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1 Introduction23

A matching in a graph is a set of edges no two of which have a common end-24

point. An induced matching M of a graph G = (V, E) is an edge-subset M ⊆ E25

such that M is a matching and no two edges of M are joined by an edge of G.26

In other words, the set of edges of the subgraph induced by V (M) is precisely27

the set M . The size of a maximum induced matching in G is denoted by im(G).28

The decision version of Induced Matching is defined as follows.29

Input: An undirected graph G = (V, E) and a nonnegative integer k.
Question: Does G have an induced matching with at least k edges?

The optimization version asks for an induced matching of maximum size.30

The Induced Matching problem was introduced as a variant of the max-31

imum matching problem and motivated by Stockmeyer and Vazirani [42] as32

the “risk-free” marriage problem 4 . This problem has been intensively studied33

in recent years. It is known to be NP-complete for the following graph classes34

(among others):35

• planar graphs of maximum degree 4 [32],36

• bipartite graphs of maximum degree 3, C4-free bipartite graphs [34],37

• r-regular graphs for r ≥ 5, line-graphs, chair-free graphs, and Hamiltonian38

graphs [33].39

The problem is known to be polynomial time solvable for the following graph40

classes:41

• trees [22,43],42

• chordal graphs [8],43

• weakly chordal graphs [10],44

• circular arc graphs [23],45

• trapezoid graphs, interval-dimension graphs, and comparability graphs [24],46

• interval-filament graphs, polygon-circle graphs, and AT-free graphs [9],47

• (P5,Dm)-free graphs [33,35],48

• (Pk,K1,n)-free graphs [35],49

• (bull, chair)-free graphs, line-graphs of Hamiltonian graphs [33],50

• and graphs where the maximum matching and the maximum induced match-51

ing have the same size [33].52

For graphs in which the maximum matching and maximum induced matching53

have the same size, Cameron and Walker [11] provide a simple characterization54

4 Find the maximum number of pairs such that each married person is compatible
with no married person except the one he or she is married to.
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Graph Class Param. Result Reference

general k W [1]-hard [36]

bounded degree k O(k) kernel Sect. 3.1

bipartite k W [1]-hard Sect. 3.3

graphs with girth at least 6 k O(k3) kernel Sect. 3.2

line graphs k O∗(2k) alg. Sect. 3.4

planar k O(k) kernel Sect. 4

bounded treewidth ω O(4ω · n) alg. Sect. 5

Fig. 1. Parameterized complexity results for NP-complete variants of Induced

Matching. Here, k denotes the minimum number of edges of the induced matching,
and ω denotes the treewidth of the input graph.

of these graphs which also leads to a simpler recognition algorithm.55

Regarding polynomial-time approximability, it is known that Induced Match-56

ing is APX-complete on r-regular graphs, for all r ≥ 3, and bipartite graphs57

with maximum degree 3 [17]. Moreover, for r-regular graphs it is NP-hard to58

approximate Induced Matching to within a factor of r/2O(
√

ln r) [13]. In gen-59

eral graphs, the problem cannot be approximated to within a factor of n1/2−ǫ
60

for any ǫ > 0, where n is the number of vertices of the input graph [38].61

There exists an approximation algorithm for the problem on r-regular graphs62

(r ≥ 3) with asymptotic performance ratio r− 1 [17], which has subsequently63

been improved to 0.75r + 0.15 [25]. Moreover, there exists a polynomial-time64

approximation scheme (PTAS) for planar graphs of maximum degree 3 [17].65

In contrast to these results, little is known about the parameterized complex-66

ity of Induced Matching. To the best of our knowledge, the only known67

result is that the problem is W [1]-hard (with respect to the matching size as68

parameter) in the general case [36], and hence unlikely to be fixed-parameter69

tractable. Therefore, it is of interest to study the parameterized complexity of70

the problem in those restricted graph classes where it remains NP-complete.71

An interesting aspect of studying the parameterized complexity of NP-complete72

problems are problem kernels. The intuitive idea behind kernelization is that73

a polynomial-time preprocessing step removes the “easy” parts of a problem74

instance such that only the “hard” core of the problem remains, which can75

then be solved by other methods. We call such a core a linear kernel if we can76

prove that its size is a linear function of the parameter k. Linear problem ker-77

nels are of immense interest in parameterized algorithmics. One can consult78

the recent surveys by Fellows [19], Guo and Niedermeier [26], and the books79

by Flum and Grohe [20] and Niedermeier [37] for an overview on kernelization.80
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In this paper we give linear kernels for planar graphs and bounded-degree81

graphs. For graphs of girth at least 6, which also include C4-free bipartite82

graphs, we can show a simple kernel with a cubic number of vertices (that83

is, O(k3) vertices). Moreover, we show that Induced Matching is fixed-84

parameter tractable for line graphs. Finally, we give an algorithm for graphs of85

bounded treewidth using an improved dynamic programming approach, which86

runs in O(4ω · n) time, where ω is the width of the given tree decomposition.87

This extends an algorithm for Induced Matching on trees by Zito [43]. See88

Figure 1 for an overview of the results presented in this paper.89

Our main result, the linear kernel on planar graphs, is based on a kerneliza-90

tion technique first introduced by Alber et al. [3] to show that Dominating91

Set has a linear kernel on planar graphs. The result for the kernel size has92

subsequently been improved by Chen et al. [12], and they also show lower93

bounds on the kernel size for Dominating Set, Vertex Cover, and Inde-94

pendent Set on planar graphs. The technique developed by Alber et al. [3]95

has been exploited by Guo et al. [28] in developing a linear kernel for Full-96

Degree Spanning Tree, a maximization problem. Moreover, Fomin and97

Thilikos [21] extended the technique to graphs of bounded genus. Recently,98

Guo and Niedermeier [27] gave a generic kernelization framework for NP-hard99

problems on planar graphs based on that technique. So far, the technique has100

been applied to problems whose solutions are vertex subsets. Our linear kernel101

on planar graphs is the first application of this technique for a maximization102

problem whose solutions are edge subsets. We adapt and extend the technique103

introduced in [3] and [28]. Note that very recently our kernelization result on104

planar graphs has been improved by Kanj et al. to a kernel of 40k vertices105

using a different technique [29].106

The paper is organized as follows. First we define our notation in Section 2.107

In Section 3 we give the results for bounded-degree graphs, graphs of girth108

at least 6, bipartite graphs, and line graphs. These results are simple and109

meant to provide some first-time insight into the parameterized complexity of110

Induced Matching on these classes. We then give a linear problem kernel111

on planar graphs in Section 4, which is the most technical part of this paper.112

Finally, we give the improved dynamic programming algorithm for graphs of113

bounded treewidth in Section 5.114

2 Preliminaries115

In this paper, we deal with fixed-parameter algorithms that emerge from the116

field of parameterized complexity analysis [16,20,37], where the computational117

complexity of a problem is analyzed in a two-dimensional framework. One118

dimension of an instance of a parameterized problem is the input size n, and119
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the other is the parameter k. A parameterized problem is fixed-parameter120

tractable if it can be solved in f(k) · nO(1) time, where f is a computable121

function depending only on the parameter k.122

A common method to prove that a problem is fixed-parameter tractable is to123

provide data reduction rules that lead to a problem kernel. Given a problem124

instance (I, k), a data reduction rule replaces that instance by an equivalent125

instance (I ′, k′) in polynomial time such that |I ′| ≤ |I| and k′ ≤ k. Two126

problem instances are equivalent if they are both yes-instances or both no-127

instances. An instance to which none of a given set of data reduction rules128

applies is called reduced with respect to that set of rules. A parameterized129

problem is said to have a problem kernel if, after the application of the data130

reduction rules, the resulting reduced instance has size f(k) for a function f131

depending only on k. A kernel is called linear if its size is linear in k, that132

is, if f(k) = c · k for some constant c. Analogous to classical complexity the-133

ory, Downey and Fellows [16] developed a framework providing a reducibility134

and completeness program. The basic complexity class for fixed-parameter in-135

tractability is W [1] as there is good reason to believe that W [1]-hard problems136

are not fixed-parameter tractable [16].137

In this paper we assume that all graphs are simple and undirected. For a138

graph G = (V, E), we write V (G) to denote its vertex set and E(G) to denote139

its edge set. By default, for a given graph we use n and m to denote the number140

of vertices and edges, respectively. A vertex that is an endpoint of an edge is141

incident to that edge and adjacent to the other endpoint. An isolated vertex142

has no neighbors. For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph of G143

induced by V ′. We write G\V ′ to denote the graph G[V \V ′]. For a vertex v ∈144

V we also write G − v instead of G \ {v}. The open neighborhood N(W ) of145

a vertex set W is the set of all vertices in V \W that are adjacent to some146

vertex in W . The closed neighborhood N [W ] is defined as N(W ) ∪W . For a147

vertex v we write N(v) (N [v]) instead of N({v}) (N [{v}]).148

We assume that paths are simple, that is, a vertex is contained at most once in149

a path. A path P from a to b is denoted as a vector P = (a, . . . , b), and a and b150

are called the endpoints of P . The length of a path (a1, a2, . . . , aq) is q−1, that151

is, the number of edges on it. For an edge set M we define V (M) :=
⋃

e∈M e.152

The distance d(u, v) between two vertices u, v is the length of a shortest path153

between them. The distance between two edges e1, e2 is the minimum distance154

between two vertices v1 ∈ e1 and v2 ∈ e2.155

If a graph can be drawn on the plane without edge crossings then it is planar.156

A plane graph is a planar graph with a fixed embedding in the plane. Given a157

plane graph, a cycle C = (a, . . . , a) of length at least three encloses an area A158

of the plane. The cycle C is called the boundary of A, all vertices in the area A159

are inside A. A vertex is strictly inside A if it is inside A and not on C.160
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3 Fundamental Results161

The following results are basic first-time fixed-parameter tractability results162

for several graph classes where Induced Matching remains NP-hard.163

3.1 Bounded-Degree Graphs164

We show that Induced Matching admits a linear problem kernel on graphs165

whose maximum degree is bounded by a constant.166

Proposition 1 The Induced Matching problem admits a problem kernel167

of O(k · d2) vertices on graphs whose vertex degrees are bounded by d (that is,168

the kernel is linear for constant d). The kernel can be obtained in O(n) time.169

PROOF. Let G be a graph with maximum degree d, where d is some con-170

stant. Let M be any maximal induced matching of G found by the following171

greedy algorithm. The algorithm repeatedly selects an arbitrary edge e, adds172

it to the solution, and deletes N [V (e)]. This process is repeated until no more173

edges remain. Since the maximum degree of the graph is bounded by d, select-174

ing an edge and deleting its closed neighborhood takes constant time only, and175

the process is repeated at most ⌊n/2⌋ times, thus the whole greedy algorithm176

runs in O(n) time.177

If |M | ≥ k, then we are done. Therefore, assume that |M | < k. Define S1178

and S2 as follows: S1 := N(V (M)) and S2 := N(S1) \ V (M). Note that all179

neighbors of vertices in S2 are in the set S1, since if a vertex u ∈ S2 has a180

neighbor v /∈ S1 then {u, v} could be added to the induced matching, con-181

tradicting its maximality. Clearly, |S1| < 2kd and |S2| < 2kd2. Since V (G) =182

V (M) ∪ S1 ∪ S2, it immediately follows that |V (G)| < 2k(1 + d + d2). 2183

3.2 Graphs Without Small Cycles184

As stated before, the Induced Matching problem is NP-hard on C4-free185

bipartite graphs [34]. Since the class of C4-free bipartite graphs is properly186

contained in the class of graphs with girth at least six, the Induced Match-187

ing problem is NP-hard on the latter graph class.188

Proposition 2 The Induced Matching problem admits a problem kernel189

of O(k3) vertices on graphs with girth at least six. The corresponding data190

reduction rule can be carried out in O(n + m) time.191
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PROOF. Let G be a graph with girth at least 6. Delete all except one degree-192

one neighbor from as many vertices as possible in G. If every vertex has193

degree at most k then we obtain a kernel of O(k3) vertices immediately from194

Proposition 1. Therefore assume that there exists a vertex u of degree at195

least k + 1. Let S := {v1, . . . , vk+1} be a set of k + 1 neighbors of u. Since G196

has no 3-cycles, S is independent. At most one vertex of S has degree one.197

Assume without loss of generality that the vertices in {v1, . . . , vk} have degree198

at least two. For 1 ≤ i < j ≤ k, vi and vj do not have any common neighbors199

as otherwise we obtain a 4-cycle. For 1 ≤ i ≤ k, let zi be a neighbor of vi.200

Again {z1, . . . , zk} must be independent as otherwise we obtain a 5-cycle. But201

then {(v1, z1), . . . , (vk, zk)} is an induced matching of size k. 2202

The fact that many W [1]-hard problems become fixed-parameter tractable in203

graphs with no small cycles was discovered by Raman and Saurabh [40].204

3.3 Bipartite Graphs205

For bipartite graphs we show that the Induced Matching problem is W [1]-206

hard. We give a reduction from the W [1]-complete Irredundant Set prob-207

lem [15]. Given a graph G = (V, E) and a positive integer k, Irredundant208

Set asks whether there exists a set V ′ ⊆ V of size at least k having the209

property that each vertex u ∈ V ′ has a private neighbor. A private neighbor210

of a vertex u ∈ V ′ is a vertex u′ ∈ N [u] (possibly u′ = u) such that for every211

vertex v ∈ V ′ \ {u}, u′ 6∈ N [v].212

Proposition 3 The Induced Matching problem in bipartite graphs is W [1]-213

hard with respect to the parameter k.214

PROOF. We prove the proposition by a reduction from Irredundant Set.215

Let (G, k) be an instance of the Irredundant Set problem. Construct a bi-216

partite graph G′ as follows. Construct two copies of the vertex set of G and call217

these V ′ and V ′′; the copies of a vertex u ∈ V (G) from V ′ and V ′′ are denoted218

as u′ and u′′, respectively. Define V (G′) = V ′∪V ′′ and E(G′) = {{u′, u′′} : u ∈219

V (G)} ∪ {{u′, v′′}, {v′, u′′} : {u, v} ∈ E(G)}. We claim that the graph G has220

an irredundant set of size k if and only if G′ has an induced matching of size k.221

To show the claim, suppose S = {w1, . . . , wk} ⊆ V (G) is an irredundant set222

of size k in G. For 1 ≤ i ≤ k, let xi be the private neighbor of wi. Then223

for all i, {w′
i, x

′′
i } is an edge in G′. Since the xi’s are private neighbors there224

is no edge {wi, xj} in G for all i 6= j and therefore no edge {w′
i, x

′′
j} in G′.225

Therefore, the edges {w′
i, x

′′
i }, . . . , {w

′
k, x

′′
k} form an induced matching in G′.226

Conversely, if M = {e1, . . . , ek} is an induced matching of G′ of size k then227

for each ei = {u′
i, v

′′
i }, v′′

i ∈ V ′′ can be viewed as a private neighbor of u′
i ∈ V ′.228
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Therefore, the vertices u1, . . . , uk form an irredundant set in G. This completes229

the proof. 2230

3.4 Line Graphs231

The line graph L(G) of a graph G is defined as follows: the vertex set of L(G)232

is the edge set of G; two “vertices” e1 and e2 of L(G) are connected by an233

edge if e1 and e2 share an endpoint. More formally, we have234

L(G) := (E(G), {{e1, e2} : e1, e2 ∈ E(G) ∧ e1 ∩ e2 6= ∅}).

A graph H is a line graph if there exists a graph G such that H = L(G). It is235

well-known (see, e.g., [18]) that if H is a line graph, then it does not have any236

induced K1,3 (also known as claw). It was shown that the Induced Match-237

ing problem is NP-complete on line graphs (and hence claw-free graphs) [33].238

Given a graph H , it is possible to test in time max{|V (H)|, |E(H)|}whether H239

is a line-graph and if so construct G such that H = L(G) [41].240

Lemma 4 Let H be a line-graph and let H = L(G). Then H has an induced241

matching of size at least k if and only if G has at least k vertex-disjoint copies242

(not necessarily induced) of P3, the path on three vertices.243

PROOF. Let {e1, . . . , ek} be an induced matching of size k in H . From244

the definition of a line-graph it follows that each edge ei corresponds to a245

path pi = (xi, yi, zi) in the graph G. The set ∪k
i=1{xi, yi, zi} has exactly 3k246

vertices. Moreover, the sets {xi, yi, zi} and {xj , yj, zj} are disjoint for i 6= j:247

if any two vertices, one from path pi and the other from pj, are identical,248

then an endpoint of ei would be connected to an endpoint of ej, contradict-249

ing the fact that these edges form an induced matching. This shows that G250

contains k vertex-disjoint copies of P3. Conversely, if G has k vertex-disjoint251

copies of P3, then the edges corresponding to these paths form an induced252

matching in H . 2253

The problem of checking whether a given graph G has k copies of P3 can be254

solved in O(25.301kk2.5+n3) time and is therefore fixed-parameter tractable [39].255

(A more general method to solve such kind of packing problems can be found256

in [31].)257

Proposition 5 The Induced Matching problem on line-graphs can be solved258

in time O(25.301kk2.5 + n3) and is therefore fixed-parameter tractable.259
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4 A Linear Kernel on Planar Graphs260

In order to show our kernel, we employ the following data reduction rules.261

These rules stem from the simple observation that if two vertices have the262

same neighborhood, one of them can be removed without affecting the size of263

a maximum induced matching. Compared to the data reduction rules applied264

in other proofs of planar kernels [3,12,28], these data reduction rules are quite265

simple and can be carried out in O(n+m) time on general graphs (and hence266

in O(n) time on planar graphs).267

(R0) Degree Zero Rule: Delete vertices of degree zero.268

(R1) Degree One Rule: If a vertex u has two distinct neighbors x, y of de-269

gree 1, then delete x.270

(R2) Degree Two Rule: If u and v are two vertices such that |N(u)∩N(v)| ≥ 2271

and if there exist two vertices x, y ∈ N(u)∩N(v) with deg(x) = deg(y) = 2,272

then delete x.273

Note that these data reduction rules are parameter-independent. The following274

lemma is easy to show.275

Lemma 6 The data reduction rules R0, R1, and R2 are correct.276

PROOF. Obviously none of these rules destroys planarity. The correctness277

of the Degree Zero Rule is obvious since no isolated vertex can be part of an278

edge. Concerning the Degree One Rule, observe that only one edge incident279

to u can be part of an induced matching. The correctness of the Degree Two280

Rule can be seen as follows. Let G be a graph and M a maximum induced281

matching for G. If one of the vertices x or y is an endpoint of an edge in M ,282

then either u or v is the other endpoint of that edge since x and y have no283

other neighbors. Suppose, without loss of generality, that {u, x} is a matching284

edge. Since u and y are adjacent, y cannot be an endpoint of an edge in M ,285

and since x is adjacent to v, v cannot be an endpoint of an edge in M . For286

that reason, we can get a new matching M ′ := (M \ {u, x})∪ {{u, y}}, which287

has the same size as M and is still induced, and it is an induced matching288

for G′ := G− x. The case where no vertex in {x, y} is an endpoint of an edge289

in M is obvious. The reverse direction is trivial, as any induced matching M ′
290

for G′ is also an induced matching for G. 2291

Lemma 7 The data reduction rules R0, R1, and R2 can be carried out in O(n)292

time on planar graphs and O(n + m) time on general graphs, where n and m293

denote, respectively, the number of vertices and edges.294
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PROOF. We first remove all isolated vertices in O(n) time in order to reduce295

the graph with respect to the Degree Zero Rule. Then we apply the Degree296

Two Rule. For each vertex u of the graph we check which neighbors of u can be297

deleted. To this end, we determine in O(deg(u)) time all degree-two neighbors298

of u; then we group together all such neighbors whose second neighbor is the299

same. For each group, we mark all but one vertex for deletion. After having300

done this for every vertex we delete the marked vertices. Finally we apply the301

Degree One Rule. For each vertex u we determine in O(deg(u)) time all degree-302

one neighbors of u, and delete all but one. The running time to exhaustively303

apply each rule is O(
∑

u∈V (1 + deg(u))), which is bounded by O(n + m) for304

general graphs and O(n) for planar graphs.305

It remains to explain why we need to check every vertex for each rule only306

once, and why we first apply the Degree Two Rule and then the Degree One307

Rule. It is easy to verify that for each rule the following holds: a vertex that is308

not deleted during the application of the rule does not become a candidate for309

deletion with respect to the rule after the application of that rule. Moreover,310

we have to justify why we apply the Degree Two Rule before the Degree One311

Rule. If the Degree Two Rule cannot be applied anymore, then the application312

of the Degree One Rule cannot cause any situation where the Degree Two Rule313

could be applied again. This does not hold if we apply the rules the other way314

around. The application of the Degree Zero Rule at the beginning is obviously315

correct. 2316

The following theorem is our main result whose proof spans the remainder of317

this section.318

Theorem 8 Let G = (V, E) be a planar graph reduced with respect to the319

rules R0, R1, and R2. Then |V | ≤ c · im(G) for some constant c. That is, the320

Maximum Induced Matching problem on planar graphs admits a linear321

problem kernel.322

The basic observation is that if M is a maximum induced matching of a323

graph G = (V, E) then for each vertex v ∈ V there exists a u ∈ V (M) such324

that d(u, v) ≤ 2. Otherwise, we could add edges to M and obtain a larger325

induced matching. Since every vertex in the graph is within distance at most326

two to some vertex in V (M), we know, roughly speaking, that the edges in M327

have distance at most four to other edges in M . This leads to the idea of328

regions “in between” matching edges that are close to each other. We will see329

that these regions cannot be too large if the graph is reduced with respect to330

the above data reduction rules. Moreover, we show that there cannot be many331

vertices that are not contained within such regions.332
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This idea of a region decomposition was introduced in [3], but the definition333

of a region as it appears there is much simpler since the regions are defined334

between vertices, and they are smaller. The remaining part of this section335

is dedicated to the proof of Theorem 8. First, in Section 4.1 we show how336

to find a “maximal region decomposition” of a reduced graph that contains337

only O(|M |) regions, where M is the size of a maximum induced matching338

of the graph. Then, in Section 4.2 we show that a region in such a maximal339

region decomposition contains only a constant number of vertices. Finally, in340

Section 4.3 we show that in any reduced graph there are only O(|M |) vertices341

which lie outside of regions.342

4.1 Finding a Maximal Region Decomposition343

Definition 9 Let G be a plane graph and M a maximum induced matching344

of G. For edges e1, e2 ∈ M , a region R(e1, e2) is a closed subset of the plane345

such that346

(1) the boundary of R(e1, e2) is formed by two length-at-most-four paths347

• (a1, . . . , a2), a1 6= a2, between a1 ∈ e1 and a2 ∈ e2,348

• (b1, . . . , b2), b1 6= b2, between b1 ∈ e1 and b2 ∈ e2, and349

by e1 if a1 6= b1 and e2 if a2 6= b2;350

(2) for each vertex x in the region R(e1, e2), there exists a y ∈ V ({e1, e2})351

such that d(x, y) ≤ 2;352

(3) no vertices inside the region other than endpoints of e1 and e2 are from M .353

The set of boundary vertices of R is denoted by δR. We write V (R(e1, e2)) to354

denote the set of vertices of a region R(e1, e2), that is, all vertices strictly in-355

side R(e1, e2) together with the boundary vertices δR. A vertex in V (R(e1, e2))356

is inside R.357

Note that the two enclosing paths may be identical; the corresponding region358

then consists solely of a simple path of length at most four. Note also that e1359

and e2 may be identical. For an example of a region see Figure 2.360

Definition 10 Let G be a plane graph and M a maximum induced matching361

in G. An M-region decomposition of G = (V, E) is a set R of regions such362

that no vertex in V lies strictly inside more than one region from R. For363

an M-region decomposition R, we define V (R) :=
⋃

R∈R V (R). An M-region364

decomposition R is maximal if there is no R /∈ R such that R ∪ {R} is an365

M-region decomposition with V (R) ( V (R) ∪ V (R).366

For an example of an M-region decomposition, see Fig. 3.367

Lemma 11 Given a plane reduced graph G = (V, E) and a maximum induced368
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Fig. 2. Example of region R(e1, e2) between two edges e1, e2 ∈ M . Note that e1 is
not part of R, but only its endpoint a1 = b1. The black vertices are the boundary
vertices, and the gray vertices in the hatched area are the vertices strictly inside
of R.
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Fig. 3. An example of an M -region decomposition: black vertices denote boundary
vertices; gray vertices lie strictly inside a region and white vertices lie outside of
regions. Each region is hatched with a different pattern. Note the special cases, as
for instance regions that consist of a path like the region between e1 and e2, or
regions that are created by only one matching edge (the region on the left side
of e3). Note also that boundary vertices may be contained in boundaries of several
regions, that is, the boundaries may touch each other. See for instance vertex x as
an example of a boundary vertex of four regions.

matching M of G, there exists an algorithm that constructs a maximal M-369

region decomposition with O(|M |) regions.370

PROOF. We use a constructive proof with a greedy algorithm as shown in371

Figure 4. This algorithm is quite similar to the algorithms by Alber et al. [3]372

and Guo et al. [28] used for their linear kernel for Dominating Set on planar373

graphs and Full-Degree Spanning Tree on planar graphs, respectively.374

A similar algorithm is also applied in [27].375

It is clear that the algorithm returns an M-region decomposition. To see that376

the returned M-region decomposition R is maximal, observe that for every377

vertex u that is not in a region we check whether there is a region containing u378

that can be added to R. It remains to show that R contains O(|M |) regions.379

The proof of this is similar to the proof by Alber et al. [3] and is not given in380

full detail here.381
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Algorithm: Maximum M-region decomposition.
Input: A graph G = (V, E) and a maximum induced matching M .
Output: An M-region decomposition R with O(|M |) regions.
01 R← ∅, V ′ ← ∅
02 for each vertex u ∈ V do
03 if u /∈ V ′ and there exists a region R(e1, e2) with u ∈ V (R(e1, e2))

such that R∪ {R} is an M-region decomposition then
04 S ← set of all regions R(e1, e2) with u ∈ V (R(e1, e2))

such that R∪ {R} is an M-region decomposition
05 Rnew ← region from S that is space-maximal
06 R← R∪ {Rnew}, V

′ ← V ′ ∪ V (Rnew)
07 end if
08 end for
09 return R

Fig. 4. A greedy algorithm that constructs an M -region decomposition for a plane
graph G and a maximum induced matching M .

The main idea is to show that between any two edges e1 and e2 of a maximum382

induced matching M there is a constant number of regions. To show that the383

number of regions is O(|M |), construct a new graph by replacing the edges of384

the induced matching by vertices and the regions by edges; that is, place an385

edge between two vertices in the new graph if there exists a region between386

the corresponding edges in the original graph. The resulting graph is a planar387

multigraph and by Euler’s formula there are at most c · (3|M | − 6) edges,388

where c is the maximum number of regions between two edges e1, e2 of the389

original graph. This proves that the number of regions in the original graph390

is indeed O(|M |). 2391

4.2 Bounding the Size of a Region392

To upper-bound the size of a region R we make use of the fact that any393

vertex strictly inside R has distance at most two from some vertex in δR. For394

this reason, the vertices strictly inside R can be arranged in two layers. The395

first layer consists of the neighbors of boundary vertices, and the second of396

all the remaining vertices, that is, all vertices at distance at least two from397

every boundary vertex. The proof strategy is to show that if any of these398

layers contains too many vertices, then there exists an induced matching M ′
399

with |M ′| > |M |. An important structure for our proof are areas enclosed by400

4-cycles, called diamonds.401

Definition 12 Let u and v be two vertices in a plane graph. A diamond 5 is a402

5 In standard graph theory, a diamond denotes a 4-cycle with exactly one chord.
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u
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u

x

Fig. 5. A diamond (left) and an empty diamond (right) in a reduced plane graph.

closed area of the plane with two length-2 paths between u and v as boundary.403

A diamond D(u, v) is empty, if every edge e in the diamond is incident to404

either u or v.405

Fig. 5 shows an empty and a non-empty diamond. In a reduced plane graph406

empty diamonds have a restricted size. We are especially interested in the407

maximum number of vertices strictly inside an empty diamond D(u, v) that408

have both u and v as neighbors.409

Lemma 13 Let D(u, v) be an empty diamond in a reduced plane graph. Then410

there exists at most one vertex strictly inside D(u, v) that has both u and v as411

neighbors.412

PROOF. Suppose that there are at least two vertices x and y strictly in-413

side D(u, v), where both have u and v as neighbors. Since D is empty, x and y414

can have no other neighbors than u and v. Thus, there are two vertices of415

degree two with the same neighbors, a contradiction to the fact that G is416

reduced (Degree Two Rule). 2417

Lemma 13 shows that if there are more than three edge-disjoint length-two418

paths between two vertices u, v, then there must be an edge e in an area419

enclosed by two of these paths such that e is not incident to u or v. This fact420

is used in the following lemma to show that the number of length-two paths421

between two vertices of a reduced plane graph is bounded.422

Lemma 14 Let u and v be two vertices of a reduced plane graph G such423

that there exists two distinct length-2 paths (u, x, v) and (u, y, v) enclosing424

an area A of the plane. Let M be a maximum induced matching of G. If425

neither x nor y is an endpoint of an edge in M and no vertex strictly inside A426

is contained in V (M), then the following holds:427

We abuse this term here. Note that diamonds also play an important role in proving
linear problem kernels on planar graphs for other problems [3,27].
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u

vv

u

w6w3w2w1 w5w4

Fig. 6. Left: An embedding of the vertices w1, . . . , w6 for the first case in the proof
of Lemma 14. Right: An embedding of 16 neighbors of u and v for the last case
of the proof. The diamonds are shaded and the “isolation paths” are drawn with
dashed lines.

If neither u nor v is an endpoint of an edge in M , then there are at most 5428

edge-disjoint length-2 paths between u and v inside A. If exactly one of u or v429

is an endpoint of an edge in M , then there are at most 10 such paths, and430

if both u and v are endpoints of edges in M , then there are at most 15 such431

paths.432

PROOF. The idea is to show that if there are more than the claimed number433

of length-2 paths between u and v, then we can exhibit an induced match-434

ing M ′ with |M ′| > |M |, which would then contradict the optimality of M .435

First, we consider the case when neither u nor v is contained in V (M). Suppose436

for the purpose of contradiction that there are 6 common neighbors w1, . . . , w6437

of u and v that lie inside A (that is, strictly inside and on the enclosing paths).438

Without loss of generality, suppose that these vertices are embedded as shown439

in Fig. 6 (left-hand side), with w1 and w6 lying on the enclosing paths. Consider440

the diamond D with the boundary induced by the vertices u, v, w2, w5. Since w3441

and w4 are strictly inside D and are incident to both u and v, by Lemma 13,442

we know that D is not empty. That is, there exists an edge e in D which443

is not incident to u or v. Clearly e is incident to neither w1 nor w6 and the444

endpoints of e are at distance at least 2 from every vertex in V (M). Therefore,445

we can add e to M and obtain a larger induced matching, which contradicts446

the optimality of M .447

Next, consider the case when exactly one of u or v is an endpoint of an448

edge e in M . Using the same idea as above, it is easy to see that if there449

exist 11 length-2 paths between u and v, then there are at least two non-empty450

diamonds (using (u, w1, v), (u, w6, v) and (u, w11, v) as “isolation paths”) whose451

boundaries share only u and v. We can then replace e in M by edges e1 and e2,452

one from each nonempty diamond, and obtain a larger induced matching.453
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The last case, when both u and v are endpoints of edges in M , can be handled454

in the same way by showing that there exist at least three non-empty diamonds455

if we assume 16 length-2 paths between u and v, where the boundaries of these456

diamonds only touch in u and v (see Figure 6). Then we can replace the edges457

in M that are incident to u and v by three edges strictly inside the diamonds,458

contradicting the maximum cardinality of M . 2459

Lemma 14 is needed to upper-bound the number of vertices inside and outside460

of regions that are connected to at least two boundary vertices.461

The next two lemmas are needed to upper-bound the number of vertices that462

are connected to exactly one boundary vertex. First, Lemma 15 upper-bounds463

the number of such vertices under the condition that they are contained in an464

area which is enclosed by a short cycle. Lemma 15 is then used in Lemma 16465

to upper-bound the total number of such vertices for a given boundary vertex.466

Lemma 15 Let u be a vertex in a reduced plane graph G and let v, w ∈ N(u)467

be two distinct vertices that have distance at most three in G−u. Let P denote468

a shortest path between v and w in G − u and let A denote the area of the469

plane enclosed by P and the path (v, u, w). If there are at least 9 neighbors470

of u strictly inside A, then there is at least one edge strictly inside A.471

PROOF. Let u contain nine neighbors {z1, . . . , z9} strictly inside A and as-472

sume that there is no edge strictly inside A. By the Degree One Rule, at most473

one of the zi’s can have degree 1. Without loss of generality assume that z9474

has degree 1. By the Degree Two Rule, no two degree-2 vertices have the same475

neighborhood. Observe that the neighbors of the zi’s must be vertices on P476

due to planarity, as otherwise there would be an edge strictly inside of A, a477

contradiction to our assumption.478

First, consider the case when there exists a vertex among the zi’s of degree479

at least 4. Suppose zj, 1 ≤ j ≤ 8, has at least three neighbors among the480

vertices in P . Because the graph is planar, there exists a x ∈ P such that481

no zi, i 6= j, is adjacent to x. The remaining vertices have degree 2 or 3 and482

each is adjacent to some vertex y 6= x in P . Moreover, there can be at most483

one vertex of degree 3. Since |V (P )| ≤ 4, it is easy to see that there are at484

least two degree-2 vertices with the same neighbors, a contradiction.485

Therefore, assume that deg(zi) ≤ 3 for all i. Again by planarity, there are486

at most three vertices in {z1, . . . , z8} of degree 3. The remaining at least487

five vertices must be of degree 2 and each is adjacent to a vertex in P .488

Since |V (P )| ≤ 4, this implies that there are two degree-2 vertices with the489

same neighborhood, a contradiction. This shows that if there exist nine neigh-490

bors of u in A, there exists an edge strictly inside A. 2491
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u

Fig. 7. Worst-case embeddings to illustrate Lemma 15.

Fig. 7 shows, for two different situations, the maximum number of neighbors492

of u that can be strictly inside A such that no edge lies strictly inside A.493

Lemma 16 Let G be a reduced plane graph, let M be a maximum induced494

matching of G, let e1, e2 ∈M be edges that form a region R(e1, e2), and let u495

be a boundary vertex of R. Then, u has at most 40 neighbors strictly inside R496

that are not adjacent to any other boundary vertex.497

PROOF. We assume that there are 41 neighbors of u strictly inside R that498

are not adjacent to any other boundary vertex and show that then we can499

find an induced matching M ′ with |M ′| > |M |, contradicting the maximum500

cardinality of M .501

Suppose that the neighbors v1, . . . , v41 are embedded around u in a clock-502

wise fashion. By the Degree One Rule, u can have at most one neighbor of503

degree 1. Without loss of generality assume that deg(v2) = 1. Consider the ver-504

tices v1, v11, and v21. If the pairwise distance of these vertices in G−u is at least505

four, then any three edges ea, eb, ec in G−u incident to v1, v11, and v21, respec-506

tively, are pairwise non-adjacent. Since they lie strictly inside R(e1, e2) (u is the507

only neighbor on the boundary), we can set M ′ := (M \ {e1, e2})∪{ea, eb, ec}.508

Similarly if v21, v31, and v41 have a pairwise distance of at least four, then we509

can construct an induced matching of cardinality larger than |M |.510

It remains to show the case that at least two vertices from {v1, v11, v21}511

have distance at most three and at least two vertices from {v21, v31, v41}512

have distance at most three. Let {w1, w
′
1} ⊆ {v1, v11, v21} and {w2, w

′
2} ⊆513

{v21, v31, v41} be these vertices. Let P1 and P2 denote, respectively, the short-514

est paths from w1 to w′
1 and from w2 to w′

2 in G− u. Note that P1 and P2 are515

strictly inside R. Let A1 be the area enclosed by P1 and the path (w1, u, w′
1)516

and let A2 be the area enclosed by P2 and the path (w2, u, w′
2). Note that P1517

and P2 can be chosen so that the subsets of the plane strictly inside A1 and A2518

do not intersect. By Lemma 15, there exists edges e1, e2 such that e1 is strictly519

inside A1 and e2 is strictly inside A2. If there exists an edge e ∈ M incident520

to u, then (M − e) ∪ {e1, e2} is an induced matching with size strictly larger521

than that of M , a contradiction. If no edge of M is incident to u, M ∪{e1, e2}522
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is again an induced matching of larger size. 2523

Using Lemma 14 and Lemma 16, we can now upper-bound the number of524

vertices inside a region.525

Lemma 17 Each region R(e1, e2) of an M-region decomposition of a reduced526

plane graph contains O(1) vertices.527

PROOF. We prove the lemma by partitioning the vertices strictly inside R(e1, e2)528

into two sets A and B, where A consists of all vertices at distance exactly one529

from some boundary vertex, and B consists of all vertices at distance at least530

two from every boundary vertex, and then showing that |A| and |B| are upper-531

bounded by a constant.532

To this end, partition A into A1 and A2, where A1 contains all vertices in A533

that have exactly one neighbor on the boundary, and A2 all vertices that534

have at least two neighbors on the boundary. To upper-bound the size of A1,535

observe that due to Lemma 16, a vertex v ∈ δR on the boundary can have at536

most 40 neighbors in A1. Since a region has at most ten boundary vertices,537

we conclude that A1 contains at most 400 vertices.538

Next we upper-bound the size of A2. Consider the planar graph G′ induced539

by δR ∪ A2. Every vertex in A2 is adjacent to at least two boundary vertices540

in G′. Replace every vertex v ∈ A2 with an edge connecting two arbitrary541

neighbors of v on the boundary. Merge multiple edges between two boundary542

vertices into a single edge. Since G′ is planar, the resulting graph must also be543

planar. As |δR| ≤ 10, using the Euler formula we conclude that the resulting544

graph has at most 3 ·10−6 = 24 newly added edges. By Lemma 14, each such545

edge represents at most 15 length-two paths, and thus |A2| ≤ 24 · 15 = 360.546

To upper-bound the size of B, observe that G[B] must be a graph without547

edges (that is, B is an independent set). By the Degree One Rule, each vertex548

in A has at most one neighbor in B of degree one. Therefore, there are O(1)549

degree-one vertices in B. To bound the number of degree-at-least-two vertices550

in B, we use the same argument as the one used to bound the size of A2.551

Since |A| = O(1), there is a constant number of degree-at-least-two vertices552

in B. Therefore |B| = O(1). This completes the proof. 2553

Proposition 18 Let G be a reduced plane graph and let M be a maximum554

induced matching of G. There exists an M-region decomposition such that the555

total number of vertices inside all regions is O(|M |).556
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PROOF. Using Lemma 11, there exists a maximal M-region decomposition557

for G with at most O(|M |) regions. By Lemma 17, each region has a constant558

number of vertices. Thus there are O(M) vertices inside regions. 2559

We next bound the number of vertices that lie outside regions of a maximal560

M-region decomposition.561

4.3 Bounding the Number of Vertices Lying Outside of Regions562

In this section, we upper-bound the number of vertices that lie outside of563

regions of a maximal M-region decomposition. The strategy to prove this564

bound is similar to that used in the last section. We subdivide the vertices565

lying outside of regions into several disjoint subsets and upper-bound their566

sizes separately.567

Note again that the distance from any vertex of the graph to a vertex in V (M)568

is at most two. We partition the vertices lying outside of regions into two sets A569

and B, where A is the set of vertices at distance exactly one from some vertex570

in V (M), and B is the set of vertices at distance at least two from every vertex571

in V (M). We bound the sizes of these two sets separately.572

Partition A into two subsets A1 and A2, where A1 is the set of vertices that573

have exactly one boundary vertex as neighbor, and A2 is the set of vertices574

that have at least two boundary vertices as neighbors. Note that each vertex v575

in A can be adjacent to exactly one vertex u ∈ V (M). For if it is adjacent576

to distinct vertices u, w ∈ V (M), then the path (u, v, w) can be added to the577

region decomposition, contradicting its maximality (recall that regions can578

consist of simple paths between two vertices in V (M)). To bound the number579

of vertices in A1 we need the following lemma.580

Lemma 19 Let v be a vertex in A1 and let u be its neighbor in V (M). Then581

for all w ∈ V (M) \ {u}, the distance between v and w in G − u is at least582

three.583

PROOF. Let u and v be as in the statement of the Lemma and let w ∈584

V (M) \ {u}. Suppose (v, x, w) is a path of length two. Now x cannot be a585

boundary vertex since v ∈ A1. The path P = (u, v, x, w) is of length three and586

the only vertices of P that are boundary vertices are u and w. Thus P can be587

added in the region decomposition, contradicting its maximality. 2588

Lemma 20 Given a maximal M-region decomposition consisting of O(|M |)589

regions, the set A contains O(|M |) vertices.590
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PROOF. To bound the size of A1, we claim that each vertex u ∈ V (M) has591

at most 20 neighbors in A1. Suppose, for the purpose of contradiction, that 21592

vertices v1, . . . , v21 in A1 are adjacent to u ∈ V (M). Also assume that they593

are embedded in a clockwise fashion around u in that order. Let e be the594

edge in M incident to u. First, suppose that v1 and v11 have distance at least595

four in G − u. Then there exist edges ea, eb in G − u incident to v1 and v11,596

respectively, that form an induced matching of size 2. Moreover by Lemma 19,597

the endpoints of ea and eb are not adjacent to any vertex of V (M) in G− u.598

Therefore, M ′ = (M \{e})∪{ea, eb} is an induced matching of size larger than599

that of M , a contradiction to the maximum cardinality of M . The same holds600

if the distance between v11 and v21 is at least four in G− u. Therefore assume601

that in the graph G − u, d(v1, v11) ≤ 3 and d(v11, v21) ≤ 3. Let P1 and P2602

be shortest paths in G − u between v1 and v11 and between v11 and v21,603

respectively. Note that due to Lemma 19 these two paths cannot contain any604

vertex from V (M). By Lemma 15, the areas enclosed by P1 and (v1, u, v11),605

and P2 and v11, u, v21, respectively, contain an edge strictly inside them. The606

edge e can be replaced by these two edges to obtain an induced matching of607

size larger than M , a contradiction to the maximum cardinality of M . This608

proves our claim. Since there are exactly 2 |M | vertices in V (M), this shows609

that the total number of vertices in A1 is at most 40 |M |.610

Next, we bound the size of A2. Every vertex v in A2 is adjacent to a ver-611

tex u ∈ V (M) and some boundary vertex w /∈ V (M). Vertex w must be612

adjacent to u, for otherwise there is a path consisting of the vertices (u, v, w)613

and some subpath on the boundary where w lies which can be added to the614

region decomposition R, contradicting its maximality. Since there are O(|M |)615

regions, there are O(|M |) possible boundary vertices adjacent to a vertex616

in V (M). By Lemma 14, given a vertex x ∈ V (M) and y ∈ V \ V (R) there617

can be at most 10 vertices adjacent to both x and y. This shows that A2618

contains O(|M |) vertices. 2619

It remains to bound the number of vertices in B, that is, the number of vertices620

outside of regions that are at distance at least two from every vertex in V (M).621

Lemma 21 Given a maximal M-region decomposition with O(|M |) regions,622

the set B contains O(|M |) vertices.623

PROOF. To bound the size of B, observe that G[B] is a graph without edges.624

Furthermore, observe that N(B) ⊆ A ∪ A′, where A′ is the set of boundary625

vertices in the M-region decomposition that are different from V (M). By626

Lemma 20 and since the boundary of each region contains a constant number627

of vertices, the set C := A ∪A′ contains O(|M |) vertices.628

First, consider the vertices in B that have degree one. Obviously, there can be629
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at most |C| such vertices due to the Degree One Rule. The remaining vertices630

are adjacent to at least two vertices in C. We can use an argument similar631

to the one used in the proof of Lemma 17 (using the Euler formula) to show632

that there are O(|C|) degree-at-least-two vertices in B. Thus, |B| = O(|C|) =633

O(|M |). 2634

Using these results, we can see that the total number of vertices outside of635

regions is bounded.636

Proposition 22 Given a maximal M-region decomposition with O(|M |) re-637

gions, the number of vertices that lie outside of regions is O(|M |).638

PROOF. The proof directly follows from Lemmas 20 and 21. 2639

Using Propositions 18 and 22, we can show that, given a reduced plane graph G640

and a maximum induced matching M of G, there exists an M-region decompo-641

sition with O(|M |) regions such that the number of vertices inside and outside642

of regions is O(|M |). This shows the O(|M |) upper bound on the number of643

vertices as claimed in Theorem 8, that is, Maximum Induced Matching644

admits a linear problem kernel on planar graphs.645

5 Induced Matching on Graphs with Bounded Treewidth646

Zito [43] developed a linear-time dynamic programming algorithm to solve647

Induced Matching on trees. We extend his work and obtain a linear-time648

algorithm on graphs of bounded treewidth [7]. Note that compared to Zito’s649

work our dynamic programming approach uses a different encoding to store650

the partial solutions in the updating process.651

It is relatively easy to verify that such a linear-time algorithm for graphs of652

bounded treewidth actually does exist.653

Proposition 23 Let ω ≥ 1. Given a graph with a tree decomposition of width654

at most ω, the Maximum Induced Matching problem can be decided in655

linear time.656

PROOF. We give a monadic-second order logic (MSO) formulation of Max-657
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imum Induced Matching:658

max E ′ : ∀e1∀e2

(

E ′e1E
′e2¬

[

∃x∃yV x ∧ V y ∧ Ixe1 ∧ Iye2∧

((x = y) ∨ ∃e′(Ee′ ∧ Ixe′ ∧ Iye′))
])

In the above formula, V and E are unary relation symbols which denote the659

vertex and edge set of the graph; I is a binary relation symbol that denotes660

whether a vertex is incident to an edge and E ′ denotes an induced matching.661

One can now use Courcelle’s result [14] which states that all graph properties662

definable in monadic second-order logic can be decided in linear time on graphs663

of bounded treewidth. 2664

Courcelle’s result is purely theoretical as the hidden constants in the run-665

ning time analysis are huge. As such, it is of independent interest to develop666

algorithms which can be used in practice.667

It is relatively easy to see that a standard dynamic programming approach668

would result in a running time of O(9ω · n), where ω is the width of the given669

tree-decomposition. With an improved dynamic programming algorithm, we670

obtain a running time of O(4ω · n). Our approach also uses some ideas that671

were applied for an improved dynamic programming algorithm for Domi-672

nating Set [1,4]. However, the concept of monotonicity which was needed673

for Dominating Set is not needed for Induced Matching, as the neces-674

sary condition for an improved analysis of the dynamic programming update675

process is fulfilled without the monotonicity concept. Here we describe only676

the basic definitions and those parts of the algorithm which are important in677

showing the improved running time. We also refer the reader to the standard678

literature about tree decompositions [5–7,30].679

Definition 24 Let G = (V, E) be a graph. A tree decomposition of G is a680

pair ({Xi | i ∈ I}, T ), where each Xi is a subset of V , called a bag, and T681

is a tree with the elements of I as nodes. The following three properties must682

hold:683

(1)
⋃

i∈I Xi = V ,684

(2) for every edge e ∈ E there is an i ∈ I such that e ⊆ Xi, and685

(3) for all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi∩Xk ⊆ Xj.686

The width of ({Xi | i ∈ I}, T ) equals max{|Xi| | i ∈ I} − 1. The treewidth687

of G is the minimum k such that G has a tree decomposition of width k.688

A tree decomposition with a simpler structure is defined as follows.689

Definition 25 A tree decomposition ({Xi | i ∈ I}, T ) is called a nice tree690
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decomposition if the following conditions are satisfied (we suppose the decom-691

position tree T to be rooted at some arbitrary but fixed node):692

(1) Every node of the tree T has at most two children.693

(2) If a node i has two children j and k, then Xi = Xj = Xk (in this case i694

is called a join node).695

(3) If a node i has one child j, then either696

(a) |Xi| = |Xj | + 1 and Xj ⊂ Xi (in this case i is called an introduce697

node), or698

(b) |Xi| = |Xj| − 1 and Xi ⊂ Xj (in this case i is called a forget node).699

A given tree decomposition can be transformed into a nice tree decomposition700

in linear time:701

Lemma 26 (Lemma 13.1.3 of [30]) Given a tree decomposition of a graph G702

that has width ω and O(n) nodes, where n is the number of vertices of G. Then703

we can find a nice tree decomposition of G that also has width ω and O(n)704

nodes in time O(n).705

The remainder of this section is dedicated to the proof of the following theo-706

rem.707

Theorem 27 Let G = (V, E) be a graph with a given nice tree decomposi-708

tion ({Xi | i ∈ I}, T ). Then the size of a maximum induced matching of G709

can be computed in O(4ω · n) time, where n := |I| and ω denotes the width of710

the tree decomposition.711

PROOF. For each bag Xi we consider all possible ways of obtaining an in-712

duced matching in the subgraph induced by Xi and all bags below Xi. To do713

this, we create a table Ai, i ∈ I for each bag Xi which stores this information.714

These tables are updated in a bottom-up process starting at the leaves of the715

decomposition tree. In the following, we say that a vertex v is contained in716

an induced matching M if v is an endpoint of an edge in M . If v is contained717

in M , its partner in M is a vertex u such that {u, v} ∈ M . We use different718

colors to represent the possible states of a vertex in a bag:719

white(0): A vertex labeled 0 is not contained in M .720

black(1): A vertex labeled 1 is contained in M and its partner in M has721

already been discovered in the current stage of the algorithm.722

gray(2): A vertex labeled 2 is contained in M but its partner in M has not723

been discovered in the current stage of the algorithm.724

For each bag Xi = {xi1 , . . . , xini
}, |Xi| = ni, we construct a table Ai consisting725

of 3ni rows and ni + 1 columns. Each row represents a coloring c : Xi →726

{0, 1, 2}m of the graph G[Xi]; the entry mi(c) in the ni+1st column represents727
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the number of vertices in an induced matching in the graph visited up to the728

current stage of the algorithm under the assumption that the vertices in the729

bag Xi are assigned colors as specified by c. If no induced matching is possible730

with the corresponding coloring, then the entry mi(c) stores the value −∞.731

For a coloring c = (c1, . . . , cm) ∈ {0, 1, 2}m and a color d ∈ {0, 1, 2} we define732

#d(c) := |{1 ≤ t ≤ m | ct = d}|.733

Given a bag Xi and a coloring c of the vertices in Xi, we say that c is valid734

if the subgraph induced by the vertices labeled 1 and 2 has the following735

structure: vertices labeled 2 have degree 0 and those labeled 1 have either736

degree 0 or 1. For valid colorings we store the value mi as described above; for737

all other colorings we set mi to −∞ to mark it as invalid. A coloring is strictly738

valid if it is valid and, in addition, vertices labeled 1 induce isolated edges.739

We next describe the dynamic programming process. Recall that we assume740

that we work with a nice tree decomposition.741

Leaf Nodes742

For a leaf node Xi compute the table Ai as743

mi(c) :=







#1(c) + #2(c), if c is strictly valid,

−∞, otherwise.

In the initialization step, the assignment of colors needs to be justified locally744

and therefore we require that the colorings are strictly valid. Checking for745

validity takes O(n2
i ) time; therefore, this step can be carried out in O(3ni ·n2

i )746

time.747

Introduce Nodes748

Let Xi = {xi1 , . . . , xinj
, x} be an introduce node with child node Xj = {xi1 , . . . , xinj

}.749

Compute the table Ai as follows. For a coloring c : Xi → {0, 1, 2} and an in-750

dex 1 ≤ p ≤ |Xi|, define grayp(c) to be a coloring derived from c by re-coloring751

the vertex with index p with color 2. Let Nj(x) be the set of neighbors of ver-752

tex x in Xj , that is, Nj(x) := N(x) ∩Xj.753

Then the mapping mi in Ai is computed as follows (recall that mi represents754

the number of vertices in an induced matching in the graph visited up to the755
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current stage of the algorithm). For a coloring c = (c1, . . . , cnj
) set756

mi(c× {0}) :=mj(c). (1)

mi(c× {1}) :=



























mj(grayp(c)) + 1, if there is a vertex xjp
∈ Nj(x)

with cp = 1, and for all

xjq
∈ Nj(x) with q 6= p : cq = 0.

−∞, otherwise.

(2)

mi(c× {2}) :=







mj(c) + 1, if cp = 0 for all xjp
∈ Nj(x).

−∞, otherwise.
(3)

Assignment 1 is clearly correct, since the coloring c×{0} is valid for Xi if and757

only if c is valid for Xj . The value of mi is the same for both colorings. If the758

newly introduced vertex x has color 1 (Assignment 2), then—since c × {1}759

must be valid—there must be a neighbor y with color 1 within the bag Xi;760

all the other neighbors of x in Xi must have color 0. This is insured by the761

assignment condition. To see the correctness of the computed value mi(c×{1}),762

note that y must have color 2 in bag Xj, since the partner of y was not yet763

known in the stage when the algorithm was processing bag Xj, and we increase764

the number of solution vertices by one since the newly introduced vertex has765

color 1. The condition of Assignment 3 simply verifies the validity of the766

coloring c×{2}, and we increase the number of solution vertices by one since767

the newly introduced vertex has color 2.768

For each row of table Ai, we have to look at the neighborhood of vertex x769

within the bag Xi to check whether the corresponding coloring is valid. There-770

fore, this step can be carried out in O(3ni · ni) time.771

Forget Nodes772

Let Xi = {xi1 , . . . , xini
} be a forget node with child node Xj = {xi1 , . . . , xini

, x}.773

Compute the table Ai as follows. For each coloring c ∈ {0, 1, 2}ni set774

mi(c) := max
d∈{0,1}

{mj(c× {d})}.

The maximum is taken over colors 0 and 1 only, as a coloring c× {2} cannot775

be extended to a maximum induced matching. To see this, note that such a776

coloring assigns vertex x color 2 and since x is forgotten, by the consistency777

property of tree-decompositions (Property 3 of Definition 24), it does not778

appear in any of the bags that the algorithm sees in the future.779

Clearly, this evaluation can be done in O(3ni · ni) time. The crucial part are780

the join nodes.781
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Join Nodes782

For a join node Xi with child nodes Xj and Xk compute the table Ai as783

follows. We say that two colorings c′ = (c′1, . . . , c
′
ni

) ∈ {0, 1, 2}ni and c′′ =784

(c′′1, . . . , c
′′
ni

) ∈ {0, 1, 2}ni are correct for a coloring c = (c1, . . . , cni
) if the785

following conditions hold for every p ∈ {1, . . . , ni}:786

(1) if cp = 0 then c′p = 0 and c′′p = 0,787

788

(2) if cp = 1 then789

(a) if xip has a neighbor xiq ∈ Xi with cq = 1 then c′p = c′′p = 1,790

(b) else either c′p = 1 and c′′p = 2, or c′p = 2 and c′′p = 1, and791

792

(3) if cp = 2 then c′p = 2 and c′′p = 2.793

Then the mapping mi of Xi is evaluated as follows. For each coloring c ∈794

{0, 1, 2}ni set795

mi(c) := max{mj(c
′) + mk(c

′′)−#1(c)−#2(c) | c
′ and c′′ are correct for c}.

In other words, we determine the value of mi(c) by looking up the correspond-796

ing coloring in mj and in mk (corresponding to the left and right subtree, re-797

spectively), add the corresponding values and subtract the number of vertices798

colored 1 or 2 by c, since they would be counted twice otherwise.799

Clearly, if the coloring c assigns color 0 to a vertex x ∈ Xi, then so must800

colorings c′ and c′′. The same holds if c assigns color 2 to a vertex. However,801

if c assigns color 1 to a vertex x, then this coloring can be justified in two ways.802

The first case is when x has a neighbor y ∈ Xi that is also colored 1. Then both803

colorings c′ and c′′ obviously assign 1 to x (and 1 to y). The second case is when804

all neighbors of x in Xi are assigned color 0. Then the assignment c(x) = 1805

must be justified by another vertex in the solution which is in a bag which806

has already been processed in a previous stage of the algorithm. This vertex807

is located either in the left subtree or in the right subtree (corresponding808

to mj or mk, respectively), but not both. Therefore, the color of x can only be809

justified by assigning color 1 to x by c′ and color 2 to x by c′′, or vice versa.810

Note that for a given coloring c ∈ {0, 1, 2}ni, with a := #1(c), there are at811

most 2a possible pairs of correct colorings for c. There are 2ni−a
(

ni

a

)

possible812

colorings c with a vertices colored 1, thus813

|{(c′, c′′) | c ∈ {0, 1, 2}ni, c′ and c′′ are correct for c}| ≤
ni
∑

a=0

2ni−a

(

ni

a

)

·2a = 4ni.

Since we have to check the neighbors of x within Xi for each pair of correct814

colorings, the total running time for this step is O(4ni · ni). In total, we get a815

running time of O(4ω · |I|) for the whole dynamic programming process. 2816
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6 Conclusions and Outlook817

As our main result, we have shown that Induced Matching on planar818

graphs admits a linear problem kernel. Additionally, we gave an improved dy-819

namic programming algorithm for Induced Matching on graphs of bounded820

treewidth. The data reduction rules for the planar case are very simple and821

the kernelization can be done in linear time. The upper bound on the number822

of vertices inside regions can probably be improved using a more sophisticated823

analysis. More precisely, we feel that the approach used in Lemma 15 can be824

adapted and generalized to give a direct bound for the size of entire regions,825

and that a significant improvement of the constant in the kernel size is not too826

difficult to achieve. Note that with a different technique, a kernel of size 40k827

has recently been achieved [29]. It would be interesting to see whether the828

kernelization could be generalized to non-planar graphs such as in the case829

of Dominating Set [21]. Moreover, generalizing the data reduction rules830

could lead to an improved kernel (see, e.g., [2]). The properties of Induced831

Matching concerning approximation could be another interesting research832

field. Investigating the parameterized complexity of Induced Matching on833

other restricted classes of graphs may be of interest.834
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