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Abstract. A graph is König-Egerváry if the size of a minimum vertex cover
equals the size of a maximum matching in the graph. We show that the problem
of deleting at mostk vertices to make a given graph König-Egerváry is fixed-
parameter tractable with respect tok. This is proved using interesting structural
theorems on matchings and vertex covers which could be useful in other contexts.

We also show an interesting parameter-preserving reduction from the vertex-
deletion version of red/blue-split graphs [4, 9] to a version of V C and
as a by-product obtain

1. the best-known exact algorithm for the optimization version of O C
T [15];

2. fixed-parameter algorithms for several vertex-deletionproblems including
the following: deletingk vertices to make a given graph (a) bipartite [17],
(b) split [5], and (c) red/blue-split [7].

1 Introduction

The classical notions ofmatchingsand vertex covershave been at the center of se-
rious study for several decades in the area of CombinatorialOptimization [11]. In
1931, König and Egerváry independently proved a result offundamental importance:
in a bipartite graph the size of a maximum matching equals that of a minimum ver-
tex cover [11]. This led to a polynomial-time algorithm for finding a minimum vertex
cover in bipartite graphs. In fact, a maximum matching can beused to obtain a 2-
approximation algorithm for the M V C problem in general graphs,
which is still the best-known approximation algorithm for this problem. Interestingly,
this min-max relationship holds for a larger class of graphsknown as König-Egerváry
graphs and it includes bipartite graphs as a proper subclass. König-Egerváry graphs will
henceforth be called König graphs.

König graphs have been studied for a fairly long time from a structural point of
view [1, 3, 9, 10, 18, 15]. Both Deming [3] and Sterboul [18] gave independent charac-
terizations of König graphs and showed that König graphs can be recognized in polyno-
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mial time. Lovász [10] used the theory of matching-coveredgraphs to give an excluded-
subgraph characterization of König graphs that contain a perfect matching. Korach et
al. [9] generalized this and gave an excluded-subgraph characterization for the class of
all König graphs.

A natural optimization problem associated with a graph class G is the following:
given a graphG, what is the minimum number of vertices to be deleted fromG to ob-
tain a graph inG? For example, whenG is the class of empty graphs, forests or bipartite
graphs, the corresponding problems are V C, F V S and O
C T, respectively. We call the vertex-deletion problem corresponding
to class of König graphs the K¨ V D problem. A set of vertices whose
deletion makes a given graph König is called a König vertexdeletion set. In the pa-
rameterized setting, the parameter for vertex-deletion problems is the solution size, that
is, the number of vertices to be deleted so that the resultinggraph belongs to the given
graph class.

An algorithmic study of the K¨ V D problem was initiated in [12],
where it was shown that when restricted to the class of graphswith a perfect match-
ing, K̈ V D fixed-parameter reduces to a problem known as M 2-C
D. This latter problem was shown to be fixed-parameter tractable by Razgon
and O’Sullivan [16]. This immediately implies that K¨ V D is fixed-
parameter tractable for graphs with a perfect matching. Butthe parameterized com-
plexity of the problem in general graphs remained open.

In this paper, we first establish interesting structural connections between minimum
vertex covers and minimum König vertex deletion sets. Using these, we show that

1. the parameterized K¨ V D problem is fixed-parameter tractable,
and

2. there exists anO∗(1.221n) algorithm4 for the optimization version of K¨ V
D problem, wheren denotes the number of vertices in the graph.

Note that König graphs are not hereditary, that is, not closed under taking induced sub-
graphs. For instance, a 3-cycle is not König but attaching an edge to one of the vertices
of the 3-cycle results in a König graph. In fact, K¨ V D is one of the
few vertex-deletion problems associated with a non-hereditary graph class whose pa-
rameterized complexity has been resolved. Another such example can be found in [13].

Our second result is an interesting parameter-preserving reduction from the vertex-
deletion version of red/blue-split graphs [4, 9] to a version of V C called
A G V C. A red/blue graph [7] is a tuple (G = (V,E), c),
whereG = (V,E) is a simple undirected graph andc : E→ 2{r,b} \ ∅ is an assignment of
“colors” red and blue to the edges of the graph. An edge may be assigned both red and
blue simultaneously and we require thatR, the set of red edges, andB, the set of blue
edges, both be nonempty. A red/blue graphG = (V,R∪ B) is red/blue-split if its vertex
set can be partitioned into a red independent setVR and a blue independent setVB. A
red (resp. blue) independent set is an independent set in thered graphGR = (V,R) (resp.
blue graphGB = (V, B)). A graphG is split if its vertex set can be partitioned into an

4 TheO∗(·) notation suppresses polynomial terms. We writeO∗(T(n)) for a time complexity of
the formO(T(n) · poly(n)), whereT(n) grows exponentially withn.
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independent set and a clique. A 2-clique graph is a graph whose vertex set can be parti-
tioned into two cliques. Note that a graph is 2-clique if and only if it is the complement
of a bipartite graph. We will see that red/blue-split graphs are a generalization of König
(and hence bipartite) graphs, split and 2-clique graphs [7].

As a by-product of the reduction from R/B-S V D to A
G V C we obtain:

1. an O∗(1.49n) algorithm for the optimization version of R/B-S V
D, O C T, S V D and 2-C V
D.5

2. fixed parameter algorithms for all the above problems.

For O C T, this gives the best-known exact algorithm for the opti-
mization version improving over the previous best ofO∗(1.62n) [15].

This paper is organized as follows. In Section 2 we give a brief outline of parameter-
ized complexity, the notations and known results that we usein the rest of the paper. In
Section 3 we show the K¨ V D problem to be fixed-parameter tractable.
In Section 4 we show that a number of vertex-deletion problems fixed-parameter reduce
to R/B-S V D which fixed-parameter reduces to A G-
 V C. Finally in Section 5 we end with some concluding remarks and
directions for further research.

2 Preliminaries

In this section we summarize the necessary concepts concerning parameterized com-
plexity, fix our notation and outline some results that we make use of in the paper.

2.1 Parameterized Complexity

A parameterized problem is a subset ofΣ∗ × Z≥0, whereΣ is a finite alphabet andZ≥0

is the set of nonnegative numbers. An instance of a parameterized problem is therefore
a pair (I , k), wherek is the parameter. In the framework of parameterized complexity,
the running time of an algorithm is viewed as a function of twoquantities: the size of
the problem instanceand the parameter. A parameterized problem is said to befixed-
parameter tractable (FPT)if there exists an algorithm that takes as input (I , k) and
decides whether it is a or -instance in timeO( f (k) · |I |O(1)), wheref is a function
depending only onk. The class FPT consists of all fixed parameter tractable problems.

A parameterized problemπ1 is fixed-parameter reducibleto a parameterized prob-
lem π2 if there exist functionsf , g : Z≥0 → Z≥0, Φ : Σ∗ × Z≥0 → Σ∗ and a polynomial
p(·) such that for any instance (I , k) of π1, (Φ(I , k), g(k)) is an instance ofπ2 computable
in time f (k) · p(|I |) and (I , k) ∈ π1 if and only if (Φ(I , k), g(k)) ∈ π2. Two parame-
terized problems arefixed-parameter equivalentif they are fixed-parameter reducible
to each other. The basic complexity class for fixed-parameter intractability isW[1] as

5 Since a 2-clique graph is the complement of a bipartite graph, the 2-C V D
problem is NP-complete [17].
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there is strong evidence thatW[1]-hard problems are not fixed-parameter tractable. To
show that a problem isW[1]-hard, one needs to exhibit a fixed-parameter reduction
from a knownW[1]-hard problem to the problem at hand. For more on parameterized
complexity see [14].

2.2 Notation

Given a graphG, we useµ(G), β(G) and κ(G) to denote, respectively, the size of a
maximum matching, a minimum vertex cover and a minimum König vertex deletion
set ofG. When the graph being referred to is clear from the context, we simply use
µ, β and κ. Given a graphG = (V,E) and two disjoint vertex subsetsV1,V2 of V,
we let (V1,V2) denote the bipartite graph with vertex setV1 ∪ V2 and edge set{{u, v} :
{u, v} ∈ E andu ∈ V1, v ∈ V2}. If B is a bipartite graph with vertex partitionL⊎R then we
let µ(L,R) denote the size of the maximum matching ofB. If M is matching and{u, v} ∈
M then we say thatu is the partner of v in M. If the matching being referred to is
clear from the context we simply sayu is a partner of v. The vertices ofG that are the
endpoints of edges in the matchingM are said to besaturated by M; all other vertices
areunsaturated by M.

2.3 Related Results

We next mention some known results about König graphs and the A G
V C problem.

Fact 1 (See for instance[12].) A graph G= (V,E) is König if and only if there exists
a polynomial-time algorithm that partitions V(G) into V1 and V2 such that V1 is a
minimum vertex cover of G and there exists a matching across the cut(V1,V2) saturating
every vertex of V1.

Given a graphG it is clear thatβ(G) ≥ µ(G). The A G V C
problem is this: given a graphG and an integer parameterk decide whetherβ(G) ≤
µ(G)+k. As was shown in [12], for this problem we may assume that the input graphG =
(V,E) has a perfect matching.

Theorem 1. [12] Let G= (V,E) be a graph with a maximum matching M and let I:=
V\V(M). Construct G′ by replacing every vertex u∈ I by a vertex pair u, u′ and adding
the edges{u, u′} and{u′, v} for all {u, v} ∈ E. Then G has a vertex cover of sizeµ(G)+ k
if and only if G′ has a vertex cover of sizeµ(G′) + k.

In [12], we also showed that the A G V C problem fixed-
parameter reduces to M 2-SD which is the problem of deciding whetherk clauses
can be deleted from a given 2-C S formula to make it satisfiable. Since M 2-S
D is fixed-parameter tractable [16], so is AG V C. The algo-
rithm for AG VC actually outputs a vertex cover of sizeµ(G)+
k if there exists one.

Corollary 1. Given a graph G= (V,E) and an integer k, one can decide whether G
has a vertex cover of size at mostµ(G) + k in time O(15k · k · |E|3). If G has a vertex
cover of sizeµ(G) + k then the algorithm actually outputs one such vertex cover.
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Note that Theorem 1 says that for the A G V C problem it
is sufficient to consider graphs with aperfect matching. In [12], we showed that the
K̈ V D problem on graphs with a perfect matching fixed-parameter
reduces to AG VC. This shows that K¨ VD on
graphs with a perfect matching is fixed-parameter tractable. However this does not seem
to resolve the parameterized complexity status of K¨ V D in general
graphs. We do not know of a fixed-parameter reduction from thegeneral case to the case
with a perfect matching as in the case of A G V C. However,
in the next section, we show the general problem to be fixed-parameter tractable using
some new structural results between maximum matchings and vertex covers.

3 The König Vertex Deletion Problem

We now consider the K¨ V D P in general graphs and show it
fixed-parameter tractable.

SupposeY is a vertex cover in a graphG = (V,E). Consider a maximum matching
M betweenY andV \ Y. If M saturates every vertex ofY then the graph is König.
If not, thenY \ V(M), the set of vertices ofY unsaturated byM, is a König deletion
set by Fact 1. What we prove in this section is that ifY is a minimum vertex cover,
thenY \ V(M) is a minimum König vertex deletion set.

Our first observation is that any minimum König vertex deletion set is contained in
some minimum vertex cover.

Theorem 2. Let G be an undirected graph with a minimum König vertex deletion set K.
Let V(G \ K) = V1 ⊎ V2 where V2 is independent and there is a matching M from V1

to V2 saturating V1. Then V1 ∪ K is a minimum vertex cover for G.

Proof. SupposeS is a vertex cover ofG such that|S| < |V1| + |K|. We will show
that there exists a König vertex deletion set of size smaller than |K|, contradicting our
hypothesis. DefineV′1 = V1 ∩ S, V′2 = V2 ∩ S andK′ = K ∩ S. Let A1 be the vertices
of V′1 whose partner inM is in V′2 and letA2 be the vertices ofV′1 whose partner inM is
not in V′2. See Figure 1. We claim thatA1 ∪ K′ is a König vertex deletion set ofG and

V1 V2

K

K′

V′1
V′2

A1

A2

M

Fig. 1.The sets that appear in the proof of Theorem 2. The matchingM consists of the solid edges
acrossV1 andV2.
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|A1 ∪ K′| < |K|, which will produce the required contradiction and prove the theorem.
This claim is proved using the following three claims:

Claim 1.|A1 ∪ K′| < |K|.

Claim 2. A2 ∪ V′2 is a vertex cover in G\ (A1 ∪ K′).

Claim 3. There exists a matching between A2 ∪ V′2 and V\ (V′1 ∪ K′ ∪ V′2) saturating
every vertex of A2 ∪ V′2.

Proof of Claim 1.Clearly |S| = |V′1| + |V
′
2| + |K

′|. Note thatS intersects|A1| of the
edges ofM in both end points and|M| − |A1| edges ofM in one end point (in eitherV′1
or V′2). FurthermoreV′2 has|V′2\V(M)| vertices ofS that do not intersect any edge ofM.
Hence|M|+ |A1|+ |V′2 \V(M)| = |V′1|+ |V

′
2|. That is,|V′1|+ |V

′
2| = |V1|+ |A1|+ |V′2 \V(M)|

(as|M| = |V1|). Hence|S| < |V1| + |K| implies that|A1| + |V′2 \ V(M)| + |K′| < |K| which
implies that|A1| + |K′| < |K| proving the claim.

Proof of Claim 2.SinceS = A1 ∪ A2 ∪ V′2 ∪ K′ is a vertex cover ofG, clearlyA2 ∪ V′2
covers all edges inG \ (A1 ∪ K′).

Proof of Claim 3.Since the partner of a vertex inA2 in M is in V \ (V′1 ∪ K′ ∪ V′2), we
can use the edges ofM to saturate vertices inA2. To complete the proof, we show that
in the bipartite graph (V′2, (V1 \ V′1) ∪ (K \ K′)) there is a matching saturatingV′2. To
see this, note that any subsetD ⊆ V′2 has at least|D| neighbors in (V1 \ V′1) ∪ (K \ K′).
For otherwise, letD′ be the set of neighbors ofD in (V1 \ V′1) ∪ (K \ K′) where we
assume|D| > |D′|. Then (S \ D) ∪D′ is a vertex cover ofG of size strictly less than|S|,
contradicting the fact thatS is a minimum vertex cover. To see that (S \ D) ∪ D′ is
indeed a vertex cover ofG, note thatS \ V′2 covers all edges ofG except those in the
graph (V′2, (V1 \V′1)∪ (K \K′)) and all these edges are covered by (V′2 \D)∪D′. Hence
by Hall’s theorem, there exists a matching saturating all vertices ofV′2 in the bipartite
graph (V′2, (V1 \ V′1) ∪ (K \ K′)), proving the claim.

This completes the proof of the theorem. ⊓⊔

Theorem 2 has interesting consequences.

Corollary 2. For any two minimum König vertex deletion sets (KVDSs) K1 and K2,
µ(G \ K1) = µ(G \ K2).

Proof. SinceK1 is a minimum KVDS ofG, β(G \ K1) = µ(G \ K1). By Theorem 2,
β(G \ K1) + |K1| = β(G) andβ(G \ K2) + |K2| = β(G). Since|K1| = |K2|, it follows
thatβ(G \ K1) = β(G \ K2) and henceµ(G \ K1) = µ(G \ K2). ⊓⊔

From Theorem 2 and Fact 1, we get

Corollary 3. Given a graph G= (V,E) and a minimum König vertex deletion set for G,
one can construct a minimum vertex cover for G in polynomial time.

Our goal now is to prove the “converse” of Corollary 3. In particular, we would
like to construct a minimum König vertex deletion set from aminimum vertex cover.
Our first step is to show that if we know that a given minimum vertex cover contains a
minimum König vertex deletion set then we can find the Königvertex deletion set in
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polynomial time. Recall that given a graphG = (V,E) andA, B ⊆ V such thatA∩B = ∅,
we useµ(A, B) to denote a maximum matching in the bipartite graph comprising of the
vertices inA ∪ B and the edges in{{u, v} ∈ E : u ∈ A, v ∈ B}. We denote this graph
by (A, B).

Lemma 1. Let K be a minimum KVDS and Y a minimum vertex cover of a graph G=
(V,E) such that K⊆ Y. Thenµ(G \ K) = µ(Y,V \ Y) and |K| = |Y| − µ(Y,V \ Y).

Proof. If G is König then the theorem clearly holds. Therefore assume that K , ∅.
Note thatY \ K is a minimum vertex cover of the König graphG \ K. Thusµ(G \ K) =
µ(Y \ K,V \ Y). We claim thatµ(Y \ K,V \ Y) = µ(Y,V \ Y). For if not, we must
haveµ(Y \ K,V \ Y) < µ(Y,V \ Y). Then letM be a maximum matching in the bipartite
graph (Y,V \ Y) andK′ ⊆ Y be the set of vertices unsaturated byM. Note thatK′ , ∅
is a KVDS forG. Sinceµ(Y,V \ Y) = |Y| − |K′| andµ(Y \ K,V \ Y) = |Y| − |K| we
have |K′| < |K|, a contradiction, since by hypothesisK is a smallest KVDS forG.
Therefore we must haveµ(G \ K) = µ(Y,V \ Y) and|K| = |Y| − µ(Y,V \ Y). ⊓⊔

The next lemma says thatµ(Y,V \ Y) is the same for all minimum vertex coversY
of a graphG. Together with Lemma 1, this implies that ifK is a minimum König vertex
deletion set andY is a minimum vertex cover of a graphG = (V,E), thenµ(G \ K) =
µ(Y,V \ Y). This result is crucial to our FPT-algorithm for the K¨ V D
problem.

Lemma 2. For any two minimum vertex covers Y1 and Y2 of G,µ(Y1,V\Y1) = µ(Y2,V\
Y2).

Proof. Suppose without loss of generality thatµ(Y1,V \ Y1) > µ(Y2,V \ Y2). Let M1 be
a maximum matching in the bipartite graph (Y1,V \Y1). To arrive at a contradiction, we
study howY2 intersects the setsY1 andV \ Y1 with respect to the matchingM1. To this
end, we define the following sets (see Figure 2):

Y1 V \ Y1

B

P

A1

A2

M1

Fig. 2. The sets that appear in the proof of Lemma 2. The solid edges acrossY1 and V \ Y1

constitute the matchingM1.

– A = Y2 ∩ Y1 ∩ V(M1).
– B = Y2 ∩ (V \ Y1) ∩ V(M1).
– A1 is the set of vertices inA whose partners inM1 are also inY2.
– A2 is the set of vertices inA whose partners inM1 are not inY2.
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We first show that

Claim. In the bipartite graph (Y2,V \ Y2) there is a matching saturating each vertex
in A2 ∪ B.

It will follow from the claim thatµ(Y2,V \ Y2) ≥ |A2| + |B|. However, note thatY2

intersects every edge ofM1 at least once (asY2 is a vertex cover). More specifically,Y2

intersects|A1| edges ofM1 twice and|M1| − |A1| edges once (either inY1 or in V \ Y1).
Hence,|A|+|B| = |M1|+|A1| and so|A2|+|B| = |M1| and soµ(Y2,V\Y2) ≥ |A2|+|B| = |M1|

a contradiction to our assumption at the beginning of the proof. Thus it suffices to prove
the claim.

Proof of Claim.Let P denote the partners of the vertices ofA2 in M1. SinceP ⊆ V \Y2,
we use the edges ofM1 to saturate vertices ofA2. Hence it is enough to show that
the bipartite graphB = (B, (V \ Y2) \ P) contains a matching saturating the vertices
in B. Suppose not. By Hall’s Theorem there exists a setD ⊆ B such that|NB(D)| <
|D|. We claim that the setY′2 := Y2 \ D + NB(D) is a vertex cover ofG. To see this,
note that the vertices inY2 \ D cover all the edges ofG except those in the bipartite
graph (D,Y1∩ (V \Y2)) and these are covered byNB(D). ThereforeY′2 is a vertex cover
of size strictly smaller thanY2, a contradiction. This proves that there exists a matching
in (Y2,V \ Y2) saturating each vertex inA2 ∪ B.

This completes the proof of the lemma. ⊓⊔

The next theorem shows how we can obtain a minimum König vertex deletion set
from a minimum vertex cover in polynomial time.

Theorem 3. Given a graph G= (V,E), let Y be any minimum vertex cover of G and M
a maximum matching in the bipartite graph(Y,V\Y). Then K:= Y\V(M) is a minimum
König vertex deletion set of G.

Proof. ClearlyK is a KVDS. LetK1 be a minimum KVDS ofG. By Theorem 2, there
exists a minimum vertex coverY1 such thatK1 ⊆ Y1 and

|K1| = |Y1| − µ(Y1,V \ Y1) (By Lemma 1.)
= |Y| − µ(Y1,V \ Y1) (SinceY1 andY are minimum vertex covers.)
= |Y| − µ(Y,V \ Y) (By Lemma 2.)
= |K|

This proves thatK is a minimum KVDS. ⊓⊔

Corollary 4. Given a graph G= (V,E) and a minimum vertex cover for G, one can
construct a minimum König vertex deletion set for G in polynomial time.

Note that although both these problems–VC and K̈ V D
S–are NP-complete, we know of very few pairs of such parameters where we can
obtain one from the other in polynomial time (e.g. edge dominating set and minimum
maximal matching, see [8]). In fact, there are parameter-pairs such as dominating set
and vertex cover where such a polynomial-time transformation is not possible unless
P = NP. This follows since in bipartite graphs, for instance, a minimum vertex cover
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is computable in polynomial time whereas computing a minimum dominating set is
NP-complete.

To show that the K¨ V D problem is fixed-parameter tractable we
make use of the following

Lemma 3. [12] If G is a graph such thatβ(G) = µ(G) + k, then k≤ κ(G) ≤ 2k.

We are now ready to prove that the K¨ V D problem is fixed-
parameter tractable in general graphs.

Theorem 4. Given a graph G= (V,E) and an integer parameter k, the problem of
whether G has a subset of at most k vertices whose deletion makes the resulting graph
König can be decided in time O(15k · k2 · |E|3).

Proof. Use the FPT algorithm from Corollary 1 to test whetherG has a vertex cover
of size at mostµ(G) + k. If not, by Lemma 3, we know that the size of a minimum
König vertex deletion set is strictly more thank. Therefore return. If yes, then find
the size of a minimum vertex cover by applying Corollary 1 with every integer value
between 0 andk for the excess aboveµ(G). Note that for-instances of the A
G V C problem, the FPT algorithm actually outputs a vertex cover
of sizeµ(G) + k. We therefore obtain a minimum vertex cover ofG. Use Theorem 3 to
get a minimum König vertex deletion set in polynomial time and depending on its size
answer the question. It is easy to see that all this can be donein timeO(15k ·k2· |E|3). ⊓⊔

We know that computing a maximum independent set (or equivalently a minimum
vertex cover) in ann-vertex graph can be done in timeO∗(20.288n) [6]. By Corollary 4,
we can compute a minimum König vertex deletion set in the same exponential time.
Given a graphG together with a tree-decomposition for it of widthw, one can obtain
a minimum vertex cover in timeO∗(2w) [14]. For the definitions of treewidth and tree-
decomposition, refer [14]. In general, algorithms on graphs of bounded treewidth are
based on dynamic programming over the tree-decomposition of the graph. It is not
obvious how to find such a dynamic programming algorithm for the K̈ V
D problem. By applying Corollary 4, we can find a minimum Königdeletion set
in time O∗(2w) in graphs of treewidthw. The above discussion results in the following
corollary.

Corollary 5. 1. Given a graph G= (V,E) on n vertices we can find a minimum König
vertex deletion set in time O∗(20.288n) = O∗(1.221n).

2. If a tree-decomposition for G of width w is given, we can finda minimum König
vertex deletion set in time O∗(2w).

4 Red/Blue-Split Graphs and Above Guarantee Vertex Cover

In this section we introduce the R/B-S V D problem and show
that a number of vertex-deletion problems fixed-parameter reduce to it. Recall that a
red/blue-graph is one in which the edges are colored red or blue and where an edge
may receive multiple colors. A red/blue-graphG = (V,R∪ B) is red/blue-split if its
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vertex set can be partitioned into a red independent set and ablue independent set,
where a red (blue) independent set is an independent set in the red graphG = (V,R)
(blue graphG = (V, B)). In what follows we use r/b as an abbreviation for red/blue
andEc to denote the set of edges assigned colorc.

The R/B-S V D problem is the following: given an r/b-graphG =
(V,R∪B) and an integerk, are therek vertices whose deletion makesG r/b-split? We first
show that R/B-S V D fixed-parameter reduces to the A G-
 V C problem. Since A G V C is fixed-parameter
tractable, this will show that R/B-S V D is fixed-parameter tractable
too.

At this point, we note that r/b-split graphs can be viewed as a generalization of
König graphs as follows. A graphG = (V,E) with a maximum matchingM is König
if and only if the 2-colored graphG′ = (V,R∪ B), whereR = E andB = M, is r/b-
split. It is important to realize that while this gives a recognition algorithm for König
graphs using one for r/b-split graphs, it does not seem to give any relationship between
the corresponding vertex-deletion problems. In fact, we donot know of any parameter-
preserving reduction from K¨ V D to the R/B-S V D
problem for general graphs.

For graphs with a perfect matching, we show by an independentargument based
on the structure of a minimum König vertex deletion set thatthe K̈ V D-
 problem does indeed fixed-parameter reduce to A G V C
(and also to R/B-S V D) [12]. But this structural characterization of
minimum König vertex deletion sets does not hold in generalgraphs. Therefore the
fixed-parameter tractability result for K¨ V D S cannot be obtained
from that of R/B-S V D.

Theorem 5. Let G = (V,E = Er ∪ Eb) be an r/b graph. Construct G′ = (V′,E′) as
follows: the vertex set V′ consists of two copies V1,V2 of V and for all u∈ V, u1 ∈ V1

and u2 ∈ V2 the edge set E′ = {{u1, u2} : u ∈ V} ∪ {{u1, v1} : {u, v} ∈ Er } ∪ {{u2, v2} :
{u, v} ∈ Eb}. Then there exists k vertices whose deletion makes G r/b-split if and only
if G′ has a vertex cover of sizeµ(G′) + k.

Proof. ClearlyG′ has 2|V| vertices and a perfect matching of size|V|. It suffices to show
thatG has an r/b-split subgraph ont vertices if and only ifG′ has an independent set of
sizet. This would prove that there exists|V|−t vertices whose deletion makesG r/b-split
if and only if G′ has a vertex cover of size 2|V| − t. Finally, plugging ink = |V| − t will
prove the theorem.

Therefore letH be an r/b-split subgraph ofG on t vertices with a red independent
setVr and a blue independent setVb. Then the copyV1

r of Vr in V1 and the copyV2
b

of Vb in V2 are independent sets inG′. SinceVr ∩Vb = ∅, V1
r ∪V2

b is an independent set
in G′ on t vertices. Conversely ifH′ is an independent set inG′ of sizet, then fori = 1, 2
let V(H′) ∩ Vi = Wi and|Wi | = ti so thatt1 + t2 = t. For i = 1, 2, letW̃i be the vertices
in V(G) corresponding to the vertices inWi . ThenW̃1 is an independent set of sizet1
in the red graphGr = (V(G),Er) andW̃2 is an independent set of sizet2 in the blue
graphGb = (V(G),Eb). SinceW1 andW2 do not both contain copies of the same vertex
of V(G), asW1 ∪W2 is independent, we havẽW1 ∩ W̃2 = ∅. ThusG[W̃1 ∪ W̃2] is an
r/b-split graph of sizet in G. ⊓⊔
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Since a maximum independent set in ann-vertex graph can be obtained in time
O∗(20.288n) [6], we immediately have the following

Corollary 6. The optimization version of theR/B-S V D problem can
be solved in time O∗(20.576n) = O∗(1.49n) on input graphs on n vertices.

Since A G V C is fixed-parameter tractable (Corollary 1) we
have

Corollary 7. The parameterized version of theR/B-S V D problem is
fixed-parameter tractable and can be solved in time O(15k · k2 · m3), where m is the
number of edges in the input graph.

As mentioned before, König (and hence bipartite) and splitgraphs can be viewed
as r/b-split graphs. Since 2-clique graphs are complements of bipartite graphs it fol-
lows that they can also be viewed as r/b-split graphs. The vertex-deletion problems
O C T, S V D and 2-C V D fixed-
parameter reduce to R/B-S V D. We show this reduction for OC
T as the proofs in the other cases are quite similar.

Theorem 6. Given a simple undirected graph G= (V,E), construct an r/b-graph G′ =
(V′,E′) as follows: define V′ = V and E′ = E; Er (G′) = E and Eb(G′) = E. Then there
exists k vertices whose deletion makes G bipartite if and only if there exist k vertices
whose deletion makes G′ r/b-split.

Proof. Suppose deletingk vertices fromG makes it bipartite with vertex bipartitionV1∪

V2. ThenV1 andV2 are independent in both the red graphG′r = (V′,Er) and in the blue
graphG′b = (V′,Eb). ThusG′[V1 ∪ V2] is r/b-split. Conversely ifk vertices can be
deleted fromG′ to make it r/b-split, letVr andVb be the red and blue independent sets
respectively. Then both these sets must be independent inG and therefore the subgraph
of G induced onVr ∪ Vb is bipartite. ⊓⊔

From Theorem 6 and Corollaries 6 and 7 the following result follows immediately.

Corollary 8. The parameterized version ofO C T, S V
D and 2-C V D are fixed-parameter tractable and their op-
timization versions can be solved in time O∗(20.576n) = O∗(1.49n) on input graphs on n
vertices.

5 Conclusion

We showed that the K¨ V D problem is fixed-parameter tractable in
general graphs. To prove this, we made use of a number of structural results involving
minimum vertex covers, minimum König vertex deletion setsand maximum matchings.
We also showed that a number of vertex-deletion problems, inparticular, R/B-S
V D, and O C T fixed-parameter reduce to AG-
 VC. Since the latter problem is FPT, all these vertex-deletionproblems
are also FPT.
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An interesting open problem is the parameterized complexity of the K̈ E
D problem: givenG = (V,E) and an integer parameterk, does there exist at
mostk edges whose deletion makes the resulting graph König? Deriving a problem
kernel for K̈ V D S is an interesting open problem. Another natural
open problem to design better FPT algorithms for A G V C
perhaps without using the reduction to M 2-S D.
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and König-Egerváry Graphs.In the Proc. of SODA 2006, pp. 842-850, 2006.

10. L. L́. Ear-Decompositions of Matching-covered Graphs.Combinatorica Vol. 3, pp.
105-118, 1983.

11. L. L́  M. D. P. Matching Theory.North Holland, 1986.
12. S. M, V. R, S. S, S. S  C. R. S. The Complexity of

Finding Subgraphs Whose Matching Number Equals the Vertex Cover Number.In Proc. of
ISAAC 2007, Springer LNCS Vol. 4835, pp. 268-279, 2007.

13. H. M  D. M. T. Parameterized Complexity of Finding Regular Induced Sub-
graphs.In Proc. of ACiD 2006, pp. 107-118.

14. R. N. An Invitation to Fixed-Parameter Algorithms.Oxford University Press,
2006.

15. V. R, S. S  S. S. Efficient Exact Algorithms Through Enumerat-
ing Maximal Independent Sets and Other Techniques.Theory Comput. Systems Vol. 41,
pp. 563-587, 2007.

16. I. R  B. O’S. Almost 2-SAT is Fixed-Parameter Tractable.In Proc. of
ICALP 2008, Springer LNCS Vol. 5125, pp. 551-562.

17. B. R, K. S  A. V. Finding Odd Cycle Transversals.Operations Research
Letters Vol. 32, pp. 299-301, 2004.

18. F. S. A Characterization of Graphs in which the Transversal Number Equals the
Matching Number.Jour. of Comb. Theory, Ser. B Vol. 27, pp. 228-229, 1979.


