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Abstract

In this paper, we consider the parameterized complexity of the following problem: Given a hereditary property P on digraphs,
an input digraph D and a positive integer k, does D have an induced subdigraph on k vertices with property P? We completely
characterize hereditary properties for which this induced subgraph problem is W [1]-complete for two classes of directed graphs:
general directed graphs and oriented graphs. We also characterize those properties for which the induced subgraph problem is
W [1]-complete for general directed graphs but fixed parameter tractable for oriented graphs. These results are among the very few
parameterized complexity results on directed graphs.
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1. Introduction

Parameterized complexity is an approach developed by
Downey and Fellows for dealing with computationally hard
problems where small parameter values cover many prac-
tical applications. Consider, for instance, the NP-complete
Vertex Cover and Dominating Set problems. These
problems are defined as follows: Given a graph G and a
positive integer parameter k, decide whether G has a ver-
tex cover (respectively, dominating set) of size at most k.
Both problems can be solved in time O(nk+2), where n is
the number of vertices of G. What is interesting is that
for the Vertex Cover problem there exists an algorithm
with run time O(ck · n), where c is a constant, whereas for
Dominating Set there is reason to believe that no such
algorithm exists.

Parameterized complexity is mainly concerned with ob-
taining algorithms for parameterized problems with run
time O(f(k) · nO(1)), where f is a function of k alone, as
against a run time of O(nO(k)). Here k is the parameter
for the problem. A parameterized problem which admits
an algorithm with run time O(f(k) · nO(1)) is called fixed
parameter tractable (FPT). For a comprehensive introduc-
tion to parameterized complexity see the classic monograph
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by Downey and Fellows [4] or the recent texts by Nieder-
meier [11] and Flum and Grohe [5].

In this paper, we consider the parameterized complexity
of a class of problems in (directed) graphs that are loosely
termed as the Induced Subgraph problem. This prob-
lem is defined as follows: Given a graph G and a positive
integer k, does G have a vertex induced subgraph of size
k satisfying some prespecified property? Lewis and Yan-
nakakis [10] proved that this problem is NP-complete when
the property is nontrivial and hereditary. Khot and Ra-
man [9] studied the parameterized complexity of this prob-
lem in undirected graphs and completely characterized for
which properties the problem is FPT and for which ones
the problem is W [1]-complete. We extend their result for
hereditary properties on directed graphs. As a corollary of
our results, we show, for example, that the problem of de-
ciding whether an input digraph D has a transitive induced
subdigraph of size k is fixed parameter tractable while the
problem of deciding whether D has a planar induced sub-
digraph of size k is W [1]-complete.

There have been very few results on parameterized
problems on directed graphs since, in general, many
problems which can be formulated for both directed and
undirected graphs are significantly more difficult for di-
rected graphs [8]. For instance, the Feedback Edge Set
problem is polynomial-time solvable in undirected graphs
but NP-complete in directed graphs [6]. From the pa-
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rameterized complexity point of view, the Undirected
Feedback Vertex Set problem is known to be fixed pa-
rameter tractable but the Directed Feedback Vertex
(Edge) Set is a celebrated open problem. Our results in
this paper add to the growing literature on parameterized
complexity results on directed graphs.

This paper is organized as follows. In Section 2, we de-
fine the problem formally and briefly survey some previ-
ous work. In Section 3, we give a complete specification of
when the Induced Subgraph problem is fixed parame-
ter tractable and when it is not, for hereditary properties
on general directed graphs. In Section 4, we consider the
problem for hereditary properties on oriented graphs. An
oriented graph is a directed graph which has at most one
arc between any pair of vertices. In Section 5, we charac-
terize those hereditary properties for which the Induced
Subgraph problem is hard on general digraphs but FPT
on oriented graphs. We end with some concluding remarks
in Section 6.

2. Problem Definition and Previous Work

A graph property P is an isomorphism-closed set of
graphs. A graph property P is nontrivial if there exists an
infinite family of graphs satisfying P and an infinite family
not satisfying P . A graph property P is hereditary if G ∈ P
implies that every induced subgraph of G is also in P (see
[10]). Examples of hereditary properties (for undirected
graphs) include the class of planar, outerplanar, bipartite,
interval, comparability, acyclic, bounded-degree, chordal,
complete, independent set and line invertible graphs [10].
Similarly for digraphs, the following graph classes are
hereditary: acyclic, transitive, symmetric, anti-symmetric,
line-digraph, maximum outdegree r, maximum indegree r,
without cycles of length l, without cycles of length ≤ l [10].

A propertyP has a forbidden set characterization if there
exists a set F of graphs such that G has property P if
and only if no element of F is an induced subgraph of
G. The set F is called the forbidden set of P . It is well
known that a property P is hereditary if and only if it has
a forbidden set characterization [2]. For if a property P
has a forbidden set characterization, it is clearly hereditary.
Conversely suppose P is hereditary and consider the set S
of graphs not in P . The induced subgraph relation defines
a partial order among the elements of S and the minimal
elements of this partial order form the forbidden set of P .

For a property P on (directed) graphs, the Induced
Subgraph problem is defined as follows: Given a (directed)
graph G find a vertex subset of maximum size that induces
a subgraph with property P . Lewis and Yannakakis [10]
proved this problem to be NP-hard when the property P is
nontrivial and hereditary. If, in addition, the given property
can be tested in polynomial time, their results show that
the Induced Subgraph problem is NP-complete. The pa-
rameterized version of this problem for a given property P
is defined as follows.

P (G, k,P)
Input: A graph G = (V, E) with vertex set V and

edge set E.
Parameter: A positive integer k ≤ |V |.
Question: Does G have an induced subgraph on at

least k vertices with property P?

Call the directed graphs version of this problem P (D, k,P).
Khot and Raman [9] resolved the problem P (G, k,P)

when P is a nontrivial hereditary property on undirected
graphs. They show that if the propertyP either contains all
independent sets and all cliques or excludes an independent
set and a clique then the problem P (G, k,P) is fixed pa-
rameter tractable and W [1]-complete otherwise. The proof
techniques employed by them make heavy use of Ramsey
theory. In particular, they make use of the fact that any
“sufficiently large” undirected graph either contains an in-
dependent set or a clique.

In this paper, we consider the problem P (D, k,P) when
P is a nontrivial hereditary property on directed graphs.
We give a complete specification of when the problem
P (D, k,P) is fixed parameter tractable and when it is not.

3. The Induced Subgraph Problem for General

Directed Graphs

We begin with by examining a specialization of Ramsey’s
theorem applicable to directed graphs.
Fact 1 [7] Suppose that for every set S with n elements, the
2-element subsets of S are partitioned into m disjoint fami-
lies F1, . . . , Fm. Let p1, . . . , pm be any positive integers with
pi ≥ 2, 1 ≤ i ≤ m. Then there is a number r(p1, . . . , pm),
such that for every set S with n ≥ r(p1, . . . , pm) elements
there exists an i, 1 ≤ i ≤ m, and a subset Ai of S with pi

elements all of whose 2-subsets are in the family Fi.
If D = (V, A) is a digraph with V = {u1, . . . , un}, parti-

tion the 2-subsets of V into four classes, as follows:

F1 = {{ui, uj : (ui, uj), (uj , ui) /∈ A}}

F2 = {{ui, uj : (ui, uj), (uj , ui) ∈ A}}

F3 = {{ui, uj : (ui, uj) ∈ A, (uj , ui) /∈ A, i < j}}

F4 = {{ui, uj : (ui, uj) /∈ A, (uj , ui) ∈ A, i < j}}

From Ramsey’s theorem we have
Corollary 1 Let p1, p2, p3 be any positive natural numbers
≥ 2. Then there exists a positive number r(p1, p2, p3) such
that any directed graph D on at least r(p1, p2, p3) vertices
contains either an independent set of size p1, or a complete
symmetric digraph of size p2, or an acyclic tournament of
size p3.
Thus if P is a nontrivial hereditary property on digraphs,
then it must contain either all independent sets, all com-
plete symmetric digraphs and all acyclic tournaments or
exactly two of these graph types of all sizes or exactly one
of these graph types of all sizes.
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Theorem 1 If P is a hereditary property on digraphs that
either contains all independent sets (i.s.), all complete sym-
metric (c.s.) digraphs and all acyclic tournaments (a.t.) or
excludes a graph of each of these three types, then the prob-
lem P (D, k,P) is fixed parameter tractable.

PROOF. Suppose P excludes an independent set of size
c1, a c.s. digraph of size c2 and an acyclic tournament of
size c3. Then P cannot contain any digraph D such that
|V (D)| ≥ r(c1, c2, c3) and is therefore finite. The problem
P (D, k,P) can then be decided in polynomial time.

Therefore assume that P contains all independent sets,
all c.s. digraphs and all acyclic tournaments. If |V (D)| ≥
r(k, k, k) 1 then, by Ramsey’s theorem, D has either an
independent set, or a c.s. digraph or an acyclic tournament
of size k as an induced subgraph. Thus the given instance
is a yes-instance. Otherwise, |V (D)| < r(k, k, k) and we
check all subsets S ⊆ V (D) of size k to see whether D[S]

has property P . This takes time
(

r(k,k,k)
k

)

·f(k), where f(k)
is the time taken to decide whether a digraph on k vertices
has property P . This proves that the problem P (D, k,P)
is fixed parameter tractable.

Corollary 2 Given any directed graph D and an integer k,
it is fixed parameter tractable to decide whether D has an
induced subdigraph on k vertices that is (1) a kernel perfect
digraph, (2) an intersection digraph, (3) a chordal digraph,
(4) a transitive digraph, or (5) a quasi-transitive digraph.
(See [1] for the definitions of these graphs.)

3.1. W [1]-Completeness Results

We show that if the property P contains exactly two of
the graph types of all sizes or exactly one of the graph types
of all sizes then the problem P (D, k,P) is W [1]-complete.
To do this, we first show that the problem P (D, k,P) is in
W [1] for any nontrivial decidable hereditary property P .
We next show that the problem is W [1]-hard by exhibiting
a parametric reduction from a W [1]-hard problem.
Lemma 1 Let P be a nontrivial decidable hereditary prop-
erty on digraphs. Then the problem P (D, k,P) is in W [1].

PROOF. We reduce the P (D, k,P) problem to the
Short Turing Machine Acceptance problem (defined
below) which is complete for the class W [1] [4].
Input: A nondeterministic Turing machine M

and a string x.
Parameter: A positive integer k.
Question: Does M have a computation path accept-

ing x in at most k steps?
Let (D = (V, E), k) be an instance of the P (D, k,P) prob-
lem, with |V | = n. We will show that we can construct an

1 We do not need to know the number r(k, k, k) exactly. An upper
bound on r(k, k, k) will serve our purpose.

instance (MD, x, k′) of the Short Turing Machine Ac-
ceptance problem in time O(f(k) ·nO(1)) such that D has
an induced subgraph of size k satisfying property P if and
only if MD accepts x within k′ steps, where k′ depends only
on k.

First note that since we assumedP to be decidable, there
exists a DTM M ′ that takes a digraph D as input and in
time t(|V (D)|) decides whether D satisfies P . The input
alphabet of MD consists of the n+1 symbols 1, 2, 3, . . . , n, ♯.
The NTM MD performs the following steps.

(i) MD nondeterministically writes a sequence of k num-
bers on its tape out of its tape alphabet {1, 2, . . . , n}.

(ii) It then verifies whether the k numbers it has picked
are distinct.

(iii) It then constructs the subgraph D′ of D represented
by these k vertices.

(iv) MD passes control to M ′ which then verifies whether
D′ satisfies P . If yes, MD accepts.

The time taken in Steps 1, 2 and 4 are, respectively, O(k),
O(k2) and t(k). Assuming that the graph D is hardwired
in MD as an adjacency matrix, Step 3 takes time O(k2).

It is easy to see that (D, k) is a yes-instance of the prob-
lem P (D, k,P) if and only if the nondeterministic Turing
machine MD accepts the empty string in k′ = O(k + k2 +
t(k)) steps.

To prove W [1]-hardness, we consider the following four
cases:

(i) The property P contains all c.s. digraphs but not all
independent sets.

(ii) The property P contains all independent sets but not
all c.s. digraphs.

(iii) P contains all acyclic tournaments but not all inde-
pendent sets.

(iv) P contains all independent sets but not all acyclic
tournaments.

Note that (i)-(iv), though not mutually exclusive, are ex-
haustive.

We first show that the problem P (D, k,P) is W [1]-hard
in cases (i) and (ii).
Theorem 2 Let P be a hereditary property on digraphs
that contains all c.s. digraphs but not all independent sets or
vice versa. Then the problem P (D, k,P) is W [1]-complete.

PROOF. Membership in W [1] was shown in Lemma 1.
We therefore need only establish W [1]-hardness.

LetP be a property on digraphs. Define P1 as follows. An
undirected graph G ∈ P1 if and only if the directed graph
D obtained from G by replacing every edge {u, v} ∈ E(G)
by the arcs (u, v) and (v, u) is in P . Note that G contains a
clique of size k if and only if D contains a c.s. digraph of size
k and G contains an independent set of size k if and only
if D contains an independent set of size k. Also note that

(i) P1 is nontrivial and hereditary if and only if P is
nontrivial and hereditary,
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(ii) P1 and contains all cliques but not all independent
sets if and only if P contains all c.s. digraphs but not
all independent sets, and

(iii) P1 and contains all independent sets but not all
cliques if and only if P contains all independent sets
but not all c.s. digraphs.

By Khot and Raman [9], the problem P1(G, k,P1) is W [1]-
hard when P1 contains all cliques but not all independent
sets or vice versa.

We now exhibit a parametric reduction from P1(G, k,P1)
to P (D, k,P). Let (G, k) be an instance of P1. Construct
a directed graph D as follows: V (D) = V (G) and for all
u, v ∈ V (G), if {u, v} ∈ E(G) add the arcs (u, v) and (v, u)
in A(D). D has no other arcs. From the manner in which
property P1 was defined, it is clear that G has an induced
subgraph on k vertices satisfying P1 if and only if D has an
induced subdigraph on k vertices satisfying P . This com-
pletes the proof.

We next show that the problem P (D, k,P) is W [1]-hard
in cases (iii) and (iv).
Theorem 3 LetP be a hereditary property on digraphs that
contains all acyclic tournaments but not all independent
sets or vice versa. Then the problem P (D, k,P) is W [1]-
complete.

PROOF. As before, we show only W [1]-hardness. Let P
be a property on digraphs. Define P1 to be a set of undi-
rected graphs with the following property: An undirected
graph G ∈ P1 if and only if the directed graph D ∈ P ,
where V (D) = V (G) and

A(D) = {(u, v) : u < v and {u, v} ∈ E(G)}.

Clearly G has an independent set of size k if and only if D
has an independent set of size k and G has a clique of size
k if and only if D has an acyclic tournament of size k. Also

(i) P1 is nontrivial and hereditary if and only if P is
nontrivial and hereditary,

(ii) P1 contains all independent sets but not all cliques if
and only if P contains all independent sets but not
all acyclic tournaments, and

(iii) P1 contains all cliques but not all independent sets
if and only if P contains all acyclic tournaments but
not all independent sets.

The problem P1(G, k,P1) is W [1]-hard by [9] when P1 con-
tains all independent sets but not all cliques or vice versa.

We now exhibit a parametric reduction from the problem
P1(G, k,P1) to the problem P (D, k,P). Let (G, k) be an
instance of the problem P1(G, k,P1). Let D be the directed
graph obtained by orienting the edges of G from lower or-
dered vertices to higher ordered vertices. From the manner
in which we constructed P1, it is easy to see that G has an
induced subgraph on k vertices satisfying P1 if and only if
D has an induced subdigraph on k vertices satisfying P .
This proves the theorem.

We now look at some applications. For definitions of di-
graph properties introduced in the remainder of this sec-
tion, one may consult Bang-Jensen and Gutin [1].

The set of symmetric digraphs contains all independent
sets and all c.s. digraphs but no acyclic tournament. The
following hereditary properties contain all independent
sets and acyclic tournaments but not all c.s. digraphs: (1)
acyclic digraphs, (2) antisymmetric digraphs, (3) digraphs
without dicycles of length l and (4) digraphs without
dicycles of length ≤ l. Hence the following corollary is
immediate from Theorems 2 and 3.
Corollary 3 Given a digraph D and a positive integer k,
it is W [1]-complete to decide whether D has an induced
subdigraph of size k that is (1) a symmetric digraph, (2)
acyclic, (3) an antisymmetric digraph, (4) without dicycles
of length l, or (5) without dicycles of length ≤ l.

The following digraph properties contain all independent
sets but not all c.s. digraphs and acyclic tournaments: (1)
with maximum indegree r, (2) with maximum outdegree r,
(3) bipartite, (4) colorable with c colors, for some constant
c ≥ 1, (5) planar, (6) a line digraph. Hence the following
corollary is immediate from Theorem 3.
Corollary 4 Given a digraph D and a positive integer k,
it is W [1]-complete to decide whether D has an induced
subdigraph of size k that is (1) of maximum indegree r, (2)
of maximum outdegree r, (3) bipartite, (4) colorable with c
colors, for some constant c ≥ 1, (5) planar, or (6) a line
digraph.

4. The Induced Subgraph Problem for Oriented

Graphs

Though Corollary 3 says that finding an acyclic subdi-
graph is hard in general digraphs, Raman and Saurabh [12]
have shown that the problem is FPT in oriented graphs. In
this section, we look at the general Induced Subgraph
problem in oriented graphs.

An oriented graph is a directed graph in which every pair
of vertices has at most one arc between them. Thus ori-
ented graphs are precisely those digraphs with no 2-cycle.
For oriented graphs, Ramsey’s theorem says: For positive
integers p and q there exists an integer r(p, q) ∈ N such that
any oriented graph on at least r(p, q) vertices either has an
independent set of size p or an acyclic tournament of size q.

Any nontrivial hereditary property P on oriented graphs
can therefore be classified into one of the three types: (1) P
contains all independent sets and all acyclic tournaments;
(2) P contains all independent sets but not all acyclic
tournaments; (3) P contains all acyclic tournaments but
not all independent sets. As one might suspect, the prob-
lem P (D, k,P) is fixed parameter tractable for Case (1)
and W [1]-complete for Cases (2) and (3). Membership in
W [1] can be easily proved by a parametric reduction to the
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Short Turing Machine Acceptance Problem similar
to the proof of Lemma 1.
Theorem 4 Let P be a hereditary property on oriented
graphs that either contains all independent sets and all
acyclic tournaments or excludes an independent set and an
acyclic tournament. Then the problem P (D, k,P) is fixed
parameter tractable.

PROOF. Suppose P excludes an independent set of size
c1 and an acyclic tournament of size c2. Then P cannot
contain any oriented graph D such that |V (D)| ≥ r(c1, c2)
and is therefore finite. The problem P (D, k,P) can then be
decided in polynomial time.

Therefore assume that P contains all independent sets
and all acyclic tournaments. If |V (D)| ≥ r(k, k) then, by
Ramsey’s theorem, D has either an independent set or an
acyclic tournament of size k as an induced subgraph. Thus
the given instance is a yes-instance. Otherwise, |V (D)| <
r(k, k) and we check all subsets S ⊆ V (D) of size k to see

whether D[S] has propertyP . This takes time
(

r(k,k)
k

)

·f(k),
where f(k) is the time taken to decide whether an oriented
graph on k vertices has property P . This proves that the
problem P (D, k,P) is fixed parameter tractable.

Theorem 5 Let P be a hereditary property on oriented
graphs that contains all independent sets but not all acyclic
tournaments or vice versa. Then the problem P (D, k,P) is
W [1]-complete.

PROOF. LetP be a property on oriented graphs. Define a
propertyP ′ on undirected graphs as follows: An undirected
graph G satisfies P ′ if and only if the directed graph D
satisfies P , where V (D) = V (G) and A(D) = {(u, v) : u <
v, {u, v} ∈ E(G)}. Clearly G has an independent set of size
k if and only if D has an independent set of size k and G has
a clique of size k if and only if D has an acyclic tournament
of size k. Also

(i) P ′ is nontrivial and hereditary if and only if P is
nontrivial and hereditary,

(ii) P ′ contains all independent sets but not all cliques if
and only if P contains all independent sets but not
all acyclic tournaments, and

(iii) P ′ contains all cliques but not all independent sets
if and only if P contains all acyclic tournaments but
not all independent sets.

The problem P (G, k,P ′) is W [1]-hard by Khot and Ra-
man [9] and it is easy to see that P (G, k,P ′) ≤FPT

P (D, k,P).

5. General Digraphs vs Oriented Graphs

In this section, we characterize general digraph prop-
erties for which the problem P (D, k,P), when restricted
to oriented graphs, becomes fixed parameter tractable. In
what follows, if P is a property on general directed graphs

then its restriction P ′ to oriented graphs is defined to be
the set of all oriented graphs satisfying P .
Corollary 5 Let P be a nontrivial hereditary property
on digraphs such that the induced subgraph problem,
P (D, k,P), is W [1]-complete. If P ′ is its restriction to
oriented graphs then the problem P (D, k,P ′), restricted to
oriented graphs, is fixed parameter tractable if and only if
either one of the following conditions are satisfied: (1) P
satisfies all independent sets and all acyclic tournaments
but not all c.s. digraphs, or (2) P satisfies all c.s. digraphs
but not all independent sets and acyclic tournaments.

PROOF.

(⇐) If P satisfies (1), then P ′ contains all independent
sets and all acyclic tournaments. If P satisfies (2), then P ′

is finite. The FPT result then follows from Theorem 4.
(⇒) If P does not satisfy either conditions (1) or (2)

of the theorem and, if the problem P (D, k,P) is W [1]-
complete, then P ′ is a nontrivial hereditary property on
oriented graphs that satisfies either all independent sets
but not all acyclic tournaments or vice versa. The hardness
proof then follows from Theorem 5.

Acyclic digraphs form an example of a hereditary property
that contains all independent sets and acyclic tournaments
but no c.s. digraphs. Consequently, the Induced Acyclic
Subgraph problem is W [1]-complete on general directed
graphs but FPT on oriented graphs.

6. Conclusion

In this paper, we have characterized hereditary proper-
ties on digraphs for which finding an induced subdigraph
with k vertices in a given digraph is W [1]-complete. We
first did this for general directed graphs and then for ori-
ented graphs. We also characterized hereditary properties
for which the induced subgraph problem is W [1]-complete
on general directed graphs but FPT for oriented graphs.

A related problem is the Graph Modification prob-
lem P(i, j, k) which asks whether a given input graph G
can be ‘modified’ by deleting at most i vertices, j edges and
adding at most k edges so that the resulting graph satis-
fies property P . More formally, this problem is defined as
follows: Given an undirected graph G = (V, E) does there
exist V ′ ⊆ V , E′ ⊆ E and E′′ ⊆ Ec (the edge set of the
complement graph) with |V ′| ≤ i, |E′| ≤ j and |Ec| ≤ k,
such that G − V ′ − E′ ∪ E′′ satisfies P?

Cai [2] has shown that if a hereditary property has a fi-
nite forbidden set the graph modification problem P(i, j, k)
is fixed parameter tractable with parameters i, j, k. The
case when the forbidden set is infinite is open. The graph
modification problem can be framed for directed graphs as
well (for directed graphs, Ec can be viewed as the set of all
arcs not in input digraph D). The well-known Directed
Feedback Vertex Set problem can then be cast as the
problemP(k, 0, 0), whereP is the set of all acyclic digraphs.
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Hence it would be interesting to investigate the parameter-
ized complexity of the Graph Modification problem in
directed graphs.
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