Are there any Good Digraph Width Measures?

Robert Ganian Petr Hliněný Joachim Kneis Daniel Meister Jan Obdržálek Peter Rossmanith Somnath Sikdar

Theoretical Computer Science, RWTH Aachen University, Germany.

Faculty of Informatics, Masaryk University, Brno, Czech Republic.

Outline

2 Formalizing the Preconditions

3 The Main Theorem

4 Concluding Remarks

▲ロト ▲圖 ト ▲ ヨト ▲ ヨ ト の Q ()

Measuring the Width of a Graph

Measures for Undirected Graphs

Treewidth [Robertson and Seymour] - very successful.

- FPT algorithms for many problems (MSO₂);
- nice closure properties;
- graphs of small treewidth have a rich structure.

Cliquewidth/Rankwidth [Courcelle and Olariu/ Oum and Seymour].

- again, FPT or XP algorithms for many problems (including all of MSO₁);
- not subgraph or minor closed.

Measuring the Width of a Graph

Width Measures for Directed Graphs?

Directed Treewidth [Johnson, Robertson, Seymour and Thomas].

- XP-algorithms for Hamiltonian Path and k-Path problems;
- technically difficult and not many efficient algorithms ...

Recent Additions

- DAG width [Obdržálek];
- Kelly width [Hunter and Kreutzer].
- Directed Cliquewidth [Courcelle and Olariu].
- Birankwidth [Kanté].
- Kenny width.
- DAG depth.
- DFVS number.

Concluding Remarks

Structural Properties of Digraph Width Measures

Very Good: DAG width, Kelly width, DAG-depth.

- nice cops-and-robber game characterizations;
- monotone under taking subgraphs.

Good: Directed treewidth, Kenny width, DFVS number.

- no game characterization but monotone under taking subgraphs.
- Bad: Directed cliquewidth and Birankwidth.
 - not monotone under taking subgraphs (a bi-oriented clique has small width but its subgraphs can have much larger width);
 - but closed under vertex minors.

Algorithmic Usefulness

Very Good: Directed Cliquewidth and Birankwidth.

- all MSO₁ problems have FPT algorithms;
- many other problems have XP-algorithms.
- Bad: All other measures!

Desirable Properties of a Digraph Width Measure

- Algorithmic usefulness many problems can be solved on digraphs of small width;
- Different from treewidth: otherwise, simply use the treewidth of the underlying undirected graph;
- Nice structural properties / a cops-and-robber game characterization.

We show that no digraph width measure satisfies all the above properties!

Outline

2 Formalizing the Preconditions

3 The Main Theorem

Formalizing the Conditions

Algorithmic Usefulness

Definition

A digraph width measure is powerful if all problems in MSO_1 admit XP algorithms with the width as parameter.

Formalizing the Conditions

Algorithmic Usefulness

Definition

A digraph width measure is powerful if all problems in MSO_1 admit XP algorithms with the width as parameter.

Being Different from Treewidth

Definition

A digraph width measure δ is treewidth-bounding if for all digraphs with width at most k, the undirected treewidth is at most b(k).

We want digraph width measures to be *not* treewidth-bounding.

• class of digraphs with width at most *c* (constant) have arbitrary high undirected treewidth.

Formalizing the Conditions

Having nice structural properties/ cops-and-robber game characterization

Observation

- In most versions of cops-and-robber games, shrinking a (directed) path does not help the robber.
- Width measures based on cops-and-robber games are closed under some form of (directed) topological minor.

Formalizing the Conditions

When is a width measure cops-and-robber games based?

• when it is closed under directed topological minors.

Definition (Informal)

A digraph H is a directed topological minor of a digraph D, if H can be obtained by contracting certain arcs in a subdigraph of D.

Which arcs can be contracted?

• Arcs whose contraction does not create new dipaths between large degree vertices.

Formalizing the Conditions

Directed Topological Minors: Contractible Arcs

- let V_3 be the set of vertices with at least three neighbors.
- arc \vec{a} is contractible if
 - ▶ not both end-points of \vec{a} are in V_3 ;
 - ► contracting *a* does not create new dipaths between vertices of V₃.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Outline

- 2 Formalizing the Preconditions
- 3 The Main Theorem
- 4 Concluding Remarks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

First Statement

Finally we need a technical property.

Efficient orientability tells us how to efficiently orient the edges of a given undirected graph to obtain a digraph of minimum width.

First Statement

Finally we need a technical property.

Efficient orientability tells us how to efficiently orient the edges of a given undirected graph to obtain a digraph of minimum width.

Definition

A digraph width measure δ is called efficiently orientable if there exist functions $h: \mathbb{N} \to \mathbb{N}$ and $r: \mathscr{G} \to \mathscr{D}$, such that

- the function r can be computed in time polynomial in the input graph;
- **2** for every graph G, r(G) is an orientation of G; and,

$$\delta(r(G)) \leq h(\min\{\delta(D): U(D) = G\}).$$

The Main Theorem

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- 2 δ is monotone under taking directed topological minors;
- \bullet is efficiently orientable.

Then P = NP, or δ is not powerful.

The Main Theorem

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- 2 δ is monotone under taking directed topological minors;
- \bullet is efficiently orientable.

Then P = NP, or δ is not powerful.

Proof.

- There exists a constant c ∈ N such that U(δ(D) ≤ c) contains undirected graphs of arbitrarily large treewidth.
- Every planar graph is a minor of some graph in $U(\delta(D) \le c)$.
- Every {1,3}-planar graph is a topological minor of some graph in U(δ(D) ≤ c).

The Main Theorem

Theorem

Let δ be a digraph width measure such that

- **()** δ is not treewidth-bounding;
- 2 δ is monotone under taking directed topological minors;
- \bullet is efficiently orientable.

Then P = NP, or δ is not powerful.

Proof. Hence $U(\delta(D) \le c)$ contains small subdivisions of every $\{1,3\}$ -regular planar undirected graph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

The Main Theorem

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- 2 δ is monotone under taking directed topological minors;
- \bullet *is efficiently orientable.*

Then P = NP, or δ is not powerful.

Proof. Given a $\{1,3\}$ -planar graph, efficiently find an orientation of width at most h(c).

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The Main Theorem

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- 2 δ is monotone under taking directed topological minors;
- \bullet is efficiently orientable.
- Then P = NP, or δ is not powerful.

Proof. There exists NP-complete problems on $\{1,3\}$ -planar graphs that are MSO₁-expressible.

Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- 2) δ is monotone under taking directed topological minors;
- \bullet is efficiently orientable.
- Then P = NP, or δ is not powerful.

Can we strengthen the result by requiring closure under subdigraphs?

Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- **2** δ is monotone under taking subdigraphs;
- \bullet is efficiently orientable.
- Then P = NP, or δ is not powerful.

Can we strengthen the result by requiring closure under subdigraphs?

Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- **2** δ is monotone under taking subdigraphs;
- \bullet is efficiently orientable.
- Then P = NP, or δ is not powerful.

Can we strengthen the result by requiring closure under subdigraphs?

No!

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Strengthening the Result?

Theorem

There exists a digraph width measure δ with these properties:

- δ is not treewidth-bounding;
- **2** δ is monotone under taking subdigraphs;
- \bullet is efficiently orientable;
- δ is powerful.

Proof.

By a padding argument and Courcelle's Theorem for treewidth.

Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- 2 δ is monotone under taking directed topological minors;
- \bullet is efficiently orientable.

Then P = NP, or δ is not powerful.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- 2 δ is monotone under taking directed topological minors;
- \bullet is efficiently orientable.

Then P = NP, or δ is not powerful.

Can the result be strengthened at all?

Doesn't seem so.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Strengthening the Result?

Theorem

Let δ be a digraph width measure such that

- δ is not treewidth-bounding;
- 2 δ is monotone under taking directed topological minors;
- \bullet is efficiently orientable.

Then P = NP, or δ is not powerful.

Why do we require efficient orientability?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Strengthening the Result?

Efficient orientability prevents a width measure from keeping excessive information in the orientation of the arcs.

Strengthening the Result?

Theorem

There exists a digraph width measure δ with these properties:

- **()** δ is not treewidth-bounding;
- 2 δ is monotone under taking directed topological minors;
- for every $k \ge 1$, for every digraph D with $\delta(D) \le k$, it can be decided in time $O(3^k \cdot n^2)$ whether U(D) is 3-colourable.

Proof.

Arcs directions are used to encode a 3-coloring:

- sources form one color class;
- sinks form another color class;
- the rest form the third color class.

Outline

- 2 Formalizing the Preconditions
- 3 The Main Theorem

On Being Powerful

For digraph width measures that are

- not treewidth-bounding,
- efficiently orientable,

we have identified a threshold with respect to being powerful:

monotone under subgraphs monotone under directed topological minors \longrightarrow not powerful.

 \longrightarrow powerful:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

On Efficient Orientability

We have given evidence that this property is necessary for proving our result.

On Efficient Orientability

We have given evidence that this property is necessary for proving our result.

Many known digraph width measures are efficiently orientable, such as DAG-width, Kelly-width, directed cliquewidth, Birankwidth.

▲日▼▲□▼▲□▼▲□▼ □ ののの

On Efficient Orientability

We have given evidence that this property is necessary for proving our result.

Many known digraph width measures are efficiently orientable, such as DAG-width, Kelly-width, directed cliquewidth, Birankwidth.

Question

Is there digraph width measure that is

- not treewidth-bounding;
- Improve monotone under taking directed topological minors; and
- Inot efficiently orientable; and,
- owerful?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

On Directed Topological Minors

Question

Is our definition a good one?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

On Directed Topological Minors

Question

Is our definition a good one? We believe it is.

On Directed Topological Minors

Question

Is our definition a good one? We believe it is.

Deciding whether a digraph is a directed topological minor of another digraph is hard.

▲日▼▲□▼▲□▼▲□▼ □ ののの

On Directed Topological Minors

Question

Is our definition a good one?

We believe it is.

Deciding whether a digraph is a directed topological minor of another digraph is hard.

Theorem

There exists a digraph H such that, given a digraph G, deciding whether H is directed topological minor of G is NP-complete.

Motivation

Formalizing the Preconditions

The Main Theorem

Concluding Remarks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Thank You!