions of the
resulting graph. The algorithm iterates over all 3k partitions of S into L]R]T . For
each partition we run an algorithm that takes as input a partition of S ′ into L]R]T ,
runs in O(k · |E|) time and decides whether there exists a set of vertices T ′ of size at
most k − |T | in G \ S ′ such that G \ (T ∪ T ′) is bipartite with bipartitions VL and
VR such that L ⊆ VL and R ⊆ VR. In the remainder of this section we give such an
algorithm. This algorithm together with the outer loop over all partitions of S ′ yields
the O(3k · k · |E|) time algorithm for the compression step.

Before proceeding we do a simple “sanity check”. If there is an edge in G[L]
or G[R] it is clear that X can not exist since then either VL or VR can not be an
independent set. Hence if there is an edge in G[L] or G[R] we can immediately skip
to the next partition of S ′. Now, since G \ S ′ is bipartite, let A]B be a bipartition
of G \ S ′. Let Al and Bl be the neighbors of L in A and B respectively. Similarly
let Ar and Br be the neighbours of R in A and B respectively.

Lemma 3.2 Let (G, S ′, k) be an instance of the compression version of Odd Cycle
Transversal and let S ′ = L] R] T . If X ⊆ (V (G) \ S ′) is a set of vertices such
that G\(T ∪X) is bipartite with bipartitions VL and VR such that L ⊆ VL and R ⊆ VR,
then in G \ (S ′ ∪ X), there are no paths between Al and Bl; Bl and Br; Br and Ar;
and, Ar and Al.

Proof. Any path from Al to Bl in G\(S ′∪X) has odd length and can be extended to
a walk from L to L of odd length in G′\(T ∪X), contradicting Fact 3.1. A symmetric
argument shows that there are no paths between Br and Ar in G \ (S ′ ∪ X). Any
path from Bl to Br in G \ (S ′ ∪ X) must be of even length and can be extended to
a walk in G \ (T ∪ X) from L to R of even length, again contradicting Fact 3.1. A
symmetric argument yields that there are no paths between Ar and Al.

Lemma 3.3 Let (G, S ′, k) be an instance of the compression version of Odd Cycle
Transversal and let S = L]R] T such that G[L] and G[R] are independent sets.
Let X be a set of vertices in V (G) \ S ′ such that in G \ (S ′ ∪X), there are no paths
between Al and Bl; Bl and Br; Br and Ar; and, Ar and Al. Then G \ (T ∪ X) is
bipartite with bipartitions VL and VR such that L ⊆ VL and R ⊆ VR.

3

Proof. Notice that every path from a vertex in L to another vertex in L with inner
vertices only in V (G) \ (S ′ ∪ X) must have even length. Similarly every path from
a vertex in R to another vertex in R with inner vertices only in V (G) \ (S ′ ∪ X)
must have even length and every path from a vertex in L to a vertex in R with inner
vertices only in V (G) \ (S ′ ∪ X) must have odd length. Since G[L] and G[R] are
independent sets it follows that if G \ (T ∪X) is bipartite then it has bipartitions VL

and VR such that L ⊆ VL and R ⊆ VR. We now prove that G \ (T ∪X) is bipartite.
Consider a cycle in G \ (T ∪ X). If C does not contain any vertices of (L ∪ R)

then |E(C)| is even since G \ S ′ is bipartite. Let v1, v2, . . . vt be the vertices of
(L ∪ R) ∩ C in their order of appearance along C. Let v0 = vt, then we have that
|E(C)| =

∑t−1
i=0 dc(vi, vi+1). But then E(C) must be even since the number of indices

i such that vi ∈ L and vi+1 ∈ R is equal to the number of indices j such that vj ∈ R
and vj+1 ∈ L. This concludes the proof.

To check whether G \ T has an odd cycle transversal X such that G \ (T ∪ X)
is bipartite with bipartitions VL and VR such that L ⊆ VL and R ⊆ VR we proceed
as follows. Construct an auxiliary graph G̃ from G \ S ′ by introducing two special
vertices s, t and connecting s to each vertex in Al∪Br and t to each vertex in Ar∪Bl.
Lemmas 3.2 and 3.3 show that it is sufficient to check whether there is an st-separator
in G̃ of size at most k−|T |. This can be done using max flow in time O(k · |E|). These
discussions together with Lemmata 3.2 and 3.3 bring us to the following theorem.

Theorem 3.4 There is an algorithm that given a graph G = (V, E) and integer k
decides whether G has an OCT of size at most k in time O(3k · k · |E| · |V |).

4 Concluding Remarks

In this paper we gave an alternate algorithm for Odd Cycle Transversal based
on the Iterative Compression technique. Traditionally, algorithms that use Iterative
Compression partition the given k + 1-sized solution into two parts. Our algorithm
is the first to partition this set in three parts. This is a key element in deriving our
algorithm. We believe that partitioning the given k +1-sized solution into more than
two parts will be useful in designing Iterative Compression based algorithms.

Acknowledgments

The authors would like to thank Michael Fellows, Fedor V. Fomin, Rolf Niedermeier,
Venkatesh Raman and Frances Rosamond for helpful discussions and for suggesting
to put this article in print.

4

References

[1] J. Chen, Y. Liu, S. Lu, I. Razgon, B. O’Sullivan, A Fixed-Parameter Algorithm
for the Directed Feedback Vertex Set Problem, Journal of the ACM, 55(5) (2008).

[2] F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens, An O(2O(k)n3)
FPT algorithm for the undirected feedback vertex set problem, Theory of Com-
put. Syst., 41(3), 479–492 (2007).

[3] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization,
J. Comput. Syst. Sci. 72(8), 1386–1396 (2006).

[4] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier, Fixed-parameter
algorithms for cluster vertex deletion, in the proceedings of LATIN’08, LNCS
4957, 711-722 (2008).

[5] F. Hüffner, Algorithm engineering for optimal graph bipartization, Journal of
Graph Algorithms and Applications, 13(2), 77–98 (2009).

[6] D. Marx, Chordal deletion is fixed-parameter tractable, in the proceedings of
WG’06, LNCS 4271, 37–48 (2006).

[7] R. Niedermeier, An Invitation to Fixed-Parameter Algorithms, Oxford Univer-
sity Press, (2006).

[8] B. Reed, A. Vetta and K. Smith, Finding Odd Cycle Transversals, Operations
Research Letters, 32, 229–301 (2004).

5

