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Abstract. A graph is Kdnig-Egervary if the size of a minimum vertexveo
equals the size of a maximum matching in the graph. We shoithtbgroblem
of deleting at mosk vertices to make a given graph Konig-Egervary is fixed-
parameter tractable with respectkoThis is proved using interesting structural
theorems on matchings and vertex covers which could be lusefther contexts.

We also show an interesting parameter-preserving redudt@mm the vertex-
deletion version of rethlue-split graphs [4, 9] to a version oferex Cover and
as a by-product obtain
1. the best-known exact algorithm for the optimization i@rf Obp CycLe
TRANSVERSAL [15];
2. fixed-parameter algorithms for several vertex-delepooblems including
the following: deletingk vertices to make a given graph (a) bipartite [17],
(b) split [5], and (c) retblue-split [7].

1 Introduction

The classical notions ahatchingsand vertex coverdave been at the center of se-
rious study for several decades in the area of Combinat@pdimization [11]. In
1931, Konig and Egervary independently proved a resuftinflamental importance:
in a bipartite graph the size of a maximum matching equalsdaha minimum ver-
tex cover [11]. This led to a polynomial-time algorithm fonding a minimum vertex
cover in bipartite graphs. In fact, a maximum matching carused to obtain a 2-
approximation algorithm for the Mimum Vertex Cover problem in general graphs,
which is still the best-known approximation algorithm fbis problem. Interestingly,
this min-max relationship holds for a larger class of grai@wn as Konig-Egervary
graphs and it includes bipartite graphs as a proper sub#&lassy-Egervary graphs will
henceforth be called Konig graphs.

Konig graphs have been studied for a fairly long time fromtractural point of
view [1, 3,9, 10, 18, 15]. Both Deming [3] and Sterboul [18Vgdndependent charac-
terizations of Kdnig graphs and showed that Kdnig grajgmstae recognized in polyno-



mial time. Lovasz [10] used the theory of matching-covepegphs to give an excluded-
subgraph characterization of Konig graphs that contaieréept matching. Korach et
al. [9] generalized this and gave an excluded-subgraplactexization for the class of
all Kénig graphs.

A natural optimization problem associated with a graphstass the following:
given a graplG, what is the minimum number of vertices to be deleted f@@no ob-
tain a graph irg? For example, wheg is the class of empty graphs, forests or bipartite
graphs, the corresponding problems aeg¥x Cover, Feepeack VERTEX SET and bp
CycLe TraNsVERSAL, respectively. We call the vertex-deletion problem cqroesling
to class of Konig graphs thedtic Vertex DeLerion problem. A set of vertices whose
deletion makes a given graph Konig is called a Konig vedeletion set. In the pa-
rameterized setting, the parameter for vertex-deletioblems is the solution size, that
is, the number of vertices to be deleted so that the resuijtiagh belongs to the given
graph class.

An algorithmic study of the KNic Vertex DeLETION problem was initiated in [12],
where it was shown that when restricted to the class of grajihisa perfect match-
ing, KoniG VerTEx DELETION fiXed-parameter reduces to a problem known as 2MCnr
Decerion. This latter problem was shown to be fixed-parameter tréethp Razgon
and O’Sullivan [16]. This immediately implies thatokié Vertex DeLeTION iS fixed-
parameter tractable for graphs with a perfect matching.tBaitparameterized com-
plexity of the problem in general graphs remained open.

In this paper, we first establish interesting structurahsmions between minimum
vertex covers and minimum Konig vertex deletion sets. fsiese, we show that

1. the parameterizeddtic Vertex DeLetion problem is fixed-parameter tractable,
and

2. there exists a®*(1.221") algorithnt for the optimization version of &xiG VERTEX
DeLerion problem, whera denotes the number of vertices in the graph.

Note that Konig graphs are not hereditary, that is, noteddlasnder taking induced sub-
graphs. For instance, a 3-cycle is not Kdnig but attachingdge to one of the vertices
of the 3-cycle results in a Konig graph. In factoié Vertex DeLetioN is one of the
few vertex-deletion problems associated with a non-h&edgraph class whose pa-
rameterized complexity has been resolved. Another suampbescan be found in [13].
Our second result is an interesting parameter-presergihgetion from the vertex-
deletion version of retblue-split graphs [4,9] to a version ofe¥rex Cover called
Asove Guarantee VErTEX Cover. A redblue graph [7] is a tupleG = (V,E),0),
whereG = (V, E) is a simple undirected graph and E — 21"\ ¢ is an assignment of
“colors” red and blue to the edges of the graph. An edge magsigred both red and
blue simultaneously and we require tfigtthe set of red edges, amg] the set of blue
edges, both be nonempty. A ybtle graphG = (V, RU B) is redblue-split if its vertex
set can be partitioned into a red independendgeand a blue independent sét. A
red (resp. blue) independent set is an independent setiedlgraplGg = (V, R) (resp.
blue graphGg = (V, B)). A graphG is split if its vertex set can be partitioned into an

4 The O*(-) notation suppresses polynomial terms. We w@téT (n)) for a time complexity of
the formO(T (n) - poly(n)), whereT (n) grows exponentially with.



independent set and a clique. A 2-clique graph is a graphewerdex set can be parti-
tioned into two cliques. Note that a graph is 2-clique if and/df it is the complement
of a bipartite graph. We will see that ritue-split graphs are a generalization of Kdnig
(and hence bipartite) graphs, split and 2-clique graphs [7]

As a by-product of the reduction fromeBBLue-SpLit VERTEX DELETION 10 ABOVE
GuaranTee VErTEX CovER We Obtain:

1. an O*(1.49") algorithm for the optimization version of #8/BLue-SpLiT VERTEX
DeLETION, ODD CYCLE TRANSVERSAL, SPLIT VERTEX DELETION and 2-QiQue VERTEX
DEeLETION.?

2. fixed parameter algorithms for all the above problems.

For Opbp CycLe TransversaL, this gives the best-known exact algorithm for the opti-
mization version improving over the previous best{1.62") [15].

This paperis organized as follows. In Section 2 we give & bridine of parameter-
ized complexity, the notations and known results that weiusige rest of the paper. In
Section 3 we show thedsic Vertex DeLETION problem to be fixed-parameter tractable.
In Section 4 we show that a number of vertex-deletion problfixed-parameter reduce
to Rep/Brue-Spuit VErTEX DELETION Which fixed-parameter reduces t@#Vve Guaran-

Tee VErRTEX Cover. Finally in Section 5 we end with some concluding remarks and
directions for further research.

2 Preliminaries

In this section we summarize the necessary concepts canggrarameterized com-
plexity, fix our notation and outline some results that we enage of in the paper.

2.1 Parameterized Complexity

A parameterized problem is a subsettfx Z=°, whereX is a finite alphabet and>°
is the set of nonnegative numbers. An instance of a parainetgoroblem is therefore
a pair (, k), wherek is the parameter. In the framework of parameterized conitglex
the running time of an algorithm is viewed as a function of fu@ntities: the size of
the problem instancand the parameter. A parameterized problem is said tfixssl-
parameter tractable (FPTIf there exists an algorithm that takes as inpuk) and
decides whether it is s or no-instance in timeD(f (k) - [1|°1)), wheref is a function
depending only oik. The class FPT consists of all fixed parameter tractablelgnud

A parameterized problemn is fixed-parameter reducibl® a parameterized prob-
lem 5 if there exist functiond, g : Z2° — 72, @ : 2* x 2=% — x* and a polynomial
p(-) such that for any instancé, ) of 71, (&(1, k), g(K)) is an instance of, computable
in time f(K) - p(Jl]) and (,k) € =1 if and only if (&(1, k), g(k)) € n,. Two parame-
terized problems aréixed-parameter equivaleiiftthey are fixed-parameter reducible
to each other. The basic complexity class for fixed-paranmetiectability isW[1] as

5 Since a 2-clique graph is the complement of a bipartite grah2-G.ique VERTEX DELETION
problem is NP-complete [17].



there is strong evidence th&f[1]-hard problems are not fixed-parameter tractable. To
show that a problem i8V[1]-hard, one needs to exhibit a fixed-parameter reduction
from a knownW[1]-hard problem to the problem at hand. For more on paranzet
complexity see [14].

2.2 Notation

Given a graphs, we useu(G), B(G) and «(G) to denote, respectively, the size of a
maximum matching, a minimum vertex cover and a minimum Igorértex deletion
set of G. When the graph being referred to is clear from the contegtsimply use
u, B andk. Given a graphG = (V,E) and two disjoint vertex subsel#, V, of V,
we let (V1, V2) denote the bipartite graph with vertex 8&tU V, and edge sefu, v} :
{u,v} € E andu € V4, Vv € Vy}. If Bis a bipartite graph with vertex partitidtwR then we
let u(L, R) denote the size of the maximum matchingotf M is matching andu, v} €

M then we say thatl is the partner of v in MIf the matching being referred to is
clear from the context we simply sayis a partner of vThe vertices ofs that are the
endpoints of edges in the matchiMyare said to besaturated by Nlall other vertices
areunsaturated by M

2.3 Related Results

We next mention some known results about Konig graphs aed\tbve GUARANTEE
Vertex Cover problem.

Fact 1 (See for instancgl2].) A graph G= (V, E) is Konig if and only if there exists
a polynomial-time algorithm that partitions (@) into V; and \% such that Y is a
minimum vertex cover of G and there exists a matching achessut(V,, V) saturating
every vertex of M

Given a graplt it is clear thajB(G) > u(G). The Asove GUARANTEE VERTEX COVER
problem is this: given a grapB and an integer parametkrdecide whetheB(G) <
1(G)+k. As was shown in [12], for this problem we may assume thatthetigraptG =
(V, E) has a perfect matching.

Theorem 1. [12] Let G = (V, E) be a graph with a maximum matching M and letl
V\V(M). Construct G by replacing every vertex & | by a vertex pair yu’ and adding
the edgesu, U’} and{u’, v} for all {u,v} € E. Then G has a vertex cover of sjA&) + k
if and only if G has a vertex cover of sizgG’) + k.

In [12], we also showed that thesAve Guarantee VErRTEX Cover problem fixed-
parameter reduces toiv2-Sar DeL which is the problem of deciding whethleclauses
can be deleted from a given 2£Sar formula to make it satisfiable. Sincenv2-Sar
DL is fixed-parameter tractable [16], so isdve GuaranTee VERTEX Cover. The algo-
rithm for Asove GuaranTee VErTEX Cover actually outputs a vertex cover of sizés) +
k if there exists one.

Corollary 1. Given a graph G= (V, E) and an integer k, one can decide whether G
has a vertex cover of size at mggG) + k in time Q15 - k - |EP). If G has a vertex
cover of size«(G) + k then the algorithm actually outputs one such vertex cover.



Note that Theorem 1 says that for thecke Guarantee VerTEX Cover problem it
is suficient to consider graphs with @gerfect matchingin [12], we showed that the
Konig VErTEX DELETION problem on graphs with a perfect matching fixed-parameter
reduces to Aove GuaranTEE VERTEX Cover. This shows that kKnic VerTEX DELETION ON
graphs with a perfect matching is fixed-parameter tract&levever this does not seem
to resolve the parameterized complexity status ofik Vertex DeLeTION iN general
graphs. We do not know of a fixed-parameter reduction frongémeral case to the case
with a perfect matching as in the case oot Guarantee VeErTEX Cover. However,
in the next section, we show the general problem to be fixedrpeter tractable using
some new structural results between maximum matchings emexvcovers.

3 The Konig Vertex Deletion Problem

We now consider the ic Vertex DeLETION PrOBLEM in general graphs and show it
fixed-parameter tractable.

SupposeY is a vertex cover in a graph = (V, E). Consider a maximum matching
M betweenY andV \ Y. If M saturates every vertex &f then the graph is Konig.
If not, thenY \ V(M), the set of vertices of unsaturated by, is a Konig deletion
set by Fact 1. What we prove in this section is thaY ifs a minimum vertex cover,
thenY \ V(M) is a minimum Konig vertex deletion set.

Our first observation is that any minimum Konig vertex dieletset is contained in
some minimum vertex cover.

Theorem 2. Let G be an undirected graph with a minimum Konig vertextitaeset K.
Let V(G \ K) = V1 W V, where V4 is independent and there is a matching M from V
to V, saturating \{. Then \{ U K is a minimum vertex cover for G.

Proof. SupposeS is a vertex cover of5 such thatS| < V3| + |[K|. We will show
that there exists a Konig vertex deletion set of size sméilen|K|, contradicting our
hypothesis. Defin®] = Vi NS, V), = V., nSandK’ = KN S. Let A; be the vertices
of V] whose partner iM is in V; and letA; be the vertices o¥; whose partner itM is
notinV;. See Figure 1. We claim thag U K’ is a Konig vertex deletion set & and

Fig. 1. The sets that appear in the proof of Theorem 2. The matdiliognsists of the solid edges
acrossV; andVs.



|A; U K’| < |K], which will produce the required contradiction and prove theorem.
This claim is proved using the following three claims:

Claim 1.]A; U K’| < |K].
Claim 2. A UV is a vertex cover in G (A; U K’).

Claim 3. There exists a matching betweenAV; and V\ (V] U K’ U V)) saturating
every vertex of AU V.

Proof of Claim 1.Clearly |S| = |V]| + [Vj] + |[K’|. Note thatS intersectgA,| of the
edges oM in both end points anfM| — |A;| edges oM in one end point (in eithev;
orV;). Furthermore/; has|V; \ V(M)| vertices ofS that do not intersect any edge df
HencelM| + |Aql + V5 \ V(M)| = [Vj] + V5] Thatis,|Vj] + V5] = [Va] + [Ag] + V5 \ V(M)
(as|M| = |V1]). HencelS| < |V4] + |K| implies thatAq| + [V, \ V(M)] + |[K’| < |K| which
implies thalAs] + |K’| < |K| proving the claim.

Proof of Claim 2.SinceS = A; U A, UV, U K’ is a vertex cover o6, clearlyA; U V)
covers all edges i \ (A U K’).

Proof of Claim 3.Since the partner of a vertex #& in M is inV \ (V] U K" U V}), we
can use the edges df to saturate vertices iA,. To complete the proof, we show that
in the bipartite graph\(;, (V1 \ V;) U (K \ K’)) there is a matching saturating. To
see this, note that any sub$2ic V; has at leasD| neighbors in {1 \ V;) U (K \ K).
For otherwise, leD’ be the set of neighbors d@ in (V1 \ V) U (K \ K’) where we
assumgD| > |D’|. Then § \ D) U D’ is a vertex cover o of size strictly less thafg|,
contradicting the fact thab is a minimum vertex cover. To see th& ( D) U D’ is
indeed a vertex cover @, note thatS \ V; covers all edges d& except those in the
graph ¥/, (V1\ V;) U (K \ K’)) and all these edges are covered ¥y D) U D’. Hence
by Hall's theorem, there exists a matching saturating alises ofV; in the bipartite
graph ¥/7, (V1 \ V;) U (K'\ K’)), proving the claim.

This completes the proof of the theorem. O

Theorem 2 has interesting consequences.

Corollary 2. For any two minimum Konig vertex deletion sets (KVDSg)aKd K,
G\ Ka) = u(G\ Ky).

Proof. SinceK; is a minimum KVDS ofG, B(G \ K1) = u(G \ Ki). By Theorem 2,
B(G\ K1) + |K1| = B(G) andB(G \ K3) + [Kz| = B(G). Since|K;y| = |Kz|, it follows
thatB(G \ Ki) = B(G \ K) and hence(G \ K1) = u(G \ Ky). O

From Theorem 2 and Fact 1, we get

Corollary 3. Given a graph G= (V, E) and a minimum Konig vertex deletion set for G,
one can construct a minimum vertex cover for G in polynonmaé1

Our goal now is to prove the “converse” of Corollary 3. In partar, we would
like to construct a minimum Konig vertex deletion set frorm@mimum vertex cover.
Our first step is to show that if we know that a given minimuni&eicover contains a
minimum Konig vertex deletion set then we can find the Kovegtex deletion set in



polynomial time. Recall that given a gra@h= (V, E) andA, B C V such thatAn B = 0,
we useu(A, B) to denote a maximum matching in the bipartite graph conmayisf the
vertices inA U B and the edges iffu,v} € E : u € A,v € B}. We denote this graph

by (A, B).

Lemma 1. Let K be a minimum KVDS and Y a minimum vertex cover of a graph G
(V,E) such that KC Y. Theru(G \ K) = u(Y,V\ Y) and|K| = [Y| - u(Y,V \ Y).

Proof. If G is Konig then the theorem clearly holds. Therefore assumekt # 0.
Note thatY \ K is a minimum vertex cover of the Konig gra@h\ K. Thusu(G \ K) =
u(Y \ K,V Y). We claim thatu(Y \ K,V \ YY) = u(Y,V \Y). For if not, we must
haveu(Y \ K,V \Y) < u(Y,V \ Y). Then letM be a maximum matching in the bipartite
graph {, V \ Y) andK’ C Y be the set of vertices unsaturatedMy Note thatk’ # 0

is a KVDS forG. Sinceu(Y,V \Y) = |Y| - |K’| andu(Y \ K,V \'Y) = |Y| — [K| we
have|K’| < |K|, a contradiction, since by hypothes{sis a smallest KVDS foiG.
Therefore we must haygG \ K) = u(Y,V\ Y) and|K| = [Y] — u(Y,V \ Y). O

The next lemma says thatY, V \ Y) is the same for all minimum vertex covers
of a graphG. Together with Lemma 1, this implies thatfis a minimum Konig vertex
deletion set and is a minimum vertex cover of a grafgh = (V, E), thenu(G \ K) =
u(Y,V\Y). This result is crucial to our FPT-algorithm for theié VerTEX DELETION
problem.

Lemma 2. For any two minimum vertex covergand Y, of G, u(Y1, V\ Y1) = u(Yz, V\
Y2).

Proof. Suppose without loss of generality thdli, V \ Y1) > u(Yz2, V \ Y2). Let M3 be
a maximum matching in the bipartite graphi (V \ Y1). To arrive at a contradiction, we
study howY; intersects the setg andV \ Y; with respect to the matching;. To this
end, we define the following sets (see Figure 2):

Fig. 2. The sets that appear in the proof of Lemma 2. The solid edgess¢; andV \ Y;
constitute the matchiniyl; .

—A=YoNnYrN V(Ml)

- B=Y>2n(V\Y)nV(My).

— A; is the set of vertices i whose partners iM; are also inYs.
— A is the set of vertices i whose partners iiM; are not inYa.



We first show that

Claim. In the bipartite graphY, V \ Yz) there is a matching saturating each vertex
in A, U B.

It will follow from the claim thatu(Y2,V \ Y2) > |Az] + |B|. However, note thay,
intersects every edge ®4; at least once (a%; is a vertex cover). More specifically;
intersectgA;| edges ofM; twice and|M;| — |A1| edges once (either ivh orinV \ Y1).
Hence|Al+|B| = [M1]|+|A1] and sdA;|+|B| = [Ma] and squ(Yz, V\Y2) > |[Ag|+|B| = [My]
a contradiction to our assumption at the beginning of thefphus it sufices to prove
the claim.

Proof of Claim.Let P denote the partners of the vertices®fin M;. SinceP C V \ Y,
we use the edges d¥l; to saturate vertices of,. Hence it is enough to show that
the bipartite grapt8 = (B, (V \ Y2) \ P) contains a matching saturating the vertices
in B. Suppose not. By Hall's Theorem there exists al3et B such thaiNg(D)| <
|D|. We claim that the seY; := Y2 \ D + Ng(D) is a vertex cover oG. To see this,
note that the vertices iN, \ D cover all the edges d& except those in the bipartite
graph O, Y1 N (V\ Y2)) and these are covered big(D). ThereforeY} is a vertex cover
of size strictly smaller thal,, a contradiction. This proves that there exists a matching
in (Y2, V \ Yz) saturating each vertex iy, U B.

This completes the proof of the lemma. O

The next theorem shows how we can obtain a minimum Konigexeteletion set
from a minimum vertex cover in polynomial time.

Theorem 3. Given a graph G= (V, E), let Y be any minimum vertex cover of G and M
a maximum matching in the bipartite grapy V\ Y). Then K:= Y\ V(M) is a minimum
Konig vertex deletion set of G.

Proof. ClearlyK is a KVDS. LetK; be a minimum KVDS ofs. By Theorem 2, there
exists a minimum vertex covef such thak; € Y; and

Kyl = Y2l = u(Y1, V \ Y1) (By Lemma 1.)
=1Y| — u(Y1,V\ Y1) (SinceY; andY are minimum vertex covers.)
=Yl —u(Y,V\Y) (ByLemma?2.)
= |K]

This proves thaK is a minimum KVDS. O

Corollary 4. Given a graph G= (V, E) and a minimum vertex cover for G, one can
construct a minimum Konig vertex deletion set for G in poial time.

Note that although both these problemssiéx Cover and Konig VerTEX DELETION
Ser—are NP-complete, we know of very few pairs of such pararsetdrere we can
obtain one from the other in polynomial time (e.g. edge datiirg set and minimum
maximal matching, see [8]). In fact, there are parametésgach as dominating set
and vertex cover where such a polynomial-time transfommna not possible unless
P = NP. This follows since in bipartite graphs, for instance, imimum vertex cover



is computable in polynomial time whereas computing a mimmominating set is
NP-complete.

To show that the KNic VerTex DeLetion problem is fixed-parameter tractable we
make use of the following

Lemma 3. [12] If G is a graph such thg8(G) = u(G) + k, then k< «(G) < 2k.

We are now ready to prove that theodié Vertex DeLerion problem is fixed-
parameter tractable in general graphs.

Theorem 4. Given a graph G= (V,E) and an integer parameter k, the problem of
whether G has a subset of at most k vertices whose deletioestiad resulting graph
Konig can be decided in time(@8* - k? - |E[%).

Proof. Use the FPT algorithm from Corollary 1 to test whetfehas a vertex cover
of size at mosu(G) + k. If not, by Lemma 3, we know that the size of a minimum
Konig vertex deletion set is strictly more thanTherefore returmo. If yes, then find
the size of a minimum vertex cover by applying Corollary 1haévery integer value
between 0 and for the excess abovy®G). Note that foryes-instances of the ove
GuaranTee VERTEX Cover problem, the FPT algorithm actually outputs a vertex cover
of sizeu(G) + k. We therefore obtain a minimum vertex coverGfUse Theorem 3 to
get a minimum Konig vertex deletion set in polynomial timelalepending on its size
answer the question. It is easy to see that all this can beiddinee O(15¢-k?-[E]®). O

We know that computing a maximum independent set (or ecgriniyl a minimum
vertex cover) in am-vertex graph can be done in tin@ (20288 [6]. By Corollary 4,
we can compute a minimum Konig vertex deletion set in theesarponential time.
Given a graplG together with a tree-decomposition for it of width one can obtain
a minimum vertex cover in tim®*(2") [14]. For the definitions of treewidth and tree-
decomposition, refer [14]. In general, algorithms on gsaphbounded treewidth are
based on dynamic programming over the tree-decomposifictheograph. It is not
obvious how to find such a dynamic programming algorithm fa¥ Konig VERTEX
DeLetion problem. By applying Corollary 4, we can find a minimum Kodigjetion set
in time O*(2") in graphs of treewidthv. The above discussion results in the following
corollary.

Corollary 5. 1. Given agraph G= (V, E) on n vertices we can find a minimum Konig
vertex deletion set in time*@%28%") = O*(1.221").
2. If a tree-decomposition for G of width w is given, we can finghinimum Konig
vertex deletion set in time*@Y).

4 RedBlue-Split Graphs and Above Guarantee Vertex Cover

In this section we introduce theeRBrue-Sprit VerTEX DELETION problem and show
that a number of vertex-deletion problems fixed-parametéuce to it. Recall that a
regblue-graph is one in which the edges are colored red or bldendrere an edge
may receive multiple colors. A rglue-graphG = (V,RU B) is redblue-split if its
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vertex set can be partitioned into a red independent set dldeaindependent set,
where a red (blue) independent set is an independent se¢ irethgraptG = (V,R)
(blue graphG = (V, B)). In what follows we use/b as an abbreviation for rddue
andE. to denote the set of edges assigned color

The RB-Seuir VerTeEx DELETION problem is the following: given anly-graphG =
(V, RUB) and an integek, are therd vertices whose deletion makég/b-split? We first
show that RB-Seuir VerTEX DELETION fixed-parameter reduces to thedA&e Guaran-
TEE VERTEX Cover problem. Since Aove Guarantee VERTEX Cover is fixed-parameter
tractable, this will show that /B-SeLit Vertex DeLeTiON iS fixed-parameter tractable
too.

At this point, we note that/b-split graphs can be viewed as a generalization of
Konig graphs as follows. A grap@ = (V, E) with a maximum matching/ is Konig
if and only if the 2-colored grapts’ = (V,RU B), whereR = E andB = M, is r/b-
split. It is important to realize that while this gives a rgodion algorithm for Kdnig
graphs using one foyly-split graphs, it does not seem to give any relationshipveein
the corresponding vertex-deletion problems. In fact, waatdknow of any parameter-
preserving reduction from ¢&ic Vertex DeLETION tO the RB-SpLit VERTEX DELETION
problem for general graphs.

For graphs with a perfect matching, we show by an indepenatgniment based
on the structure of a minimum Konig vertex deletion set thatKonic Vertex DELE-
TioN problem does indeed fixed-parameter reduce #ovA GuarANTEE VERTEX COVER
(and also to PB-Seuir VerTEX DELETION) [12]. But this structural characterization of
minimum Konig vertex deletion sets does not hold in gengraphs. Therefore the
fixed-parameter tractability result foro<ic Vertex DeLerioNn ST cannot be obtained
from that of RB-SpLiT VERTEX DELETION.

Theorem 5. Let G = (V,E = E; U Ep) be an yb graph. Construct G= (V’,E’) as
follows: the vertex set \tonsists of two copies;\W, of V and for allue V, i, € V;
and b € V, the edge set E= {{ug, U} : u € V} U {{u,va} : {u,v} € Er} U {{uz, Vo) :
{u,v} € Ep}. Then there exists k vertices whose deletion makeb-Gplit if and only
if G’ has a vertex cover of sizgG’) + k.

Proof. ClearlyG’ has 2V| vertices and a perfect matching of sj#é It suffices to show
thatG has an tb-split subgraph ohvertices if and only ilG’ has an independent set of
sizet. This would prove that there exigtg —t vertices whose deletion makég/b-split
if and only if G’ has a vertex cover of sizé\g — t. Finally, plugging ink = [V| — t will
prove the theorem.

Therefore letH be an fb-split subgraph of5 ont vertices with a red independent
setV; and a blue independent Sé§. Then the copy? of V; in V; and the copy\/§
of iy in V; are independent sets@1. SinceV, NV, = 0, V! U VZ is an independent set
in G’ ont vertices. Conversely ifl” is an independent set @& of sizet, thenfori = 1,2
letV(H) NV, = W, and|W| = tj so thatt; + t, = t. Fori = 1,2, letW, be the vertices
in V(G) corresponding to the vertices . ThenW, is an independent set of size
in the red graplG, = (V(G),E;) andW, is an independent set of sizgin the blue
graphGy, = (V(G), Ep). SinceW; andW- do not both contain copies of the same vertex
of V(G), asW; U W is independent, we haw; N W, = 0. ThusG[W; U W;] is an
r/b-split graph of sizé in G. O
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Since a maximum independent set in mwertex graph can be obtained in time
0% (20283 [6], we immediately have the following

Corollary 6. The optimization version of tHe/B-SpLit VerTEX DELETION problem can
be solved in time @2°%7®) = O*(1.49") on input graphs on n vertices.

Since Aove GuaranTee VERTEX Cover is fixed-parameter tractable (Corollary 1) we
have

Corollary 7. The parameterized version of tR#B-SpLir VerTEX DELETION problem is
fixed-parameter tractable and can be solved in tim@®- k? - m?), where m is the
number of edges in the input graph.

As mentioned before, Kdnig (and hence bipartite) and gpaphs can be viewed
as yb-split graphs. Since 2-clique graphs are complementsparbie graphs it fol-
lows that they can also be viewed db-split graphs. The vertex-deletion problems
Opp CycLE TRANSVERSAL, SpLiT VERTEX DELETION and 2-Qique VErRTEX DELETION fixed-
parameter reduce tg/B-Serit VerTEX DELETION. We show this reduction for&» CycLe
TraNsVERsAL as the proofs in the other cases are quite similar.

Theorem 6. Given a simple undirected graph & (V, E), construct an b-graph G =
(V’, E’) as follows: define V=V and E = E; E;(G’) = E and (G’) = E. Then there
exists k vertices whose deletion makes G bipartite if ang ibrihere exist k vertices
whose deletion makes Gb-split.

Proof. Suppose deletingvertices fromG makes it bipartite with vertex bipartitiov U

V,. ThenV; andV; are independent in both the red graph= (V’, E;) and in the blue
graphGj = (V',Ep). ThusG'[V1 U V7] is 1/b-split. Conversely ifk vertices can be
deleted fromG’ to make it yb-split, letV, andV, be the red and blue independent sets
respectively. Then both these sets must be independénaind therefore the subgraph
of G induced orV; U V, is bipartite. O

From Theorem 6 and Corollaries 6 and 7 the following resulb¥es immediately.

Corollary 8. The parameterized version @pp CycLE TRANSVERSAL, SPLIT VERTEX
Decerion and 2-Cuique VerTEX DELETION are fixed-parameter tractable and their op-
timization versions can be solved in tim&(2957%) = 0*(1.49") on input graphs on n
vertices.

5 Conclusion

We showed that the éic Vertex DeLeTiON problem is fixed-parameter tractable in
general graphs. To prove this, we made use of a number ottalicesults involving
minimum vertex covers, minimum Konig vertex deletion setd maximum matchings.
We also showed that a number of vertex-deletion problempaiticular, RB-SpLit
VEerTex DELETION, and Qb CycLe TransVERsAL fixed-parameter reduce taedve Guar-
antee VErTEX Cover. Since the latter problem is FPT, all these vertex-delgiioblems
are also FPT.



12

An interesting open problem is the parameterized complefithe Konic Epce
DeLerion problem: givenG = (V, E) and an integer parametky does there exist at
mostk edges whose deletion makes the resulting graph Konigingra problem
kernel for Konic VerTeEx DELETION SET IS an interesting open problem. Another natural
open problem to design better FPT algorithms fao¥e Guarantee VERTEX COVER
perhaps without using the reduction taNV2-Sar DELETION.

AcknowledgementdVe thank anonymous referees of ISAAC 2008 for suggestiats th
helped improve the presentation.
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