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Abstract. Given a graph G and a nonnegative integer k, the NP-complete Induced Match-
ing problem asks for an edge subset M such that M is a matching and no two edges of M
are joined by an edge of G. The complexity of this problem on general graphs as well as on
many restricted graph classes has been studied intensively. However, little is known about the
parameterized complexity of this problem. Our main contribution for the problem—which
is W[1]-hard in general—is to show that it is fixed-parameter tractable on planar graphs
by providing a linear problem kernel. Additionally, we generalize a known algorithm for
Induced Matching on trees to graphs of bounded treewidth using an improved dynamic
programming approach.

1 Introduction

A matching in a graph is a set of edges no two of which have a common endpoint. An induced
matching M of a graph G = (V,E) is an edge-subset M ⊆ E such that (1) M is a matching and
(2) no two edges of M are joined by an edge of G. In other words, the subgraph induced by V (M)
is precisely the set M . The maximum size of an induced matching in G is denoted by im(G). The
(decision version) of the Induced Matching problem asks the following question: given a graph G
and an integer k, does G have an induced matching of size at least k? The optimization version
asks for an induced matching of maximum size. The Induced Matching problem was introduced
as a variant of the maximum matching problem and motivated by Stockmeyer and Vazirani [28] as
the “risk-free” marriage problem3. This problem has been intensively studied in recent years. It is
known to be NP-complete for planar graphs of maximum degree 4 [22], bipartite graphs of maximum
degree 3, C4-free bipartite graphs [24], r-regular graphs for r ≥ 5, line-graphs and Hamiltonian
graphs [23]. The problem is polynomial time solvable for trees [16,29], chordal graphs [7] and weakly
chordal graphs [9]. Further results on special graph classes can be found in [8,17,18,23,24,25].
Regarding approximability, it is known that the Induced Matching problem is APX-hard on
4r-regular graphs, for all r ≥ 1 [29], and bipartite graphs with maximum degree 3 [12]. On the
other hand, there exists an approximation algorithm with performance ratio d − 1 on d-regular
graphs (d ≥ 3) [12].

In contrast to these results, little is known about the parameterized complexity of Induced
Matching. To the best of our knowledge, the only known result is that the problem is W [1]-hard in
the general case [26]. This result provides evidence that Induced Matching is not fixed-parameter
tractable in general graphs. Therefore it is of interest to study the parameterized complexity of
the problem in those restricted graph classes where it remains NP-complete. In this paper, we
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focus on planar graphs. The parameterized complexity of various NP-complete problems on planar
graphs has already been studied. An interesting aspect of such studies are linear problem kernels.
Kernelization is an important and powerful concept in Parameterized Complexity Theory used
to demonstrate fixed-parameter tractability. One can consult the recent surveys by Fellows [13],
Guo and Niedermeier [19], and the book by Flum and Grohe [14] for an overview on kernelization.
Dominating Set was one of the first problems for which a linear kernel on planar graphs was
found [2]. The kernel developed in [2] has subsequently been improved in [10]. In the same paper,
the authors describe lower bound results on the kernel size for several problems on planar graphs
including Dominating Set and Vertex Cover. The technique developed in [2] has been ex-
ploited in developing a linear kernel for the Full-Degree Spanning Tree [20], a maximization
problem, and has also been extended to graphs of bounded genus [15]. Thus far, the technique has
been applied to problems whose solutions are vertex subsets. We give the first application of this
technique for a maximization problem whose solutions are edge subsets.

We show that Induced Matching on planar graphs admits a linear-size problem kernel. We
adapt and extend the technique introduced in [2] and [20]. The corresponding data reduction rules
can be carried out in linear time. The organization of the remaining paper is as follows. In Section 2,
we start out with some basic definitions and notation used in the rest of the paper. In Section 3,
we first state the data reduction rules that we need and then present the kernelization proof, which
is also the main technical contribution of this paper. Additionally, in Section 4, we generalize an
algorithm for Induced Matching on trees [29] to graphs of bounded treewidth using an improved
dynamic programming approach.

2 Preliminaries

In this paper, we deal with fixed-parameter algorithms that emerge from the field of parameterized
complexity analysis [11,27], where the computational complexity of a problem is analyzed in a
two-dimensional framework. One dimension of an instance of a parameterized problem is the input
size n, and the other is the parameter k. A parameterized problem is fixed-parameter tractable
if it can be solved in f(k) · nO(1) time, where f is a computable function depending only on the
parameter k. A common method to prove that a problem is fixed-parameter tractable is to provide
data reduction rules that lead to a problem kernel : Given a problem instance (I, k), a data reduction
rule replaces that instance by a another instance (I ′, k′) in polynomial time, such that (I, k) is a
yes-instance iff (I ′, k′) is a yes-instance. An instance to which none of a given set of data reduction
rules applies is called reduced with respect to that set of rules. A parameterized problem is said to
have a problem kernel if, after the application of the data reduction rules, the resulting reduced
instance has size f(k) for a function f depending only on k. Analogously to classical complexity
theory, Downey and Fellows [11] developed a framework providing a reducibility and completeness
program. The basic complexity class for fixed-parameter intractability is W [1] as there is good
reason to believe that W [1]-hard problems are not fixed-parameter tractable [11].

In this paper we assume that all graphs are simple and undirected. For a graph G = (V,E), we
write V (G) to denote its vertex set and E(G) to denote its edge set. By default, we use n to denote
the number of vertices of a given graph. A vertex that is an endpoint of an edge is incident to that
edge and adjacent to the other endpoint. An isolated vertex has no neighbors. For a subset V ′ ⊆ V ,
by G[V ′] we mean the subgraph of G induced by V ′. We write G\V ′ to denote the graph G[V \V ′].
If v ∈ V we also write G− v instead of G \ {v}. The (open) neighborhood N(v) of a vertex v is the
set of all vertices in V −v that are adjacent to v. We assume that paths are simple, that is, a vertex
is contained at most once in a path. A path P from a to b is denoted as a vector P = (a, . . . , b),
and a and b are called the endpoints of P . The length of a path (a1, a2, . . . , aq) is q − 1, that is,
the number of edges on it. For an edge set M we define V (M) :=

⋃
e∈M e. The distance d(u, v)

between two vertices u, v is the length of a shortest path between them. The distance between two
edges e1, e2 is the minimum distance between two vertices v1 ∈ e1 and v2 ∈ e2. If a graph can be
drawn in the plane without edge crossings then it is planar. A plane graph is a planar graph with
a fixed embedding in the plane. Given a plane graph, a cycle C = (a, . . . , a) of length at least three
encloses an area A of the plane. The cycle C is called the boundary of A, all vertices in the area A
are inside A. A vertex is strictly inside A if it is inside A and not in C.
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3 A Linear Kernel on Planar Graphs

In order to show our kernel, we employ the following data reduction rules. These rules stem from the
simple observation that if two vertices have the same neighborhood, one of them can be removed
without affecting the size of a maximum induced matching. Compared to the data reduction rules
applied in other proofs of planar kernels [2,10,20], these data reduction rules are quite simple and
therefore can be carried out much more efficiently.

Degree Zero Rule Delete vertices of degree zero.
Degree One Rule If a vertex u has two distinct neighbors x, y of degree 1, then delete x.
Degree Two Rule If u and v are two vertices such that |N(u)∩N(v)| ≥ 2 and if there exist two

vertices x, y ∈ N(u) ∩N(v) with deg(u) = deg(v) = 2, then delete x.

Note that these data reduction rules are parameter-independent. The following lemma is easy to
show.

Lemma 1. The three rules are correct and can be carried out in O(n) time on planar graphs
and O(n + m) time on general graphs, where n and m denote, respectively, the number of vertices
and edges.

The following theorem is our main theorem whose proof spans the remainder of this section.

Theorem 1. Let G = (V,E) be a planar graph reduced with respect to the Degree Zero, the Degree
One, and the Degree Two Rules. Then |V | ≤ c · im(G) for some constant c; that is, the Maximum
Induced Matching problem on planar graphs admits a linear problem kernel.

The basic observation is that if M is a maximum induced matching of a graph G = (V,E)
then for each vertex v ∈ V there exists u ∈ V (M) such that d(u, v) ≤ 2. For otherwise, we could
add edges to M and obtain a larger induced matching. Since every vertex in the graph is within
distance at most two to some vertex in V (M), we know, roughly speaking, that the edges in M
have distance at most four to other edges in M . This leads to the idea of regions “in between” the
matching edges that are close to each other. However, there can be many vertices in the vicinity
of a vertex in M . We will see that these regions cannot be too large if the graph is reduced with
respect to the above data reduction rules. Moreover, we show that there cannot be many vertices
that are not contained within such regions.

This idea of a region decomposition appears in [2], but the definition of a region as it appears
there is much simpler as the distance between any two vertices of a minimum dominating set is
at most three. Not only is the definition of a region more involved in our case, the proof of a
bounded number of vertices inside and outside of regions is more complicated too. The remaining
part of this section is dedicated to the proof of Theorem 1. First, in Section 3.1 we show how
to find a “maximal region decomposition” of a reduced graph that contains only O(|M |) regions,
where M is the size of a maximum induced matching of the graph. Then in Section 3.2, we show
that a region in such a maximal region decomposition contains only a constant number of vertices.
Finally, in Section 3.3 we show that in any reduced graph there are only O(|M |) vertices which are
not contained in regions.

3.1 Finding a Maximal Region Decomposition

Definition 1. Let G be a plane graph and M a maximum induced matching of G. For two
edges e1, e2 ∈ M a region R(e1, e2) is a closed subset of the plane such that

1. the boundary of R(e1, e2) is formed by two length-at-most-four paths
– a1, . . . , a2, a1 6= a2, between a1 ∈ e1 and a2 ∈ e2, and
– b1, . . . , b2, b1 6= b2, between b1 ∈ e1 and b2 ∈ e2, and
– by the edge e1 if a1 6= b1, and
– by the edge e2 if a2 6= b2, and

2. for each vertex x in the region R(e1, e2) there exists y ∈ V ({e1, e2}) such that d(x, y) ≤ 2.
3. no vertices inside the region other than endpoints of e1 and e2 are from M .
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Fig. 1. Example of region R(e1, e2) between two edges e1, e2 ∈ M . Note that e1 is not part of R,
but only its endpoint a1 = b1. The black vertices are the boundary vertices, and the gray vertices
in the hatched area are the vertices strictly inside of R.
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Fig. 2. Example of an M -region decomposition. The black vertices are boundary vertices, the gray
vertices are strictly inside of a region and the vertices depicted as small circles are outside of regions.
Each region is hatched with a pattern. Note the special cases, as for instance regions that consist
of a path like the region between e1 and e2, or regions that are created by only one matching edge
(the region on the left side of e3). Note also that boundary vertices may be contained in boundaries
of several regions, that is, the boundaries may touch each other. See for instance vertex x as an
example of a boundary vertex of four regions.

The set of boundary vertices of R is denoted by δR. Vertices of R(e1, e2) that are not in δR
are strictly inside R. An edge {u, v} is strictly inside R if both u and v are strictly in-
side R. A path P lies strictly inside R if all vertices on that path lie strictly inside R. We
write V (R(e1, e2)) to denote the set of vertices of a region R(e1, e2), that is, all vertices strictly
inside R(e1, e2) together with the boundary vertices δR. A vertex in V (R(e1, e2)) is inside R.

Note that the two enclosing paths may be identical, the corresponding region then consists solely
of a simple path of length at most four. Note also that e1 and e2 may be identical. For an example
of a region see Figure 1.

Definition 2. An M-region decomposition of G = (V,E) is a set of regions R such that no
vertex in V lies strictly inside more than one region from R. For an M -region decomposition R, we
define V (R) :=

⋃
R∈R V (R). We call an M -region decomposition maximal if there is no R /∈ R

such that R∪ {R} is an M -region decomposition with V (R) ( V (R) ∪ V (R).

For an example of an M -region decomposition see Figure 2.

Lemma 2. Given a plane reduced graph G = (V,E) and a maximum induced matching M of G,
there exists an algorithm that constructs a maximal M -region decomposition with O(|M |) regions.

This lemma can be proved by exhibiting a greedy algorithm that builds a maximal M -region
decomposition in a stepwise manner by searching a region of maximal size that is not yet in the
region decomposition at the actual step of the algorithm. Since this approach is similar to the
algorithms by Alber et al. [2] and Guo et al. [20] we omit the details here.
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Fig. 3. A diamond (left) and an empty diamond (right) in a reduced plane graph.

3.2 Bounding the Size of a Region

To upper-bound the size of a region R we make use of the fact that any vertex strictly inside R
has distance at most two to some vertex in δR. For this reason, the vertices strictly inside R can
be arranged in two layers. The first layer consists of the neighbors of boundary vertices, and the
second of all the remaining vertices, that is, all vertices at distance at least two to every boundary
vertex. The proof strategy is to show that if any of these layers contains too many vertices then
there exists an induced matching M ′ with |M ′| > |M |. An important structure for our proof are
areas enclosed by 4-cycles. We call such an area a diamond.

Definition 3. Let u and v be two vertices in a plane graph. A diamond is a closed area of the
plane with two length-2 paths between u and v as boundary. A diamond D(u, v) is empty, if every
edge e in the diamond is incident to either u or v.

See Figure 3 for an example of an empty and a non-empty diamond. In a reduced plane graph
empty diamonds have a very restricted size. We are especially interested in the maximum number
of vertices strictly inside an empty diamond that have both u and v as neighbors. The following
lemma is easy to show.

Lemma 3. Let D(u, v) be an empty diamond in a reduced plane graph. Then there exists at most
one vertex strictly inside D(u, v) that has both u and v as neighbors.

This lemma shows that if there are more than three length-two paths between two vertices u, v,
then there must be an edge e in an area enclosed by two of these paths such that e is not incident
to u or v. This fact is used in the following lemma to show that the number of length-two paths
between two vertices of a plane reduced graph is bounded.

Lemma 4. Let u and v be two vertices of a reduced plane graph G such that there exists two distinct
length-2 paths (u, x, v) and (u, y, v) enclosing an area A of the plane. Let M be a maximum induced
matching for G. If neither x nor y is an endpoint of an edge in M and no vertex strictly inside A
is contained in V (M), then the following holds:

If neither u nor v is an endpoint of an edge in M , then there are at most 5 length-2 paths
between u and v inside A. If exactly one of u or v is an endpoint of an edge in M , then there are
at most 10 such paths, and if both u and v are endpoints of edges in M , then there are at most 15
such paths.

Proof. The idea is to show that if there are more than the claimed number of length-2 paths
between u and v, then we can always exhibit an induced matching M ′ with |M ′| > |M |, a contra-
diction.

First, we consider the case when neither u nor v is contained in V (M). Suppose for the purpose
of contradiction that there are 6 common neighbors w1, . . . , w6 of u and v that lie inside A (that is,
strictly inside and on the enclosing paths). Without loss of generality, suppose that these vertices
are embedded as shown in Figure 4 (left-hand side), with w1 and w6 lying on the enclosing paths.
Consider the diamond with the boundary induced by the vertices u, v, w2, . . . , w5. Since there is
more than one vertex with neighbors u and v strictly inside that diamond (namely, w3, w4), we
know that it is not empty due to Lemma 3; that is, there exists an edge e in this diamond which is
not incident to u or v. Clearly e is not incident to either w1 or w6 and so e is not incident to any
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u

v

Fig. 4. Embedding of the vertices w1, . . . , w6 for the first case in the proof of Lemma 4 (left), and
an embedding of 16 neighbors of u and v for the last case of the proof, where possible vertices
and edges not on the considered paths are not drawn (right). The diamonds are shaded, and the
“isolation paths” are drawn with dashed lines.

vertex in V (M). Therefore, we can add e to the induced matching M , contradicting its maximum
cardinality.

Next, consider the case when exactly one of u or v is an endpoint of an edge e in M . Us-
ing the same idea as above we can see that assuming 11 length-2 paths between u and v (us-
ing (u, w1, v), (u, w6, v), and (u, w11, v) as “isolation paths”) leads to at least two non-empty dia-
monds whose boundaries share only u and v, thus we can replace the edge e in M by two edges
(one from each non-empty diamond) which contradicts the maximum cardinality of M .

The last case, when both u and v are endpoints of edges in M , can be handled in the same
way by showing that there exist at least three non-empty diamonds if we assume 16 length-2 paths
between u and v, where the boundaries of these diamonds only touch in u and v (see Figure 4).
Then we can replace the edges in M that are incident to u and v by three edges strictly inside the
diamonds, contradicting the maximum cardinality of M . ut

Lemma 4 is needed to upper-bound the number of vertices inside and outside of regions that are
connected to at least two boundary vertices.

The next two lemmas are needed to upper-bound the number of vertices that are connected
to exactly one boundary vertex. The first lemma (Lemma 5) upper-bounds the number of such
vertices under the condition that they are contained in an area which is enclosed by a short cycle.
This lemma is then used in Lemma 6 to upper-bound the total number of such vertices for a given
boundary vertex.

Lemma 5. Let u be a vertex in a reduced plane graph G and let v, w ∈ N(u) be two distinct
vertices that have distance at most three in G − u. Let P denote a shortest path between v and w
in G − u and let A denote the area of the plane enclosed by P and the path (v, u, w). If there are
at least 9 neighbors of u strictly inside of A, then there is at least one edge strictly inside A.

Proof. Let u contain nine neighbors {z1, . . . , z9} strictly inside A and assume that there is no edge
strictly inside A. By the Degree One Rule, at most one of the zi’s can have degree 1. Without loss of
generality assume that z9 has degree 1. By the Degree Two Rule, no two degree-2 vertices have the
same neighborhood. Observe that the neighbors of the zi’s must be vertices on P due to planarity,
as otherwise there would be an edge strictly inside of A, a contradiction to our assumption.

First, consider the case when there exists a vertex among the zi’s of degree at least 4. Suppose zj ,
1 ≤ j ≤ 8, has at least three neighbors among the vertices in P . Because the graph is planar, there
exists a x ∈ P such that no zi, i 6= j, is adjacent to x. The remaining vertices have degree 2 or 3
and each is adjacent to some vertex y 6= x in P . Moreover, there can be at most one vertex of
degree 3. Since |V (P )| ≤ 4, it is easy to see that there are at least two degree-2 vertices with the
same neighbors, a contradiction.

Therefore, assume that deg(zi) ≤ 3 for all i. Again by planarity, there are at most three vertices
in {z1, . . . , z8} of degree 3. The remaining at least five vertices must be of degree 2 and each is
adjacent to a vertex in P . Since |V (P )| ≤ 4, this implies that there are two degree-2 vertices with
the same neighborhood, a contradiction. This shows that if there exist nine neighbors of u in A,
there exists an edge strictly inside A. ut
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u
u

Fig. 5. Worst-case embeddings to illustrate Lemma 5: There are four (left-hand side) and eight
(right-hand side) neighbors of u strictly inside of A.

See Figure 5 for two examples for different lengths of P that contain a maximum number of
neighbors of u strictly inside A such there is no edge strictly inside A.

Lemma 6. Let u be a boundary vertex of a region R(e1, e2) in a reduced plane graph G, and let M
be a maximum induced matching for G. If u has at least 41 neighbors v1, . . . , v41 strictly inside R
that are not adjacent to any other boundary vertex, then we can find an induced matching M ′

with |M ′| > |M |.

Proof. Suppose that the neighbors v1, . . . , v41 are embedded around u in a clockwise fashion. By
the Degree One Rule, u can have at most one neighbor of degree 1. Without loss of generality
assume that deg(v2) = 1. Consider the vertices v1, v11, and v21. If the pairwise distance of these
vertices in G−u is at least four, then any three edges ea, eb, ec in G−u incident to v1, v11, and v21,
respectively, are pairwise non-adjacent. Since they lie strictly inside R(e1, e2) (u is the only neighbor
on the boundary), we can set M ′ := (M \{e1, e2})∪{ea, eb, ec}. Similarly if v21, v31, and v41 have a
pairwise distance of at least four, then we can construct an induced matching of cardinality larger
than |M |.

It remains to show the case that at least two vertices from {v1, v11, v21} have distance at most
three and at least two vertices from {v21, v31, v41} have distance at most three. Let {w1, w

′
1} ⊆

{v1, v11, v21} and {w2, w
′
2} ⊆ {v21, v31, v41} be these vertices. Let P1 and P2 denote, respectively,

the shortest paths from w1 to w′
1 and from w2 to w′

2 in G − u. Note that P1 and P2 are strictly
inside R. Let A1 be the area enclosed by P1 and the path (w1, u, w′

1) and let A2 be the area
enclosed by P2 and the path (w2, u, w′

2). Note that P1 and P2 can be chosen so that the subsets
of the plane strictly inside A1 and A2 do not intersect. By Lemma 5, there exists edges e1, e2 such
that e1 is strictly inside A1 and e2 is strictly inside A2. If there exists an edge e ∈ M incident
to u, then (M − e) ∪ {e1, e2} is an induced matching with size strictly larger than that of M , a
contradiction. If no edge of M is incident to u, M ∪{e1, e2} is again an induced matching of larger
size. ut

Using Lemma 4 and Lemma 6, we can now upper-bound the number of vertices inside a region.

Lemma 7. A region R(e1, e2) of an M -region decomposition of a reduced plane graph contains O(1)
vertices.

Proof. We prove the lemma by partitioning the vertices strictly inside R(e1, e2) into A and B,
where A contains all vertices at distance exactly one to some boundary vertex, and B contains all
vertices at distance at least two from every boundary vertex, and then showing that |A| and |B|
are upper bounded by a constant.

To this end, partition A into A1 and A2, where A1 contains all vertices in A that have exactly
one neighbor on the boundary, and A2 all vertices that have at least two neighbors on the boundary.
To upper-bound the size of A1, observe that due to Lemma 6, a vertex v ∈ δR on the boundary can
have at most 41 neighbors in A1. Since a region has at most ten boundary vertices, we conclude
that A1 contains at most 410 vertices.

Next we upper-bound the size of A2. Consider the planar graph G′ induced by δR ∪A2. Every
vertex in A2 is adjacent to at least two boundary vertices in G′. Replace every vertex v ∈ A2

with an edge connecting two arbitrary neighbors of v on the boundary. After this, merge multiple
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edges between two boundary vertices into one. Since G′ is planar, the resulting graph must also
be planar. As |δR| ≤ 10, using the Euler formula we conclude that the resulting graph has at
most 3 · 10 − 6 = 24 newly added edges. Due to Lemma 4, each such edge represents at most 15
length-two paths, and thus |A2| ≤ 24 · 15 = 360.

To upper-bound the size of B, observe that G[B] must be an graph without edges (due to the
maximum cardinality of M). By the Degree One Rule, each vertex in A has at most one neighbor
in B of degree one. Therefore, there are O(1) degree-one vertices in B. To bound the number of
vertices in B with degree at least two, we use the same argument as that used to the bound of
the size of A2. Since |A| = O(1), there are a constant number of degree-at-least-two vertices in B.
Therefore |B| = O(1). This completes the proof.

ut

With this lemma, we can easily see that there is only a linear number of vertices contained in
regions.

Proposition 1. Let G be a reduced plane graph and let M be a maximum induced matching for G.
There exists an M -region decomposition such that the total number of vertices inside all regions
is O(|M |).

Proof. Due to Lemma 2 we can find a maximal M -region decomposition for G with at most O(|M |)
regions. Inside of each of the O(|M |) regions there is only a constant number of vertices due to
Lemma 7. ut

We next bound the number of vertices that lie outside regions of a maximal M -region decomposi-
tion.

3.3 Bounding the Number of Vertices Lying Outside Regions

In this section, we upper-bound the number of vertices that lie outside the regions of a maximal
M -region decomposition. The strategy to prove this bound is similar as in the last section. We
subdivide the vertices lying outside regions into several disjoint subsets and upper-bound their
individual sizes separately.

Note again that the distance from any vertex to a vertex in V (M) is at most two, as otherwise
we would contradict the maximum cardinality of M . We subdivide the set of vertices outside regions
into two disjoint subsets A and B, where

– A is the set of vertices at distance exactly one to some vertex in V (M),
– B is the set of vertices at distance at least two from every vertex in V (M).

We bound the size of these two sets separately.
Partition A into two subsets A1 and A2, where A1 is the set of vertices that have exactly one

boundary vertex as neighbor, and A2 is the set of vertices that have at least two boundary vertices
as neighbors. Note that each vertex v in A can be adjacent to exactly one vertex u ∈ V (M);
for if it is adjacent to another vertex w ∈ V (M), the path (u, v, w) can be added to the region
decomposition, contradicting its maximality (recall that regions can consist of simple paths between
two vertices in V (M)). To bound the number of vertices in A1 we need the following lemma.

Lemma 8. Let v be a vertex in A1 and let u be its neighbor in V (M). Then for all w ∈ V (M)−
u, d(v, w) ≥ 3.

Proof. Let u and v be as in the statement of the Lemma and let w ∈ V (M) {u}. Suppose (v, x, w)
is a path of length two. Now x cannot be a boundary vertex since v ∈ A1. The path P = (u, v, x, w)
is of length three and the only vertices of P that are boundary vertices are u and w. Thus P can
be added in the region decomposition, contradicting its maximality. ut

Lemma 9. Given a maximal M -region decomposition consisting of O(|M |) regions, the set A
contains O(|M |) vertices.
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Proof. To bound the size of A1, we claim that each vertex u ∈ V (M) has at most 20 neighbors
in A1. To show this claim, we use a similar argument like in Lemma 6. Suppose for the purpose of
contradiction that 21 vertices {v1, . . . , v21} ⊆ A1 adjacent to u are embedded in a clockwise fashion
around u. Let e be the edge in M which is incident to u. First, suppose that v1 and v11 have distance
at least four in G − u. Then, two edges ea, eb in G − u incident to v1 and v11, respectively, are
pairwise non-adjacent. Moreover, they are not adjacent to any vertex in V (M) in G − u due to
Lemma 8. Therefore, we obtain a induced matching M ′ = (M − e)∪{e1, eb} of larger size than M ,
contradicting its maximum cardinality. The same holds if the distance between v11 and v21 is at
least four in G− u. Thus, the last case to consider is that v1 and v11 have distance at most three
and that v11 and v21 have distance at most three. Let P1 and P2 be two shortest paths between v1

and v11, and between v11 and v21, respectively. Note that due to Lemma 8 the two paths cannot
contain any vertex from V (M). For the same reason as in Lemma 6 the two paths enclose two
areas, each of which contains an edge strictly inside due to Lemma 5. The edge e can be replaced
by these two edges, contradicting the maximum cardinality of M . This shows the above claim.
Since there are exactly 2 |M | vertices in V (M), the claim shows that the total number of vertices
in A1 is at most 40 |M |.

The size of A2 can be bounded as follows. Every vertex v in A2 is adjacent to a vertex in u ∈
V (M) and some other boundary vertex w. This boundary vertex w must be adjacent to u, since
otherwise there is a path consisting of the subpath (u, v, w) and some subpath on the boundary
on which w lies, and this path could be added to the region decomposition, contradicting its
maximality. Since there are O(|M |) regions, there are O(|M |) possible boundary vertices adjacent
to a vertex in V (M). Due to Lemma 4 there can be at most 10 vertices adjacent to a vertex
in V (M) that are adjacent to the same boundary vertex, thus we obtain that A2 contains O(|M |)
vertices. ut

It remains to bound the number of vertices in B, that is, the number of vertices outside regions
that are at distance at least two from every vertex in V (M).

Lemma 10. Given a maximal M -region decomposition with O(|M |) regions, the set B contains
O(|M |) vertices.

Proof. To bound the size of B, observe that G[B] is a graph without edges. Furthermore, observe
that N(B) ⊆ A∪A′, where A′ is the set of boundary vertices in the M -region decomposition that
are different from V (M). By Lemma 9 and since the boundary of each region contains a constant
number of vertices, the set C := A ∪A′ contains O(|M |) vertices.

First, consider the vertices in B that have degree one. Obviously, there can be at most |C| such
vertices due to the Degree One Rule. The remaining vertices are adjacent to at least two vertices
in C. We can use an argument similar to that in Lemma 7 (using the Euler formula) to show that
there are O(|C|) degree-at-least-two vertices in B. Thus, |B| = O(|C|) = O(|M |). ut

Using these results, we can see that the total number of vertices outside of regions is bounded.

Proposition 2. Given a maximal M -region decomposition with O(|M |) regions, the number of
vertices that lie outside of regions is O(|M |).

Proof. Follows from Lemmas 9 and 10. ut

Using Propositions 1 and 2, we eventually can show that for a given graph G and a maximum
induced matching M there exists a M -region decomposition with O(|M |) regions such that the
number of vertices inside and outside of regions is O(|M |). This shows the O(|M |) upper bound on
the number of vertices as claimed in Theorem 1, that is, Maximum Induced Matching admits
a linear problem kernel on planar graphs.

4 Induced Matching on Graphs with Bounded Treewidth

Zito [29] developed a linear-time dynamic programming algorithm to solve Induced Matching
on trees. We generalize this approach to obtain a linear-time algorithm on graphs of bounded
treewidth. It is relatively easy to see that a standard dynamic programming approach would result
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in a running time of O(9ω · n), where ω is the width of the given tree-decomposition. With an
improved dynamic programming algorithm, we obtain a running time of O(4ω · n). Our approach
also uses some ideas that were applied for an improved dynamic programming algorithm for Domi-
nating Set [3]. Here we describe only those parts of the algorithm which are important in showing
the improved running time. The basic definitions and the dynamic programming technique itself
will not be explained here due to space restrictions. We refer the reader to the standard literature
about tree decompositions [4,5,6,21].

Theorem 2. Let G = (V,E) be a graph with a given nice tree decomposition ({Xi | i ∈ I}, T ). The
size of a maximum induced matching of G can be computed in O(4ω · |I|) time, where ω denotes
the width of the tree decomposition.

Proof. For each bag Xi we consider all possible ways of obtaining an induced matching in the
subgraph G[Xi]. To do this, we create a table Ai, i ∈ I for each bag Xi which stores this information.
These tables are updated in a bottom-up process starting at the leaves of the decomposition tree.
In the following, we say that a vertex v is contained in an induced matching M if v is an endpoint
of an edge in M . If v is contained in M , its partner in M is a vertex u such that {u, v} ∈ M . We
use different colors to represent the possible states of a vertex in a bag:

white(0): A vertex labelled 0 is not contained in M .
black(1): A vertex labelled 1 is contained in M and its partner in M has already been discovered

in the current stage of the algorithm.
gray(2): A vertex labelled 2 is contained in M but its partner in M has not been discovered in

the current stage of the algorithm.

For each bag Xi = {xi1 , . . . , xini
}, |Xi| = ni, we construct a table Ai consisting of 3ni rows

and ni + 1 columns. Each row represents a coloring c : Xi → {0, 1, 2}m of the graph G[Xi]; the
entry mi(c) in the ni + 1st column represents the number of vertices in an induced matching in
the graph visited up to the current stage of the algorithm under the assumption that the vertices
in the bag Xi are assigned colors as specified by c. For a coloring c = (c1, . . . , cm) ∈ {0, 1, 2}m and
a color d ∈ {0, 1, 2} we define #d(c) := |{1 ≤ t ≤ m | ct = d}|.

Given a bag Xi and a coloring c of the vertices in Xi, we say that c is valid if the subgraph
induced by the vertices labelled 1 and 2 has the following structure: vertices labelled 2 have degree 0
and those labelled 1 have either degree 0 or 1. For valid colorings we store the value mi as described
above; for all other colorings we set mi to −∞ to mark it as invalid. A coloring is strictly valid if
it is valid and, in addition, vertices labelled 1 induce isolated edges. We next describe the dynamic
programming process. Recall that we assume that we work with a nice tree decomposition.

The dynamic programming for the leaf, introduce, and forget nodes is relatively straight-forward
and is therefore moved to the appendix. The tables for each of these nodes can be computed
in O(3ni · ni) time. The crucial part are the join nodes. For a join node Xi with child nodes Xj

and Xk compute the table Ai as follows. We say that two colorings c′ = (c′1, . . . , c
′
ni

) ∈ {0, 1, 2}ni

and c′′ = (c′′1 , . . . , c′′ni
) ∈ {0, 1, 2}ni are correct for a coloring c = (c1, . . . , cni) if the following

conditions hold for every p ∈ {1, . . . , ni}:

1. if cp = 0 then c′p = 0 and c′′p = 0,

2. if cp = 1 then
(a) if xip has a neighbor xiq ∈ Xi with cq = 1 then c′p = c′′p = 1,
(b) else either c′p = 1 and c′′p = 2, or c′p = 2 and c′′p = 1, and

3. if cp = 2 then c′p = 2 and c′′p = 2.

Then the mapping mi of Xi is evaluated as follows. For each coloring c ∈ {0, 1, 2}ni set

mi(c) := max{mj(c′) + mk(c′′)−#1(c)−#2(c) | c′ and c′′ are correct for c}.

In other words, we determine the value of mi(c) by looking up the corresponding coloring in mj and
in mk (corresponding to the left and right subtree, respectively), add the corresponding values and
subtract the number of vertices colored 1 or 2 by c, since they would be counted twice otherwise.
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Clearly, if the coloring c assigns color 0 to a vertex x ∈ Xi, then so must colorings c′ and c′′.
The same holds if c assigns color 2 to a vertex. However, if c assigns color 1 to a vertex x, then
this coloring can be justified in two ways. The first case is when x has a neighbor y ∈ Xi that
is also colored 1. Then both colorings c′ and c′′ obviously assign 1 to x (and 1 to y). The second
case is when all neighbors of x in Xi are assigned color 0. Then the assignment c(x) = 1 must be
justified by another vertex in the solution which is in a bag which has already been processed in
a previous stage of the algorithm. This vertex is located either in the left subtree or in the right
subtree (corresponding to mj or mk, respectively), but not both. Therefore, the color of x can only
be justified by assigning color 1 to x by c′ and color 2 to x by c′′, or vice versa.

Note that for a given coloring c ∈ {0, 1, 2}ni , with a := #1(c), there are at most 2a possible
pairs of correct colorings for c. There are 2ni−a

(
ni

a

)
possible colorings c with a vertices colored 1,

thus

|{(c′, c′′) | c ∈ {0, 1, 2}ni , c′ and c′′ are correct for c}| ≤
ni∑

a=0

2ni−a

(
ni

a

)
· 2a = 4ni .

Since we have to check the neighbors of x within Xi for each pair of correct colorings, the total
running time for this step is O(4ni ·ni). In total, we get a running time of O(4ω · |I|) for the whole
dynamic programming process. ut

5 Conclusions and Outlook

As our main result, we have shown that Planar Induced Matching admits a linear problem
kernel. Additionally, we gave an improved dynamic programming algorithm for that problem on
graphs of bounded treewidth. The data reduction rules for the planar case are very simple and
the kernelization can be done in linear time. The upper-bound on the number of vertices inside
regions can probably be improved using a more sophisticated analysis. More precisely, we feel that
the approach used in Lemma 5 can be adapted and generalized to give a direct bound for the size
of entire regions.

It would be interesting to see whether the kernelization could be generalized to non-planar
graphs such as in the case of Dominating Set [15]. Another possible research topic could be search
tree algorithms for planar graphs. For Dominating Set on planar graphs, there exists a search tree
algorithm [1], and it is open whether a similar result for Induced Matching on planar graphs
is possible. The properties of Induced Matching concerning approximation could be another
interesting research field. Investigating the parameterized complexity of Induced Matching on
other restricted classes of graphs may be of interest. We can show simple problem kernels for
bounded-degree graphs, graphs of girth at least 6, C4-free bipartite graphs, and line graphs. A class
of major interest are bipartite graphs, where the parameterized complexity of Induced Matching
is open.
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APPENDIX

Dynamic Programming - Leaf Nodes, Introduce Nodes, and Forget Nodes

Leaf Nodes For a leaf node Xi compute the table Ai as

mi(c) :=

{
#1(c) + #2(c), if c is strictly valid,
−∞, otherwise.

In the initialization step, the assignment of colors needs to be justified locally and therefore we
require that the colorings be strictly valid. Checking for validity takes O(n2

i ) time; therefore, this
step can be carried out in O(3ni · n2

i ) time.

Introduce Nodes Let Xi = {xi1 , . . . , xinj
, x} be an introduce node with child node Xj =

{xi1 , . . . , xinj
}. Compute the table Ai as follows. For a coloring c : Xi → {0, 1, 2} and an in-

dex 1 ≤ p ≤ |Xi|, define grayp(c) to be a coloring derived from c by re-coloring the vertex with
index p with color 2. Let Nj(x) be the set of neighbors of vertex x in Xj , that is, Nj(x) := N(x)∩Xj .

Then the map mi in Ai is computed as follows. For each coloring c = (c1, . . . , cnj ) ∈ {0, 1, 2}nj

set

mi(c× {0}) :=mj(c). (1)

mi(c× {1}) :=


mj(grayp(c)) + 1, if there is a vertex xjp ∈ Nj(x) with cp = 1,

and for all xjq ∈ Nj(x) with q 6= p : cq = 0.
−∞, otherwise.

(2)

mi(c× {2}) :=

{
mj(c) + 1, if cp = 0 for all xjp

∈ Nj(x).
−∞, otherwise.

(3)

Assignment 1 is clearly correct, since the coloring c×{0} is valid for Xi iff c is valid for Xj . The value
of mi is the same for both colorings. If the newly introduced vertex x has color 1 (Assignment 2),
then—since c×{1} must be valid—there must be a neighbor y with color 1 within the bag Xi; all
the other neighbors of x in Xi must have color 0. This is insured by the assignment condition. To
see the correctness of the computed value mi(c × {1}), note that y must have color 2 in bag Xj ,
since the partner of y was not yet known in the stage when the algorithm was processing bag Xj .
The condition of Assignment 3 simply verifies the validity of the coloring c× {2}, and we increase
the number of solution vertices by one since the newly introduced vertex has color 2.

For each row of table Ai, we have to look at the neighborhood of vertex x within the bag Xi to
check whether the corresponding coloring is valid. Therefore, this step can be carried out in O(3ni ·
ni) time.

Forget Nodes Let Xi = {xi1 , . . . , xini
} be a forget node with child node Xj = {xi1 , . . . , xini

, x}.
Compute the table Ai as follows. For each coloring c ∈ {0, 1, 2}ni set

mi(c) := max
d∈{0,1}

{mj(c× {d})}.

The maximum is taken over colors 0 and 1 only, as a coloring c × {2} cannot be extended to a
maximum induced matching. To see this, note that such a coloring assigns vertex x color 2 and
since x is forgotten, by the consistency property of tree-decompositions, it does not appear in any
of the bags that the algorithm sees in the future.

Clearly, this evaluation can be done in O(3ni · ni) time.
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