
FPT Algorithms for Connected Feedback Vertex Set

Neeldhara Misra∗ Geevarghese Philip∗ Venkatesh Raman∗ Saket Saurabh∗

Somnath Sikdar†

Abstract

We study the recently introduced CONNECTED FEEDBACK VERTEX SET (CFVS) problem
from the view-point of parameterized algorithms. CFVS is the connected variant of the
classical FEEDBACK VERTEX SET problem and is defined as follows: given a graph G = (V,E)
and an integer k, decide whether there exists F ⊆ V , |F | ≤ k, such that G[V \ F] is a forest
and G[F] is connected.

We show that CONNECTED FEEDBACK VERTEX SET can be solved in time O(2O(k)nO(1))

on general graphs and in time O(2O(
√
k log k)nO(1)) on graphs excluding a fixed graph H as

a minor. Our result on general undirected graphs uses, as a subroutine, a parameterized
algorithm for GROUP STEINER TREE, a well studied variant of STEINER TREE. We find the
algorithm for GROUP STEINER TREE of independent interest and believe that it could be
useful for obtaining parameterized algorithms for other connectivity problems.

1 Introduction

FEEDBACK VERTEX SET (FVS) is a classical NP-complete problem and has been extensively stud-
ied in all subfields of algorithms and complexity. In this problem we are given an undirected
graph G = (V,E) and a positive integer k as input, and the goal is to check whether there
exists a subset F ⊆ V of size at most k such that G[V \ F] is a forest. This problem originated
in combinatorial circuit design and found its way into diverse applications such as deadlock
prevention in operating systems, constraint satisfaction and Bayesian inference in artificial in-
telligence. We refer to the survey by Festa, Pardalos and Resende [13] for further details on the
algorithmic study of feedback set problems in a variety of areas like approximation algorithms,
linear programming and polyhedral combinatorics.

In this paper we focus on the recently introduced connected variant of FEEDBACK VERTEX

SET, namely, CONNECTED FEEDBACK VERTEX SET (CFVS). Here, given a graph G = (V,E)
and a positive integer k, the objective is to check whether there exists a vertex-subset F of
size at most k such that G[V \ F] is a forest and G[F] is connected. Sitters and Grigoriev [17]
recently introduced this problem and obtained a polynomial time approximation scheme (PTAS)
for CFVS on planar graphs. We find it a bit surprising that the connected version of FVS has
not been studied in the literature until now. This is in complete contrast to the fact that the
connected variants of other problems, like VERTEX COVER—CONNECTED VERTEX COVER, and
DOMINATING SET—CONNECTED DOMINATING SET are extremely well-studied in the literature
(See, e.g, [20], [15], respectively.). In this paper, we initiate the algorithmic study of CFVS
from the view-point of parameterized algorithms.

Parameterized complexity is a two-dimensional generalization of “P vs. NP” where, in addi-
tion to the overall input size n, one studies how a secondary measurement (called the parame-
ter), that captures additional relevant information, affects the computational complexity of the
∗The Institute of Mathematical Sciences, Chennai, India. {neeldhara|gphilip|vraman|saket}@imsc.res.in
†RWTH Aachen University, Aachen, Germany. sikdar@cs.rwth-aachen.de

1

problem in question. Parameterized decision problems are defined by specifying the input, the
parameter, and the question to be answered. The two-dimensional analogue of the class P is de-
cidability within a time bound of f(k)nc, where n is the total input size, k is the parameter, f is
some computable function and c is a constant that does not depend on k or n. A parameterized
problem that can be decided in such a time-bound is termed fixed-parameter tractable (FPT).
For general background on the theory of fixed-parameter tractability, see [12], [14], and [23].

FVS has been extensively studied in the context of parameterized algorithms. The earliest
known FPT algorithms for FVS go back to the early 90’s (e.g, [2]). After several rounds of
improvements, the current best FPT algorithm for FVS runs in time O(3.83kkn2) [5].

In this paper, we show that CFVS can be solved in time O(2O(k)nO(1)) on general graphs
and in time O(2O(

√
k log k)nO(1)) on graphs excluding a fixed graph H as a minor. Most of the

known FPT algorithms for connectivity problems enumerate all minimal solutions and then try
to connect each solution using an algorithm for the STEINER TREE problem. For instance, this is
the case with the existing FPT algorithms for CONNECTED VERTEX COVER(e.g, [20]). The crucial
observation which the algorithms for CONNECTED VERTEX COVER rely on is that there are at most
2k minimal vertex covers of size at most k. However, this approach fails for CFVS as the number
of minimal feedback vertex sets of size at most k is Ω(nk) (consider a graph that is a collection
of k vertex-disjoint cycles each of length approximately n/k). To circumvent this problem, we
make use of “compact representations” of feedback vertex sets. A compact representation is
simply a collection of families of mutually disjoint sets, where each family represents a number
of different feedback vertex sets. This notion was defined by Guo et al. [18] who showed that
the set of all minimal feedback vertex sets of size at most k can be represented by a collection
of set-families of size O(2O(k)).

We use compact representations to obtain an FPT algorithm for CFVS in Section 3. In order
to do this we need an FPT algorithm for a general version of STEINER TREE, namely GROUP

STEINER TREE (GST), which is defined as follows: Given a graph G = (V,E); |V | = n, |E| = m,
subsets Ti ⊆ V , 1 ≤ i ≤ l, and an integer p, does there exist a subgraph of G on p vertices
that is a tree T and includes at least one vertex from each Ti? Observe that when the Ti’s are
each of size one, then GST is the STEINER TREE problem. Our FPT algorithm for GST runs in
O(2l · nO(1)) time and polynomial space. It uses a reduction to a directed version of STEINER

TREE, called DIRECTED STEINER OUT-TREE, which we show to be fixed-parameter tractable. We
note that GST is known to be of interest to database theorists, and that it has been studied in
[10], where an algorithm with running time O(3l ·n+2l · (n+m)) (that uses exponential space)
is discussed. We also show that CFVS does not admit a polynomial kernel (See Section 2) on
general graphs but has a quadratic kernel on the class of graphs that exclude a fixed graph H
as minor. Finally, in Section 4 we design a subexponential-time algorithm for CFVS on graphs
excluding some fixed graph H as a minor using the theory of bidimensionality. This algorithm
is obtained using an O∗(wO(w))-time1 algorithm that computes an optimal connected feedback
vertex set in graphs of treewidth at most w.

2 Preliminaries

In this section we state some basic definitions related to parameterized complexity and graph
theory, and give an overview of the notation used in this paper. To describe running times of
algorithms we sometimes use the O∗ notation. Given f : N → N, we define O∗(f(n)) to be
O(f(n) · p(n)), where p(·) is some polynomial function. That is, the O∗ notation suppresses
polynomial factors in the running-time expression.

1We use the O∗ notation to ignore polynomial factors.

2

A parameterized problem Π is a subset of Γ∗×N, where Γ is a finite alphabet. An instance of
a parameterized problem is a tuple (x, k), where k is called the parameter. A central notion in
parameterized complexity is fixed-parameter tractability (FPT) which means, for a given instance
(x, k), decidability in time f(k)·p(|x|), where f is an arbitrary function of k and p is a polynomial
in the input size. The notion of kernelization is formally defined as follows.

Definition 1. [Kernelization] [14, 23]
A kernelization algorithm for a parameterized problem Π ⊆ Γ∗ × N is an algorithm that,

given (x, k) ∈ Γ∗ × N, outputs, in time polynomial in |x| + k, a pair (x′, k′) ∈ Γ∗ × N such that
(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable
function. The output instance x′ is called the kernel, and the function g is referred to as the size
of the kernel. If g(k) = kO(1) (resp. g(k) = O(k)) then we say that Π admits a polynomial (resp.
linear) kernel.

We say that a graph G (undirected or directed) contains a graph H if H is a subgraph of G.
Given a directed graph (digraph) D = (V,A), we let V (D) and A(D) denote the vertex and arc
set of D, respectively. A vertex u ∈ V (D) is an in-neighbor (out-neighbor) of v ∈ V (D) if uv ∈ A
(vu ∈ A, respectively). The in- and out-neighborhood of a vertex v are denoted by N−(v) and
N+(v), respectively. The in-degree d−(v) (resp. out-degree d+(v)) of a vertex v is |N−(v)| (resp.
|N+(v)|). We say that a subdigraph T of D with vertex set VT ⊆ V (D) is an out-tree if T is an
oriented tree (see [1]) with only one vertex r of in-degree zero (called the root). The vertices
of T of out-degree zero are called leaves and every other vertex is called an internal vertex.

3 Connected Feedback Vertex in General Graphs

In this section we give an FPT algorithm for CFVS on general graphs. We start by describing an
FPT algorithm for the GROUP STEINER TREE problem which is crucially used in our algorithm
for CFVS.

3.1 Group Steiner Tree

The GROUP STEINER TREE (GST) problem is defined as follows:

Input: An undirected graph G = (V,E); vertex-disjoint subsets
S1, . . . , Sl ⊆ V ; and an integer p.

Parameter: The integer l.
Question: Does G contain a tree on at most p vertices that includes

at least one vertex from each Si?

Our fixed-parameter algorithm for GST first reduces it to DIRECTED STEINER OUT-TREE (defined
below) which we then show to be fixed-parameter tractable.

Input: A directed graph D = (V,A); a distinguished vertex r ∈
V ; a set of terminals S ⊆ V ; and an integer p.

Parameter: The integer l = |S|.
Question: Does D contain an out-tree on at most p vertices that is

rooted at r and that contains all the vertices of S?

Lemma 1. The GST problem reduces to the DIRECTED STEINER OUT-TREE problem.

3

Proof. Given an instance (G = (V,E), S1, . . . , Sl, p) of GST, construct an instance of DIRECTED

STEINER OUT-TREE as follows. Let S = {r, s1, s2, . . . , sl} be a set of (l + 1) new vertices, that is,
si /∈ V for 1 ≤ i ≤ l. Let X = V ∪ S and A = {uv, vu : {u, v} ∈ E} ∪

⋃l
i=1{xsi : x ∈ Si} ∪ {ru :

u ∈ V }. Now, for every u ∈ V , replace every arc ru with a path Pu on n vertices. More
precisely, let Vu = {u1, u2, · · · , un}. We let V ′ = X

⋃
∪u∈V Vu and let A′ = A ∪ {ru1, unu | u ∈

V } ∪ {uiui+1 | 1 ≤ i < n, u ∈ V }. Let D = (V ′, A′). The instance of DIRECTED STEINER

OUT-TREE is (D, r, S, p+ n+ 1 + l) (see Figure 1).

Figure 1: Reduction from GST to Directed Steiner Out-Tree

Suppose G contains a tree T on at most p vertices that includes at least one vertex from each
Si. Notice that this tree is also contained in D, and we may access it from r using one of the
(r, u) paths for u ∈ V . Further, if ui is the vertex from Si that participates in T , then we may
use the edge (ui, si) in D to extend the tree to include the vertex si. Thus we have a directed
out-tree on (p+ n+ 1 + l) vertices containing r and all vertices in S.

Conversely, let T be a directed out-tree in D on at most (p+ n+ 1 + l) vertices that contains
r and all of S. Given that T is on at most (p + n + 1 + l) vertices and includes all of S, T
cannot include two paths Pu and Pv for u 6= v (as these two paths and S alone would require
2n+ l > p+ n+ 1 + l vertices). Since T is a connected subgraph involving r, it must contain at
least one of the paths that connects r to a vertex in V . Thus T contains exactly one of the paths
{Pu | u ∈ U}. This implies that T ′ = T ∩ V is a subtree of V . Note that T ′ has at most p vertices
— as T ′ involved l + n+ 1 vertices apart from those in T , because it contained S, the root, and
a path on n vertices. Notice that these vertices induce a Group Steiner Tree in G. Indeed, if T ′

omits any group Si altogether, then T must omit si, since the only in-neighbors of si lie in Si, a
contradiction.

Thus, G contains a tree on at most p vertices that includes at least one vertex from each Si if
and only if there exists an out-tree in D on at most p+ n+ l + 1 vertices containing all vertices
of S, and rooted at r.

We now show that DIRECTED STEINER OUT-TREE is fixed-parameter tractable. The algorithm
outlined here is essentially the same as that for the STEINER TREE problem due to Nederlof [22].
We give an outline for the sake of completeness. First, recall the well-known Inclusion-Exclusion

4

(IE) formula: Let U be a finite universe and A1, . . . , Al ⊆ U . Then∣∣∣∣∣
l⋂

i=1

Ai

∣∣∣∣∣ = |U |+
∑
∅6=X⊆[l]

(−1)|X|

∣∣∣∣∣⋂
i∈X

Āi

∣∣∣∣∣ (1)

Now note that if for all X ⊆ [l], one can evaluate |
⋂

i∈X Āi| in time polynomial in the input size
n, then one can evaluate |

⋂l
i=1Ai| in time O(2l · nO(1)) and using space polynomial in n. Given

a directed graph D = (V,A), define a branching walk B in D to be a pair (TB = (VB, EB), φ),
where TB is a rooted ordered out-tree and φ : VB → V is a digraph homomorphism (see,
e.g., [19]) from TB to D. The length of B, denoted by |B|, is |EB|. For a node s ∈ V , B is
from s if the root of TB is mapped to s by φ. We let φ(VB) denote {φ(u) : u ∈ VB} and φ(EB)
denote {(φ(u), φ(b)) : (a, b) ∈ EB}. Let (D, r, S, p) be an instance of the DIRECTED STEINER

OUT-TREE problem. As in [22], one can show that there exists an out-tree T = (V ′, E′) of
D rooted at r such that S ⊆ V ′ and |V ′| ≤ p if and only if there exists a branching walk
B = (TB = (VB, EB), φ) from r such that S ⊆ φ(VB) and |B| ≤ p − 1. We now frame the
problem as an IE-formula. Let U be the set of all branching walks from r of length p − 1. For
each v ∈ S, let Av be the set of all elements of U that contain v. Then |

⋂
v∈S Av| is the number

of all branching walks that contain all the vertices of S and this number is larger than zero if
and only if the instance is a yes-instance.

For X ⊆ S define X ′ = X ∪ (V \ S), and define bXj (r) to be the number of branching walks

from r of length j in the graph G[X ′]. Then |
⋂

v∈X Āv| = b
S\X
c (r). Now bXj (r) can be computed

in polynomial time:

bXj (r) =

1 if j = 0;∑
s∈N+(r)∩X′

∑
j1+j2=j−1

bXj1(s) · bXj2(r) otherwise.

The proof of this again follows from [22]. Now for each X ⊆ {1, . . . , l}, we can compute the
term |

⋂
v∈X Āv| in polynomial time and hence by identity (1), we can solve the problem in time

O(2l · nO(1)) using polynomial space:

Lemma 2. DIRECTED STEINER OUT-TREE can be solved in O(2l · nO(1)) time using polynomial
space.

Lemmas 1 and 2 together imply:

Lemma 3. The GROUP STEINER TREE problem can be solved in O(2l ·nO(1)) time using polynomial
space.

3.2 An FPT Algorithm for CFVS

Our FPT algorithm for CFVS uses as a subroutine an algorithm (due to Guo et al. [18]) for enu-
merating an efficient representation of minimal feedback vertex sets of size at most k. Strictly
speaking, the subroutine enumerates all compact representations of minimal feedback sets. A
compact representation for a set of minimal feedback sets of a graph G = (V,E) is a set C of
pairwise disjoint subsets of V such that choosing exactly one vertex from every set in C results
in a minimal feedback set for G. Call a compact representation a k-compact representation if the
number of sets in the representation is at most k. Clearly, any connected feedback set of size
at most k must necessarily pick vertices from the sets of some k-compact representation. Given
a graph G = (V,E) and a k-compact representation S1, . . . , Sr, where r ≤ k, the problem of
deciding whether there exists a connected feedback vertex set that contains at least one vertex

5

from each set Si reduces to the GROUP STEINER TREE problem where the Steiner groups are the
sets of the compact representation.

Our algorithm therefore cycles through all k-compact representations and for each such
representation uses the algorithm for GROUP STEINER TREE to check if there is a tree on at
most k vertices that includes one vertex from each set Si of the compact representation. If the
answer is NO for all k-compact representations, the algorithm reports that the given instance is
a NO-instance. If the answer is YES for some compact representation, the algorithm returns the
tree found. Since one can enumerate all compact representations in time O(ck · m) [18], we
have:

Theorem 1. Given a graphG = (V,E) and an integer k, one can decide whetherG has a connected
feedback set of size at most k in time O(ck · nO(1)), where c is a constant independent of n and k.

Although CFVS is fixed-parameter tractable, it is unlikely to admit a polynomial kernel as
the following theorem shows. This is in contrast to FEEDBACK VERTEX SET which admits a
quadratic kernel [24].

Theorem 2. The CFVS problem does not admit a polynomial kernel unless the Polynomial Hier-
archy collapses to Σ3.

Proof. The proof follows from a polynomial-time parameter-preserving reduction from CON-
NECTED VERTEX COVER, which does not admit a polynomial kernel unless the Polynomial Hi-
erarchy collapses to the third level [11]. This would prove that CFVS too does not admit a
polynomial kernel [4]. Given an instance (G = (V,E), k) of the CONNECTED VERTEX COVER

problem, construct a new graph G′ as follows: V (G′) = V (G) ∪ {xuv /∈ V (G) : {u, v} ∈ E(G)};
if {u, v} ∈ E(G) then add the edges {u, v}, {u, xuv}, {xuv, v} to E(G′). This completes the
construction of G′.

Let S be a connected vertex cover of size at most k in G. We claim that S is a connected
feedback vertex set in G′. To see that S induces a connected subgraph in G′ is trivial, as
E(G′) ⊇ E(G). Further, the removal of S from G′ leaves a graph with degree at most one, it is
clearly impossible for such a graph to admit any cycles.

On the other hand, suppose S is a connected feedback vertex set in G′. If S contains xuv,
a newly introduced vertex of degree two, then S must contain at least one of u or v (since
S induces a connected graph). If S contains both u and v, then note that xuv is redundant,
because any cycle that passes through xuv necessarily passes through u and v. On the other
hand, suppose S contains exactly one of u or v (say u), then in S, we replace xuv with v. Notice
that S continues to induce a connected graph (as (u, v) ∈ E(G′)) and remains a feedback vertex
set (again because all cycles passing through xuv also pass through u and v). We may therefore
assume, without loss of generality, that we have a connected feedback vertex set S of G′ that
only involves vertices of V . Notice that this set S is a connected vertex cover of G. Indeed, S
is connected in G because G′[V] = G and S is connected in G′. Further, S is a vertex cover
because if G[V \S] contains an edge (u, v), then by construction, G′[V \S] contains the triangle
(u, v, xuv), a contradiction.

Interestingly, the results from [16] imply that CFVS has polynomial kernel on a graph class
C which excludes a fixed apex graph H as a minor(See Section 4.1).

We note that the upper bound for the size of the compact representation can be improved
(from the bound in [18]) using a result from the recent paper of Cao et al. [5] where the authors
present the current fastest FPT algorithm for FVS. In that paper, the authors describe a set of
reduction rules such that if a YES-instance of the FOREST BIPARTITION problem (defined below)
is reduced with respect to this set of rules then the instance has size at most 4k + 1.

6

FOREST BIPARTITION

Input: An undirected graph G = (V,E), possibly with multiple
edges and loops and a set S ⊆ V such that |S| = k + 1
and G \ S is acyclic.

Parameter: The integer k.
Question: Does G have a feedback vertex set of size at most k con-

tained in V \ S?

Thus in a YES-instance of FOREST BIPARTITION that is reduced with respect to the rules in [5],
we have |V \ S| ≤ 3k. Guo et al. [18] upper bound the size of the compact representation by∑k

i=0

(
k + 1

i

)(∑k−i

j=0

(
X

j

)(
Y

k − i− j

))
,

where X is the number of vertices in V \S that have degree at least three in G, and Y is the
number of paths in G[V \ S] whose endpoints are vertices of degree at least three, and internal
vertices have degree exactly two in G.

The reduction rules in [5] tell us that in any YES instance, that is, when there exists a FVS
of size at most r, |X| ≤ 3r. Indeed, this follows from the fact that the reduction rules leave
the vertices in X unaffected, that is, they only process vertices of degree two or less. Thus, in
a reduced instance, |X| ≤ 3r. Further, by an argument of [18], we know that |Y | ≤ |X| + 2r.
For example, if we are looking for a FVS of size k, and we have “guessed” i vertices that belong
to the FVS, i < k, then the number of vertices of degree at least three is bounded by 3(k − i).
These improved bounds upper-bound the size of the compact representation by

k∑
i=0

(
k + 1

i

)k−i∑
j=0

(
3(k + 1− i)

j

)(
5(k + 1− i)
k − i− j

) ≤
k∑

i=0

(
k + 1

i

)(
8(k + 1− i)

k − i

)
=

k∑
i=0

(
9k − 8i+ 9

k

)
≤

k

(
9k + 9

k

)
This amounts to a O∗(ck)-time algorithm for enumerating compact representations of mini-

mal feedback vertex sets of size at most k, where c = 23.1. In contrast, the constant c in [18] is
more than 160, because the best bound available on |X| at that time was 14k.

Theorem 3. [6, 18] Given a graph G = (V,E) and an integer k, the compact representations of
all minimal feedback vertex sets of G of size at most k can be enumerated in time O(23.1k · |E|).

From Theorem 3, Lemma 3, and the procedure outlined at the beginning of this subsection,
we have

Corollary 1. Given a graphG = (V,E) and an integer k, one can decide whetherG has a connected
feedback set of size at most k in O(46.2k · nO(1)) time.

7

4 A Subexponential FPT Algorithm for CFVS on H-Minor-Free Graphs

In the last section, we obtained an O∗(ck) algorithm for CFVS on general graphs. In this section
we show that CFVS on the class ofH-minor-free graphs admits a sub-exponential time algorithm
with running time O(2O(

√
k log k)nO(1)). This section is divided into three parts. In the first part

we give essential definitions from topological graph theory, and in the second part we show that
CFVS can be solved in time O(wO(w)nO(1)) on graphs with treewidth bounded by w. In the last
part we present an algorithm with the stated running time for CFVS on H-minor-free graphs,
by bounding the treewidth of the input graph using the known “grid theorems”.

4.1 Definitions and Terminology

We use terminology from [9]. Given an edge e in a graph G, the contraction of e is the result
of identifying its endpoints in G and then removing all loops and duplicate edges. A minor of a
graph G is a graph H that can be obtained from a subgraph of G by contracting edges. A graph
class C is minor-closed if any minor of any graph in C is also an element of C. A minor-closed
graph class C is H-minor-free or simply H-free if H /∈ C.

A tree decomposition of a graph G = (V,E) is a pair (T = (VT , ET),X = {Xt}t∈VT
) where T

is a tree and the Xt are subsets of V such that:

1.
⋃

u∈VT
Xt = V ;

2. for each edge e = {u, v} ∈ E there exists t ∈ VT such that u, v ∈ Xt; and

3. for each vertex v ∈ V , the subgraph T [{t | v ∈ Xt}] is connected.

The width of a tree decomposition is maxt∈VT
|Xt| − 1 and the treewidth of G = (V,E), denoted

tw(G), is the minimum width over all tree decompositions of G.
A tree decomposition is called a nice tree decomposition [3] if the following conditions are

satisfied:

• Every node of the tree T has at most two children. A node that has no children is called a
leaf node. The non-leaf nodes are of three kinds:

– If a node t has two children t1 and t2, then Xt = Xt1 = Xt2 , and t is called a join
node.

– if a node t has one child t1, then either |Xt| = |Xt1 |+ 1 and Xt1 ⊂ Xt (t is called an
introduce node), or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (t is called a forget node).

It is possible to transform a given tree decomposition into a nice tree decomposition in time
O(|V |+ |E|) [3].

4.2 Connected FVS and Treewidth

In this section we show that the CONNECTED FEEDBACK VERTEX SET problem is FPT with the
treewidth of the input graph as the parameter. That is, we show that the following problem is
FPT:

Input: An undirected graph G = (V,E); an integer k; and a nice
tree decomposition of G of width w.

Parameter: The treewidth w of the graph G.
Question: Find S ⊆ V such that G \ S is acyclic, G[S] is connected,

and for any connected feedback vertex set R of G, |S| ≤
|R|.

8

We design a dynamic programming algorithm on the nice tree decomposition with running
time O(wO(w) · nO(1)) for this problem. See, e.g, Moser [21] for a detailed exposition of this
paradigm; in particular, our algorithm is similar in spirit to the algorithm given in [21] for the
CONNECTED VERTEX COVER problem.

Let (T = (I, F) , {Xi|i ∈ I}) be a nice tree decomposition of the input graph G of width w
and rooted at r ∈ I. We let Ti denote the subtree of T rooted at i ∈ I, and Gi = (Vi, Ei) denote
the subgraph ofG induced on all the vertices ofG in the subtree Ti, that is, Gi = G[

⋃
j∈V (Ti)

Xj].
For each node i ∈ I we compute a table Ai, the rows of which are 4-tuples [S, P, Y, val].

Table Ai contains one row for each combination of the first three components which denote the
following:

• S is a subset of Xi.

• P is a partition of S into at most |S| labelled pieces.

• Y is a partition of Xi \ S into at most |Xi \ S| labelled pieces.

We use P (v) (resp. Y (v)) to denote the piece of the partition P (resp. Y) that contains the
vertex v. We let |P | (resp. |Y |) denote the number of pieces in the partition P (resp. Y). The
last component val, also denoted as Ai [S, P, Y], is the size of a smallest feedback vertex set
Fi ⊆ V (Gi) of Gi which satisfies the following properties:

• If S = ∅, then Fi is connected in Gi.

• If S 6= ∅, then

– Fi ∩Xi = S.

– All vertices of S that are in any one piece of P are in a single connected component
of Gi[Fi]. Moreover Gi[Fi] has exactly |P | connected components.

– All vertices of Xi \ S that are in the same piece of Y are in a single connected
component (a tree) of Gi[Vi \ Fi]. Moreover Gi[Vi \ Fi] has at least |Y | connected
components.

If there is no such set Fi, then the last component of the row is set to∞.
We fix an arbitrary ordering of the vertices of Xi, and compute the table Ai for each node

i ∈ I of the tree decomposition. Since there are at most w+ 1 vertices in each bag Xi, there are
no more than

w+1∑
i=0

(
w + 1

i

)
ii · (w + 1− i)w+1−i ≤ (2w + 2)2w+2

rows in any table Ai. We compute the tables Ai starting from the leaf nodes of the tree decom-
position and going up to the root.

Leaf Nodes. Let i be a leaf node of the tree decomposition. We compute the table Ai as follows.
For each triple (S, P, Y) where S is a subset of Xi, P a partition of S, and Y a partition of
Xi \ S:

• Set Ai [S, P, Y] =∞ if at least one of the following holds:

– Gi \ S contains a cycle (i.e., S is not an FVS of Gi).
– At least one piece of P is not connected in Gi[S] or if Gi[S] has less than |S|

connected components.

9

– At least one piece of Y is not connected in Gi[Vi \ S] or if Gi[Vi \ S] has less than
|Y | connected components.

• In all other cases, set Ai [S, P, Y] = |S|.

It is easy to see that this computation correctly determines the last component of each row
of Ai for a leaf node i of the tree decomposition.

Introduce Nodes. Let i be an introduce node and j its unique child. Let x ∈ Xi \ Xj be the
introduced vertex. For each triple (S, P, Y), we compute the entry Ai[S, P, Y] as follows.

Case 1. x ∈ S. Check whether N(x) ∩ S ⊆ P (x); if not, set Ai[S, P, Y] =∞.

• Subcase 1. P (x) = {x}. Set Ai[S, P, Y] = Aj [S \ {x}, P \ P (x), Y] + 1.

• Subcase 2: |P (x)| ≥ 2 and N(x) ∩ P (x) = ∅. Set Ai[S, P, Y] =∞, as no extension of
S to an fvs for Gi can make P (x) connected.

• Subcase 3: |P (x)| ≥ 2 and N(x) ∩ P (x) 6= ∅. Let A be the set of all rows [S′, P ′, Y]
of the table Aj that satisfy the following conditions:

– S′ = S \ {x}.
– P ′ = (P \P (x))∪Q, where Q is a partition of P (x) \ {x} such that each piece of
Q contains an element of N(x) ∩ P (x).

Set Ai[S, P, Y] = min[S′,P ′,Y]∈A{Aj [S
′, P ′, Y]}+ 1.

Case 2. x /∈ S. Check whether N(x) ∩ (Xi \ S) ⊆ Y (x); if not, set Ai[S, P, Y] =∞.

• Subcase 1: Y (x) = {x}. Set Ai[S, P, Y] = Aj [S, P, Y \ Y (x)].

• Subcase 2: |Y (x)| ≥ 2 and N(x) ∩ Y (x) = ∅. Set Ai[S, P, Y] =∞, as no extension of
S to an fvs Fi for Gi can make Y (x) a connected component in Gi[Vi \ Fi].

• Subcase 3: |Y (x)| ≥ 2 and N(x) ∩ Y (x) 6= ∅. Let A be the set of all rows [S, P, Y ′]
of the table Aj where Y ′ = (Y \ Y (x)) ∪ Q, and Q is a partition of Y (x) \ {x} such
that each piece of Q contains exactly one element of N(x) ∩ Y (x). Set Ai[S, P, Y] =
min[S,P,Y ′]∈A{Aj [S, P, Y

′]}.

Forget Nodes. Let i be a forget node and j its unique child node. Let x ∈ Xj \ Xi be the
forgotten vertex. For each triple (S, P, Y) in the table Ai, let A be the set of all rows
[S′, P ′, Y] of the table Aj that satisfy the following conditions:

• S′ = S ∪ {x}, and

• P ′(x) = P (y) ∪ {x} for some y ∈ S.

Let B be the set of all rows [S, P, Y ′] of the table Aj such that Y ′(x) = Y (z)∪{x} for some
z ∈ S. Set

Ai[S, P, Y] = min

{
min

[S′,P ′,Y]∈A
Aj [S

′, P ′, Y], min
[S,P,Y ′]∈B

Aj [S, P, Y
′]

}
.

Join Nodes. Let i be a join node and j and l its children. For each triple (S, P, Y) we compute
Ai[S, P, Y] as follows.

• Case 1. S = ∅. If both Aj [∅, P, Y] and Al[∅, P, Y] are positive finite, then set
Ai[∅, P, Y] =∞. Otherwise, set Ai[∅, P, Y] = max{Aj [∅, P, Y], Al[∅, P, Y]}.

10

• Case 2. S 6= ∅. Let A denote the set of all pairs of triples 〈(S, P1, Y1), (S, P2, Y2)〉,
where (S, P1, Y1) ∈ Aj and (S, P2, Y2) ∈ Al with the following property: Starting
with the partitions Qp = P1 and Qy = Y1 and repeatedly applying the following
set of operations, we reach stable partitions that are identical to P and Y . The first
operation that we apply is:

If there exist vertices u, v ∈ S such that they are in different pieces of Qp

but are in the same piece of P2, delete Qp(u) and Qp(v) from Qp and add
Qp(u) ∪Qp(v).

To describe the second set of operations, we need some notation. Let Z = Xi \
S and let the connected components of Gi[Z] be C1, . . . , Cq. First contract each
connected component Ci to a vertex ci, the representative of that component, and let
C = {c1, . . . , cq}. Note that for each 1 ≤ i ≤ q, the component Ci is not split across
pieces in either Y1 or Y2. Denote by Y ′1 and Y ′2 the partitions obtained from Y1 and Y2,
respectively, be replacing each connected component Ci by its representative vertex
ci. Let Qy = Y ′1 . Repeat until no longer possible:

If there exist ca, cb ∈ C that are in different pieces ofQy but in the same piece
of Y2 then delete Qy(ca), Qy(cb) from Qy and add Qy(ca) ∪Qy(cb) provided
the following condition holds: for all ce ∈ C\{ca, cb} either Y2(ce)∩Qy(ca) =
∅ or Y2(ce) ∩Qy(cb) = ∅.

If this latter condition does not hold, move on to the next pair of triples. Finally
expand each ci to the connected component it represents.
Set

Ai[S, P, Y] = min
〈(S,P1,Y1),(S,P2,Y2)〉∈A

{Aj [S, P1, Y1] +Al[S, P2, Y2]− |S|}.

The stated conditions ensure that u, v ∈ S are in the same piece of P if and only if
for each 〈(S, P1, Y1), (S, P2, Y2)〉 ∈ A, they are in the same piece of P1 or of P2 (or
both). Similarly, the stated conditions ensure that merging solutions at join nodes
do not create new cycles. Given this, it is easy to verify that the above computation
correctly determines Ai [S, P, Y].

Root Node. We compute the size of a smallest CFVS of G from the table Ar for the root node r
as follows. Find the minimum of Ar[S, P, Y] over all triples (S, P, Y), where S ⊆ Xr, P a
partition of S such that P consists of a single (possibly empty) piece and Y is a partition
of Xr \ S. This minimum is the size of a smallest CFVS of G.

This concludes the description of the dynamic programming algorithm for CFVS when the
treewidth of the input graph is bounded by w. From the above description and the size of tables
being bounded by (2w + 2)2w+2, we obtain the following result.

Lemma 4. Given a graph G = (V,E), a tree-decomposition of G of width w, one can compute the
size of an optimum connected feedback vertex set of G (if it exists) in time O((2w+ 2)2w+2 ·nO(1)).

4.3 FPT Algorithms for H-Minor Free Graphs

We first bound the treewidth of the yes instance of input graphs by O(
√
k).

Lemma 5. If (G, k) is a yes-instance of CFVS where G excludes a fixed graph H as a minor, then
tw(G) ≤ cH

√
k, where cH is a constant that depends only on the graph H.

11

Proof. By [7], for any fixed graph H, every H-minor-free graph G that does not contain a
(w × w)-grid as a minor has treewidth at most c′Hw, where c′H is a constant that depends
only on the graph H. Clearly a (w × w)-grid has a feedback vertex set of size at least c1w2,
where c1 is a constant independent of w. Therefore if G has a connected feedback vertex
set of size at most k, it cannot have a (w × w)-grid minor, where w >

√
k/c1. Therefore

tw(G) ≤ c′Hw ≤ c′H · (
√
k/c1 + 1) ≤ cH

√
k, where cH = (c′H + 1)/

√
c1.

Theorem 4. CFVS can be solved in time O(2O(
√
k log k)nO(1)) on H-minor-free graphs.

Proof. Given an instance (G, k) of CFVS, we first find a tree-decomposition of G using the
polynomial-time constant-factor approximation algorithm of Demaine et al. [8]. If tw(G) >
cH
√
k, then the given instance is a no-instance; else, use Lemma 4 to find an optimal CFVS for

G. All this can be done in O(2O(
√
k log k) · nO(1)).

5 Conclusion

We conclude with some open problems. The obvious question is to obtain an O∗(ck) algorithm
for CFVS in general graphs with a smaller value of c. Also, it is not known if CFVS admits any
non-trivial approximation algorithm. Another question which we find interesting is whether
CFVS admits a polynomial kernel on graphs excluding a fixed graph H as a minor, where H be-
longs to a class of graphs that is distinct from the class of apex graphs. It will also be interesting
to find other applications of GROUP STEINER TREE.

References

[1] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and Applications. Springer,
second edition, 2009.

[2] H. L. Bodlaender. On disjoint cycles. In G. Schmidt and R. Berghammer, editors, Pro-
ceedings on Graph–Theoretic Concepts in Computer Science (WG ’91), volume 570 of LNCS,
pages 230–238. Springer, 1992.

[3] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[4] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels (extended abstract). In Proceedings of ICALP 2008, LNCS, pages 563–
574. Springer, 2008.

[5] Y. Cao, J. Chen, and Y. Liu. On feedback vertex set, new measure and new structures. 12th
Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), to appear, 2010.

[6] F. Dehne, M. Fellows, M. A. Langston, F. Rosamond, and K. Stevens. An O(2O(k)n3) FPT-
Algorithm for the Undirected Feedback Vertex Set problem. In Proceedings of COCOON
2005, volume 3595 of LNCS, pages 859–869. Springer, 2005.

[7] E. D. Demaine and M. Hajiaghayi. Linearity of grid minors in treewidth with applications
through bidimensionality. Combinatorica, 28(1):19–36, 2008.

[8] E. D. Demaine, M. Hajiaghayi, and K. ichi Kawarabayashi. Algorithmic graph minor the-
ory: Decomposition, approximation, and coloring. In Proceedings of FOCS 2005, pages
637–646. IEEE Computer Society, 2005.

12

[9] R. Diestel. Graph Theory. Springer-Verlag, Heidelberg, third edition, 2005.

[10] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k min-cost connected
trees in databases. In ICDE, pages 836–845. IEEE, 2007.

[11] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through Colors and IDs. In
Proceedings of ICALP 2009, volume 5555 of LNCS, pages 378–389. Springer, 2009.

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, New York,
1999.

[13] P. Festa, P. M. Pardalos, and M. G. Resende. Feedback set problems. In Handbook of
Combinatorial Optimization, pages 209–258. Kluwer Academic Publishers, 1999.

[14] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

[15] F. V. Fomin, F. Grandoni, and D. Kratsch. Solving connected dominating set faster than
2n. Algorithmica, 52(2):153–166, 2008.

[16] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and kernels.
In Proceedings of the 21th ACM-SIAM Symposium on Discrete Algorithms (SODA 2010),
pages 503–510. ACM and SIAM, 2010.

[17] A. Grigoriev and R. Sitters. Connected feedback vertex set in planar graphs. In Graph-
Theoretic Concepts in Computer Science, 35th International Workshop, WG 2009, Montpel-
lier, France, June 24-26, 2009. Revised Papers, volume 5911 of Lecture Notes in Computer
Science, pages 143–153, 2009.

[18] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-based fixed-
parameter algorithms for feedback vertex set and edge bipartization. Journal of Computer
and System Sciences, 72(8):1386–1396, 2006.

[19] P. Hell and J. Nešeťril. Graphs and Homomorphisms. Oxford University Press, 2004.

[20] D. Mölle, S. Richter, and P. Rossmanith. Enumerate and expand: Improved algorithms
for connected vertex cover and tree cover. Theory of Computing Systems, 43(2):234–253,
2008.

[21] H. Moser. Exact algorithms for generalizations of vertex cover. Master’s thesis, Institut für
Informatik, Friedrich-Schiller-Universität, 2005.

[22] J. Nederlof. Fast polynomial-space algorithms using möbius inversion: Improving on
steiner tree and related problems. In Proceedings of ICALP 2009, pages 713–725, 2009.

[23] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

[24] S. Thomassé. A quadratic kernel for feedback vertex set. In Proceedings of SODA 2009,
pages 115–119. Society for Industrial and Applied Mathematics, 2009.

13

