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Abstract. We show that for any fixed i, j ≥ 1, the k-Dominating Set

problem restricted to graphs that do not have Ki,j as a subgraph is
fixed parameter tractable (FPT) and has a polynomial kernel. This result
implies that this problem restricted to bounded-degenerate graphs has a
polynomial kernel, solving an open problem posed by Alon and Gutner
in [3]. Our result extends the class of graphs for which the k-Dominating

Set problem is known to have (1) FPT algorithms and (2) polynomial
kernels, to the class of Ki,j-free graphs.

1 Introduction

The k-Dominating Set problem asks, for a graph G = (V, E) and a positive
integer k given as inputs, whether there is a vertex-subset S ⊆ V of size at most k
such that every vertex in V \ S is adjacent to some vertex in S. Such a vertex-
subset is called a dominating set of G. For general graphs this problem is known
to be NP-hard [15], and the problem parameterized by k is W [2]-complete [9]
even if the input has bounded average degree [16]. The latter fact implies that
it is unlikely that the problem has a fixed-parameter-tractable (FPT) algorithm
on graphs with a bounded average degree, that is, an algorithm that runs in
time f(k) · nc for some computable function f(k) independent of n and some
constant c independent of k. However, the problem has an FPT algorithm on
certain restricted families of graphs. See Table 1 for some known FPT algorithms
for this problem. A graph G is said to be d-degenerate if every subgraph of G
has a vertex of degree at most d. As far as we know, d-degenerate graphs are
the most general class of graphs for which the k-Dominating Set problem has
been previously shown to have an FPT algorithm [2].

Closely related to the notion of an FPT algorithm is the concept of a ker-
nel for a parameterized problem. For the k-Dominating Set problem param-
eterized by k, a kernelization algorithm is a polynomial-time algorithm that
takes (G, k) as input and outputs a graph G′ and a nonnegative integer k′ such
that the size of G′ is bounded by some function g(k) of k alone, k′ ≤ h(k) for
some function h(k), and G has a dominating set of size at most k if and only
if G′ has a dominating set of size at most k′. The resulting instance G′ is called
a kernel for the problem. A parameterized problem has a kernelization algo-
rithm if and only if it has an FPT algorithm [9], and so it is unlikely that the



k-Dominating Set problem on general graphs or on graphs having a bounded
average degree has a kernelization algorithm. For the same reason, this problem
has a kernelization algorithm when restricted to those graph classes for which it
has an FPT algorithm. But the size of the kernel obtained from such an algo-
rithm could be exponential in k, and so it is interesting to ask if the kernel size
can be made smaller—in particular, whether it can be made polynomial in k.

Proving polynomial bounds on the size of the kernel for different parame-
terized problems has been an important practical aspect in the study of the
parameterized complexity of NP-hard problems, and many positive results are
known. See [17] for a survey of kernelization results. Recently Bodlaender et al. [4]
building on the work of Fortnow and Santhanam [13] developed a lower-bound
technique that allows one to prove that a number of parameterized problems do
not admit polynomial kernels unless PH (the polynomial hierarchy) collapses to
the third level. Dom et al. [8] have recently extended the techniques to show
many more parameterized problems do not admit polynomial kernels under the
same complexity-theoretic assumptions.

To the best of our knowledge, the class of Kh-topological-minor-free graphs
is the most general class of graphs for which the k-Dominating Set problem
has been previously shown to have a polynomial kernel. See Table 1 for some
known upper bound results on kernel size for the k-Dominating Set problem
on various classes of graphs.

Graph Class FPT Algorithm Running Time Kernel Size

Planar O(k4 + 215.13
√

kk + n3) [12] O(k) [1, 5]

Genus-g O((24g2 + 24g + 1)kn2) [10] O(k + g) [11]

Kh-minor-free 2O(
√

k)nc [6], O((log h))hk/2 · n [2] O(kc) [3]

Kh-topological-minor-free (O(h))hk · n [2] O(kc) [3]

d-degenerate kO(dk)n [2] kO(dk) [2]

Table 1. Some known FPT and kernelization results for k-Dominating Set

Our Results. We show that for any fixed i, j ≥ 1, the k-Dominating Set

problem has a polynomial kernel on graphs that do not have Ki,j (a complete
bipartite graph with the two parts having i and j vertices) as a subgraph. For
input graph G and parameter k, the size of the kernel is bounded by kc where c
is a constant that depends only on i and j. Since a d-degenerate graph does not
have Kd+1,d+1 as a subgraph, it follows that the k-Dominating Set problem
has a polynomial kernel on graphs of bounded degeneracy. This settles a question
posed by Alon and Gutner in [3]. We also provide a slightly simpler and a smaller



kernel for the version where we want the k-Dominating Set to be independent
as well.

Note that except for d-degenerate graphs, all the other graph classes in Ta-
ble 1 are minor-closed. This seems to be indicative of the state of the art —
the only other previous FPT or kernelization result for the k-Dominating Set

problem on a non-minor-closed class of graphs that we know of is the O(k3)
kernel and the resulting FPT algorithm for graphs that exclude triangles and
4-cycles [18]. In fact, this result can be modified to obtain similar bounds on
graphs with just no 4-cycles (allowing triangles). Since a 4-cycle is just K2,2,
this result follows from the main result of this paper by setting i = j = 2.

It is immediate from our result that for any fixed i, j ≥ 1, there is an FPT
algorithm for the k-Dominating Set problem on graphs that do not have Ki,j

as a subgraph. Since a Kh-topological-minor-free graph has bounded degener-
acy [3, Proposition 3.1] (for a constant h), the class of Ki,j-free graphs is more
general than the class of Kh-topological-minor-free graphs. Thus we extend the
class of graphs for which the k-Dominating Set problem is known to have
(1) FPT algorithms and (2) polynomial kernels to the class of Ki,j-free graphs.

Organization of the rest of the paper. In Section 2, we develop our main algorithm
that runs in O(ni+O(1)) time and constructs a kernel of size O((j + 1)2ik2i2) for
k-Dominating Set on Ki,j-free graphs, for fixed j ≥ i ≥ 2. As a corollary we
obtain, in Section 3, a polynomial kernel for d-degenerate graphs, with running
time O(nO(d)) and kernel size O((d+2)2(d+1)k2(d+1)2). In Section 3.1 we describe
an improvement to the above algorithm that applies to d-degenerate input graphs
which yields a kernel of the same size as above and runs in time O(2ddn2). In
Section 4 we describe a modification of the algorithm in Section 2 that constructs
a polynomial kernel for the k-Independent Dominating Set problem on Ki,j-
free graphs with the kernel having O(jki) vertices, resulting in a kernel of size
O((d + 1)kd+1) for d-degenerate graphs. In Section 5 we state our conclusions
and list some open problems.

Notation. All the graphs in this paper are finite, undirected and simple. In
general we follow the graph terminology from [7]. We let V (G) and E(G) denote,
respectively, the vertex and edge sets of a graph G. The open-neighborhood of a
vertex v in a graph G, denoted N(v), is the set of all vertices that are adjacent
to v in G. A k-dominating set of graph G is a vertex-subset S of size at most k
such that for each u ∈ V (G) \ S there exists v ∈ S such that {u, v} ∈ E(G).
Given a graph G and A, B ⊆ V (G), we say that A dominates B if every vertex
in B \ A is adjacent in G to some vertex in A.

2 A Polynomial Kernel for Ki,j-free Graphs

In this section we consider the parameterized k-Dominating Set problem on
graphs that do not have Ki,j as a subgraph, for fixed j ≥ i ≥ 1. It is easy to see
that the problem has a linear kernel when i = 1, j ≥ i, so we consider the cases



j ≥ i ≥ 2. We solve a more general problem, namely the rwb-Dominating Set

problem, defined as follows: Given a graph G whose vertex set V is partitioned
into RG, WG, and BG (colored red, white, and black, respectively) and a non-
negative integer parameter k, is there a subset S ⊆ V of size at most k such that
RG ⊆ S and S dominates BG? We call such an S an rwb-dominating set of G,
and such a graph an rwb-graph.

Intuitively, the vertices colored red are those that will be picked up by the
reduction rules in the k-dominating set D that we are trying to construct. In
particular, if there is a k-dominating set in the graph, there will be one that
contains all the red vertices. White vertices are those that have been already
dominated. Clearly all neighbors of red vertices are white, but our reduction
rules color some vertices white even if they have no red neighbors (at that point).
These are vertices that will be dominated by one of some constant number of
vertices identified by the reduction rules. See reduction rule 2 for more details.
Black vertices are those that are yet to be dominated. It is easy to see that if
we start with a general graph G and color all its vertices black to obtain an
rwb-graph G′, then G has a dominating set of size at most k if and only if G′

has an rwb-dominating set of size at most k.
We first describe an algorithm that takes as input an rwb-graph G on n

vertices and a positive number k, and runs in O(ni+O(1)) time. The algorithm
either finds that G does not have any rwb-dominating set of size at most k, or it
constructs an instance (G′, k′) on O((j + 1)i+1ki2) vertices such that G has an
rwb-dominating set of size at most k if and only if G′ has an rwb-dominating
set of size at most k′.

The algorithm applies a sequence of reduction rules in a specified order. The
input and output of each reduction rule are rwb-graphs. Each reduction rule
satisfies the following correctness condition:

Definition 1. (Correctness) A reduction rule R is said to be correct if the
following condition holds: if (G′, k′) is the instance obtained from (G, k) by one
application of rule R then G′ has an rwb-dominating set D′ of size k′ if and only
if G has an rwb-dominating set D of size k.

Definition 2. We say that graph G is reduced with respect to a reduction rule
if an application of the rule to G does not change G.

2.1 The reduction rules and the kernelization algorithm

The kernelization algorithm assumes that the input graph is an rwb-graph. It
applies the following rules exhaustively in the given order. Each rule is repeatedly
applied till it causes no changes to the graph and then the next rule is applied.

For each rule below, let G denote the graph on which the rule is applied, and
G′ the resulting graph. Let D and D′ be as in Definition 1.

Rule 1. Color all isolated black vertices of G red.

Rule 1 is correct as the only way to dominate the isolated black vertices is
by picking them in the proposed rwb-dominating set.



Rule 2. For p = 1, 2, . . . , i − 2, in this order, apply Rule 2.p repeatedly till it
no longer causes any changes in the graph.

Rule 2.p Let b = jk if p = 1, and b = jkp+kp−1+kp−2 · · ·+k if 2 ≤ p ≤ i−2.
If a set of (i− p) vertices U = {u1, u2, . . . , ui−p}, none of which is red, has more
than b common black neighbors, then let B be this set of neighbors.

1. Color all the vertices in B white.
2. Add to the graph (i − p) new (gadget) vertices X = {x1, x2, . . . , xi−p} and

all the edges {u, x}; u ∈ U, x ∈ X , as in Figure 1.
3. Color all the vertices in X black.

Fig. 1. Rule 2

The following claim is not difficult to prove:

Claim 1. Consider the application of Rule 2.p, 1 ≤ p ≤ i − 2. If U is a set of
vertices of G that satisfies the condition in Rule 2.p, then at least one vertex in
U must be in any subset of V (G) of size at most k that dominates B.

Proof. We give a proof when p = 1. The proof for larger values of p is along
similar lines by reducing it to the case for smaller values of p as in the proof of
Claim 2 below.

When p = 1, suppose that there is a rwb-dominating set D of G of size at most
k that does not contain any vertex of U . Since U has more than b = jk common
black neighbors, there is a vertex in D that dominates at least j + 1 common
black neighbors of U (possibly including itself). That vertex along with U form
a Ki,j in G which is a contradiction to the property of the input graph. ⊓⊔

Lemma 1. Rule 2.p is correct for 1 ≤ p ≤ i − 2.

Proof. If D exists, then D∩U 6= ∅ by Claim 1, and so we can set D′ := D as D∩U
dominates X . For the other direction, assume that D′ exists. If D′ ∩U = ∅ then
since D′ dominates X and X is independent, X ⊆ D′, and so set D := D′\X∪U .
If D′ ∩ X = ∅ then since D′ dominates X , D′ ∩ U 6= ∅, and so set D := D′.
If D′ ∩ U 6= ∅ and D′ ∩ X 6= ∅ then pick an arbitrary vertex b ∈ B and set
D := D′ \ X ∪ {b}. ⊓⊔



Rule 3. If a black or white vertex u has more than jki−1 + ki−2 + · · ·+ k2 + k
black neighbors, then color u red and color all the black neighbors of u white.

Claim 2. Let G be reduced with respect to Rules 1 and 2.1 to 2.(i − 2). If a
black or white vertex u of G has more than h = jki−1 +ki−2 + · · ·+k2 +k black
neighbors (let this set of neighbors be B), then u must be in any subset of V (G)
of size at most k that dominates B.

Proof. Let S ⊆ V (G) be a set of size at most k that dominates B. If S does not
contain u, then there is a v ∈ S that dominates at least (h/k)+1 of the vertices
in B. The vertex v is not red, and u, v have h/k > jki−2 +ki−3 + · · ·+1 common
black neighbors, a contradiction to the fact that G is reduced with respect to
Rule 2.(i − 2). ⊓⊔

This proves the correctness of Rule 3 on graphs reduced with respect to rules 1
and 2.1 to 2.(i − 1).

Rule 4. If a white vertex u is adjacent to at most one black vertex, then delete
u and apply Rule 1.

It is easy to see that Rule 4 is correct, since if u has no black neighbor in G
then u has no role in dominating BG; if u has a single black neighbor v then we
can replace u with v in D′.

Rule 5. If there is a white vertex u and a white or black vertex v such that
N(u) ∩ BG ⊆ N(v) ∩ BG, then delete u and apply Rule 1.

The correctness of this rule follows from the fact that if D chooses u, then
we can choose v in D′.

Rule 6. If |RG| > k or |BG| > jki + ki−1 + ki−2 + · · · + k2 then output “NO”.

The correctness of the rule when |RG| > k is obvious as the proposed domi-
nating set we construct should contain all of RG. Note that for a graph G reduced
with respect to Rules 1 and 2.1 to 2.(i − 1) and 3, no white or black vertex has
more than jki−1 + ki−2 + · · ·+ k black neighbors, or else Rule 3 would have ap-
plied. Hence k of these vertices can dominate at most jki +ki−1 +ki−2 + · · ·+k2

black vertices and hence if |BG| > jki + ki−1 + ki−2 + · · ·+ k2, the algorithm is
correct in saying “NO”.

2.2 Algorithm correctness and kernel size

We begin by noting the following.

Remark 1.

1.1 None of the reduction rules in Section 2 introduces a Ki,j into a graph.
1.2 In the rwb-graphs constructed by the algorithm, red vertices have all white

neighbors.



1.3 Let R be any reduction rule, and let R′ be a rule that precedes R in the
given order. If G is a graph that is reduced with respect to R′ and G′ is a
graph obtained by applying R to G, then G′ is reduced with respect to R′.

The following claim giving the correctness of the kernelization algorithm
follows from the correctness of the reduction rules and the above remarks.

Claim 3. Let G be the input rwb-graph and H the rwb-graph constructed by the
algorithm after applying all the reduction rules. Then G has an rwb-dominating
set of size at most k if and only if there is an rwb-dominating set of size at
most k in H .

Now we move on to prove a polynomial bound on the size of the reduced
instance.

Lemma 2. Starting with a Ki,j-free rwb-graph G as input, if the kernelization
algorithm says “NO” then G does not have an rwb-dominating set of size at
most k. Otherwise, if the algorithm outputs the rwb-graph H, then |V (H)| =

O((j + 1)i+1ki2).

Proof. The correctness of the Rule 6 establishes the claim if the algorithm says
“NO”. Now suppose the algorithm outputs H without saying “NO”. The same
rule establishes that |RH | ≤ k and b = |BH | ≤ jki + ki−1 + · · · + k ≤ (j +
1)ki. Now we bound |WH |. Note that no two white vertices have identical black
neighborhoods, or else Rule 5 would have applied. Also each white vertex has at
least two black neighbors, or else Rule 4 would have applied. Hence the number
of white vertices that have less than i black neighbors is at most

(

b

2

)

+
(

b

3

)

+ · · ·+
(

b
i−1

)

≤ 2bi−1. No set of i black vertices has more than (j − 1) common white
neighbors, or else these form a Ki,j. Hence the number of white vertices that

have i or more black neighbors is at most
(

b
i

)

(j − 1) ≤ (j − 1)bi. The bound in
the lemma follows. ⊓⊔

The algorithm can be implemented in O(ni+O(1)) time, as the main Rule 2
can be applied by running through various subsets of V (G) of size p for p ranging
from 1 to i − 2. Thus, we have

Lemma 3. For any fixed j ≥ i ≥ 1, the rwb-Dominating Set problem (with

parameter k) on Ki,j-free graphs has a polynomial kernel with O((j + 1)i+1ki2)
vertices.

To obtain a polynomial kernel for the k-Dominating Set problem on Ki,j-
free graphs, we first color all the vertices black and use Lemma 3 on this
rwb-Dominating Set problem instance. To transform the reduced colored in-
stance H to an instance of (the uncolored) k-dominating Set, we can delete all
red vertices. But we need to capture the fact that the white vertices need not be
dominated. This can be done by, for example, adding a new vertex vx for every
vertex x in WH of the reduced graph H , and attaching k + |WH | + 1 separate
pendant vertices to each of the vertices vx. It is easy to see that the new graph



does not have a Ki,j , j ≥ i ≥ 2, if H does not have one and that H has at most k
black or white vertices dominating BH if and only if the resulting (uncolored)
graph has a dominating set of size at most |WH | + k. Thus after reducing to
the uncolored version, k becomes k + |WH | and the number of vertices increases
by (k + |WH | + 2) · |WH |. Hence by Lemma 3, we have

Theorem 1. For any fixed j ≥ i ≥ 1, the k-Dominating Set problem on
Ki,j-free graphs has a polynomial kernel with O((j + 1)2(i+1)k2i2) vertices.

3 A Polynomial Kernel for d-degenerate Graphs

A d-degenerate graph does not contain Kd+1,d+1 as a subgraph, and so the
kernelization algorithm of the previous section can be applied to a d-degenerate
graph, setting i = j = d+1. The algorithm runs in time O((d+1)2nd+O(1)) and

constructs a kernel with O((d+2)2(d+2) ·k2(d+1)2) vertices. Since a d-degenerate
graph on v vertices has at most dv edges, we have:

Corollary 1. The k-Dominating Set problem on d-degenerate graphs has a
kernel on O((d + 2)2(d+2) · k2(d+1)2) vertices and edges.

Corollary 1 settles an open problem posed by Alon and Gutner in [3].

3.1 Improving the running time

We describe a modification of our algorithm to d-degenerate graphs that makes
use of the following well known property of d-degenerate graphs, to reduce the
running time to O(2d · n3); the bound on the kernel size remains the same.

Fact 1. [14, Theorem 2.10] Let G be a d-degenerate graph on n vertices. Then
one can compute, in O(dn) time, an ordering v1, v2, . . . , vn of the vertices of G
such that for 1 ≤ i ≤ n, vi has at most d neighbors in the subgraph of G induced
on {vi+1, . . . , vn}.

The modification to the algorithm pertains to the way rules 2.1 to 2.(d − 1)
are implemented: the rest of the algorithm remains the same.

In implementing Rule 2.p, 1 ≤ p ≤ (d−1), instead of checking each (d−p+1)-
subset of vertices in the graph to see if it satisfies the condition in the rule, we
make use of Fact 1 to quickly find such a set of vertices, if it exists. Let G be the
graph instance on n vertices on which Rule 2.p is to be applied. First we delete,
temporarily, all the red vertices in G. We then find an ordering v1, v2, . . . , vn of
the kind described in the above fact, of all the remaining vertices in G. Let U
and B be as defined in the rule. The first vertex vl in U ∪ B that appears in
the ordering has to be from B, since each vertex in U has degree greater than
d. The vertex vl will then have a neighborhood of size d− p + 1 that in turn has
B as its common neighborhood. We use this fact to look for such a pair (U, B)
and exhaustively apply Rule 2.p to G. See Algorithm 1 for a pseudocode of the



Algorithm 1 Faster implementation of Rule 2.p in d-degenerate graphs.

for l := 1 to n

do

if vl is black and its degree in G[vl+1, . . . , vn] is at least d − p + 1
then

Find the neighborhood N of vl in G[vl+1, . . . , vn]
for each (d − p + 1)-subset S of N

do

if S has more than (d + 1)kp + kp−1 + · · · + k

common black neighbors in G

then

Apply the three steps of Rule 2.p, taking S as U

endif

done

endif

done

algorithm. We then add back the red vertices that we deleted prior to this step,
along with all their edges to the rest of the graph.

As |N | ≤ d, the inner for loop is executed at most
(

d

p−1

)

times for each
iteration of the outer loop. Each of the individual steps in the algorithm can be
done in O(dn) time, and so Rule 2.p can be applied in O(dn

∑n

l=1

(

d

p−1

)

) time. All

the rules 2.p can therefore be applied in O(dn
∑n

l=1

∑d−1
p=1

(

d
p−1

)

) = O(2d · dn2)
time. Thus we have:

Theorem 2. For any fixed d ≥ 1, the k-Dominating Set problem on d-
degenerate graphs has a kernel on O((d+2)2(d+2) ·k(2(d+1))2) vertices and edges,
and this kernel can be found in O(2d ·dn2) time for an input graph on n vertices.

4 A polynomial kernel for Independent Dominating Set

on Ki,j-free graphs

The k-Independent Dominating Set problem asks, for a graph G and a
positive integer k given as inputs, whether G has a dominating set S of size at
most k such that S is an independent set (i.e. no two vertices in S are adjacent).
This problem is known to be NP-hard for general graphs [15], and the problem
parameterized by k is W [2]-complete [9]. Using a modified version of the set of
reduction rules in Section 2 we show that the k-Independent Dominating

Set has a polynomial kernel in Kij-free graphs for j ≥ i ≥ 1. For i = 1, j ≥ 1
we can easily obtain trivial kernels as before, and for i = 2, j ≥ 2 a simplified
version of the following algorithm gives a kernel of size O(j3k4).

4.1 The reduction rules

Rule 1 is the same as for the Dominating Set kernel for Kij-free graphs (Sec-
tion 2.1). Rules 2.1 to 2.(i − 2) and Rule 3 are modified to make use of the fact



that we are looking for a dominating set that is independent. A vertex u that is
made white will never be part of the independent dominating set D that is sought
to be constructed by the algorithm, since u is adjacent to some vertex v ∈ D. So
a vertex can be deleted as soon as it is made white. Also, rules 1, 2.1 . . . 2.(i− 2)
and 3 are the only rules. Rules 4 and 5 from that section do not apply, because
of the same reason as above. The modified rules ensure that no vertex is colored
white, and so they work on rb-graphs : graphs whose vertex set is partitioned
into red and black vertices. Using these modified rules, the bounds of |RH | and
|BH | in the proof of Lemma 2, and the fact that there are no white vertices, we
have

Theorem 3. For any fixed j ≥ i ≥ 1, the k-Independent Dominating Set

problem on Ki,j-free graphs has a polynomial kernel with O(jki) vertices.

For d-degenerate graphs, we have i = j = d + 1, and therefore we have:

Corollary 2. For any fixed d ≥ 1, the k-Independent Dominating Set prob-
lem on d-degenerate graphs has a polynomial kernel with O((d + 1)k(d+1)) ver-
tices.

5 Conclusions and Future Work

In this paper, we presented a polynomial kernel for the k-Dominating Set

problem on graphs that do not have Ki,j as a subgraph, for any fixed j ≥ i ≥ 1.
We used this to show that the k-Dominating Set problem has a polynomial
kernel of size O((d+2)2(d+2) ·k2(d+1)2) on graphs of bounded degeneracy, thereby
settling an open problem from [3]. Our algorithm also yielded a slightly simpler
and a smaller kernel for the k-Independent Dominating Set problem on Ki,j-
free and d-degenerate graphs. These algorithms are based on simple reduction
rules that look at the common neighborhoods of sets of vertices. It has recently
been shown that the k-Dominating Set problem on d-degenerate graphs does
not have a kernel of size polynomial in both d and k unless the Polynomial
Hierarchy collapses to the third level [8]. This shows that the kernel size that we
obtained for this class of graphs cannot possibly be significantly improved.

Many interesting classes of graphs are of bounded degeneracy. These in-
clude all nontrivial minor-closed families of graphs such as planar graphs, graphs
of bounded genus, graphs of bounded treewidth, and graphs excluding a fixed
minor, and some non-minor-closed families such as graphs of bounded degree.
Graphs of degeneracy d are Kd+1,d+1-free. Since any Ki,j ; j ≥ i ≥ 2 contains
a 4-cycle, every graph of girth 5 is Ki,j-free. From [19, Theorem 1], there ex-
ist graphs of girth 5 and arbitrarily large degeneracy. Hence Ki,j-free graphs
are strictly more general than graphs of bounded degeneracy. To the best of
our knowledge, Ki,j-free graphs form the largest class of graphs for which FPT
algorithms and polynomial kernels are known for the dominating set problem
variants discussed in this paper.

One interesting direction of future work is to try to improve the running
times of the kernelization algorithms: to remove the exponential dependence on



d of the running time for d-degenerate graphs, and to get a running time of the
form O(nc) for Ki,j-free graphs where c is independent of i and j.
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