
Motivation Formalizing the Preconditions The Main Theorem Concluding Remarks

Are there any Good Digraph Width Measures?

Robert Ganian Petr Hliněný Joachim Kneis
Daniel Meister Jan Obdržálek Peter Rossmanith
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Measuring the Width of a Graph

Measures for Undirected Graphs
Treewidth [Robertson and Seymour] - very successful.

FPT algorithms for many problems (MSO2);

nice closure properties;

graphs of small treewidth have a rich structure.

Cliquewidth/Rankwidth [Courcelle and Olariu/ Oum and
Seymour].

again, FPT or XP algorithms for many problems (including all
of MSO1);

not subgraph or minor closed.
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Measuring the Width of a Graph

Width Measures for Directed Graphs?
Directed Treewidth [Johnson, Robertson, Seymour and Thomas].

XP-algorithms for Hamiltonian Path and k-Path problems;

technically difficult and not many efficient algorithms . . .

Recent Additions

DAG width [Obdržálek];

Kelly width [Hunter and Kreutzer].

Directed Cliquewidth [Courcelle and Olariu].

Birankwidth [Kanté].

Kenny width.

DAG depth.

DFVS number.
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Structural Properties of Digraph Width Measures

Very Good: DAG width, Kelly width, DAG-depth.

nice cops-and-robber game characterizations;

monotone under taking subgraphs.

Good: Directed treewidth, Kenny width, DFVS number.

no game characterization but monotone under taking
subgraphs.

Bad: Directed cliquewidth and Birankwidth.

not monotone under taking subgraphs (a bi-oriented clique has
small width but its subgraphs can have much larger width);

but closed under vertex minors.
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Algorithmic Usefulness

Very Good: Directed Cliquewidth and Birankwidth.

all MSO1 problems have FPT algorithms;

many other problems have XP-algorithms.

Bad: All other measures!
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Desirable Properties of a Digraph Width Measure

Algorithmic usefulness many problems can be solved on
digraphs of small width;

Different from treewidth: otherwise, simply use the treewidth
of the underlying undirected graph;

Nice structural properties / a cops-and-robber game
characterization.

We show that no digraph width measure satisfies all the above
properties!
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Formalizing the Conditions

Algorithmic Usefulness

Definition

A digraph width measure is powerful if all problems in MSO1 admit
XP algorithms with the width as parameter.
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Formalizing the Conditions

Algorithmic Usefulness

Definition

A digraph width measure is powerful if all problems in MSO1 admit
XP algorithms with the width as parameter.

Being Different from Treewidth

Definition

A digraph width measure δ is treewidth-bounding if for all digraphs
with width at most k, the undirected treewidth is at most b(k).

We want digraph width measures to be not treewidth-bounding.

class of digraphs with width at most c (constant) have
arbitrary high undirected treewidth.
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Formalizing the Conditions

Having nice structural properties/ cops-and-robber game
characterization

Observation

In most versions of cops-and-robber games, shrinking a
(directed) path does not help the robber.

Width measures based on cops-and-robber games are closed
under some form of (directed) topological minor.
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Formalizing the Conditions

When is a width measure cops-and-robber games based?

when it is closed under directed topological minors.

Definition (Informal)

A digraph H is a directed topological minor of a digraph D, if H

can be obtained by contracting certain arcs in a subdigraph of D.

Which arcs can be contracted?

Arcs whose contraction does not create new dipaths between
large degree vertices.
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Formalizing the Conditions

Directed Topological Minors: Contractible Arcs

let V3 be the set of vertices with at least three neighbors.

arc ~a is contractible if
� not both end-points of ~a are in V3;
� contracting ~a does not create new dipaths between

vertices of V3.
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Contractible Arcs: An Example
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Contractible Arcs: An Example

green arc contractible
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Contractible Arcs: An Example

after contraction
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Contractible Arcs: An Example

red arc not contractible
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Contractible Arcs: An Example

new dipath between green vertices
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First Statement

Finally we need a technical property.
Efficient orientability tells us how to efficiently orient the edges of
a given undirected graph to obtain a digraph of minimum width.
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First Statement

Finally we need a technical property.
Efficient orientability tells us how to efficiently orient the edges of
a given undirected graph to obtain a digraph of minimum width.

Definition

A digraph width measure δ is called efficiently orientable if there

exist functions h : N → N and r : G → D , such that

1 the function r can be computed in time polynomial in the

input graph;

2 for every graph G, r(G ) is an orientation of G ; and,

3 δ(r(G )) ≤ h (min{δ(D) : U(D) = G}).
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The Main Theorem

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.
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The Main Theorem

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.

Proof.

There exists a constant c ∈ N such that U(δ(D) ≤ c)
contains undirected graphs of arbitrarily large treewidth.

Every planar graph is a minor of some graph in U(δ(D) ≤ c).

Every {1, 3}-planar graph is a topological minor of some
graph in U(δ(D) ≤ c).
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The Main Theorem

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.

Proof. Hence U(δ(D) ≤ c) contains small subdivisions of every
{1, 3}-regular planar undirected graph.
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The Main Theorem

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.

Proof. Given a {1, 3}-planar graph, efficiently find an orientation
of width at most h(c).
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The Main Theorem

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.

Proof. There exists NP-complete problems on {1, 3}-planar graphs
that are MSO1-expressible.
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Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.

Can we strengthen the result by requiring closure under
subdigraphs?
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Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking subdigraphs;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.

Can we strengthen the result by requiring closure under
subdigraphs?
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Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking subdigraphs;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.

Can we strengthen the result by requiring closure under
subdigraphs?

No!
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Strengthening the Result?

Theorem

There exists a digraph width measure δ with these properties:

1 δ is not treewidth-bounding;

2 δ is monotone under taking subdigraphs;

3 δ is efficiently orientable;

4 δ is powerful.

Proof.

By a padding argument and Courcelle’s Theorem for treewidth.
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Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.
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Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.

Can the result be strengthened at all?

Doesn’t seem so.
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Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 δ is efficiently orientable.

Then P = NP, or δ is not powerful.

Why do we require efficient orientability?
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Strengthening the Result?

Efficient orientability prevents a width measure from keeping
excessive information in the orientation of the arcs.
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Strengthening the Result?

Theorem

There exists a digraph width measure δ with these properties:

1 δ is not treewidth-bounding;

2 δ is monotone under taking directed topological minors;

3 for every k ≥ 1, for every digraph D with δ(D) ≤ k, it can be

decided in time O(3k · n2) whether U(D) is 3-colourable.

Proof.

Arcs directions are used to encode a 3-coloring:

sources form one color class;

sinks form another color class;

the rest form the third color class.
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On Being Powerful

For digraph width measures that are

1 not treewidth-bounding,

2 efficiently orientable,

we have identified a threshold with respect to being powerful:

monotone under subgraphs −→ powerful;
monotone under directed topological minors −→ not powerful.
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On Efficient Orientability

We have given evidence that this property is necessary for proving
our result.
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On Efficient Orientability

We have given evidence that this property is necessary for proving
our result.

Many known digraph width measures are efficiently orientable, such
as DAG-width, Kelly-width, directed cliquewidth, Birankwidth.
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On Efficient Orientability

We have given evidence that this property is necessary for proving
our result.

Many known digraph width measures are efficiently orientable, such
as DAG-width, Kelly-width, directed cliquewidth, Birankwidth.

Question

Is there digraph width measure that is

1 not treewidth-bounding;

2 monotone under taking directed topological minors; and

3 not efficiently orientable; and,

4 powerful?
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On Directed Topological Minors

Question

Is our definition a good one?
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On Directed Topological Minors
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We believe it is.
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On Directed Topological Minors

Question

Is our definition a good one?

We believe it is.

Deciding whether a digraph is a directed topological minor of
another digraph is hard.
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On Directed Topological Minors

Question

Is our definition a good one?

We believe it is.

Deciding whether a digraph is a directed topological minor of
another digraph is hard.

Theorem

There exists a digraph H such that, given a digraph G, deciding

whether H is directed topological minor of G is NP-complete.
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Thank You!


	Motivation
	Formalizing the Preconditions
	The Main Theorem
	Concluding Remarks

