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Abstract. We consider the parameterized complexity of the Unique Coverage prob-
lem: given a family of sets and a parameter k, find a subfamily that covers at least k
elements exactly once. This NP-complete problem has applications in wireless networks
and radio broadcasting and is also a natural generalization of the well-known Max Cut
problem. We show that this problem is fixed-parameter tractable with respect to the pa-
rameter k. That is, for every fixed k, there exists an O(nd)-time algorithm for it, where d
is a constant independent of k. One way to prove a problem fixed-parameter tractable
is to show that it is kernelizable. To this end, we show that if no two sets in the input
family intersect in more than c elements there exists a problem kernel of size kc+1. This
yields a kk kernel for the Unique Coverage problem, proving fixed-parameter tractabil-
ity. Subsequently, we show a 4k kernel for this problem. However a more general weighted
version, with costs associated with each set and profits with each element, turns out to
be a much harder problem. The question here is whether there exists a subfamily with
total cost at most a prespecified budget B such that the total profit of uniquely covered
elements is at least k, where B and k are part of the input. In the most general setting, as-
suming real costs and profits, the problem is not fixed-parameter tractable unless P = NP.
Assuming integer costs and profits we show the problem to be W [1]-hard with respect
to B as parameter (that is, it is unlikely to be fixed-parameter tractable). However, under
some reasonable restriction, the problem becomes fixed-parameter tractable with respect
to both B and k as parameters.

1 Introduction

In this paper, we consider the parameterized complexity of the Unique Coverage
problem. This problem was introduced by Demaine et al. [1] as a natural maximiza-
tion version of Set Cover and has applications in several areas including wireless
networks and radio broadcasting. Unique Coverage is defined as follows. Given a
ground set U = {1, 2, . . . , n}, a family of subsets S = {S1, . . . , St} of U and a positive
integer k, we ask whether there exists a subcollection S ′ ⊆ S such that at least k el-
ements are covered uniquely by the members in S ′. An element is covered uniquely if
it appears in exactly one set of S ′. The optimization version requires to maximize the
number of uniquely covered elements.
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The weighted version of Unique Coverage is called Budgeted Unique Cover-
age and is defined as follows. Given a ground set U = {1, 2, . . . , n}, a profit pi for each
element i ∈ U , a family of subsets S of U , a cost ci for each set Si ∈ S, a budget B and
a positive integer k, we ask whether there exists a subset S ′ ⊆ S such that the total
cost of S ′ is at most B and such that the profit of the uniquely covered elements is at
least k. The optimization version asks for a subset S ′ of minimum total cost such that
the profit of uniquely covered elements is maximized.

The original motivation for this problem is a real-world application arising in wireless
networks [1]. Assume that we are given a map of the densities of mobile clients along
with a set of possible base stations, each with a specified building cost and a specified
coverage region. The goal is to choose a set of base stations, subject to a budget on the
total building cost, in order to maximize the density of served clients. The difficult aspect
of this problem is the interference between base stations. A mobile client’s reception is
better when it is within the range of a few base stations. An ideal situation is when
every mobile client is within the range of exactly one base station. This is the situation
modelled by the Budgeted Unique Coverage problem. The Unique Coverage
problem is closely related to a single “round” of the Radio Broadcast problem [6].
For more on this, see [1].

One can also view the Unique Coverage problem as a generalization of the Max
Cut problem [1]. The input to the Max Cut problem consists of a graph G = (V,E)
and the goal is to find a cut (T, T̄ ), where ∅ 6= T ⊂ V and T̄ = V − T , that maximizes
the number of edges with one endpoint in T and the other endpoint in T̄ . Let U denote
the set of edges of G and for each vertex v ∈ V define Sv = {e ∈ E : e is incident to v}.
Finally let S = ∪v∈V {Sv}. Then G has a cut (T, T̄ ) with at least k edges across it if
and only if S ′ = ∪v∈T {Sv} uniquely covers at least k elements of the ground set.

Known Results. (Budgeted) Unique Coverage was introduced by Demaine et al. [1].
They have considered the approximability of this problem. On the positive side, they give
an Ω(1/ log(n))-approximation for Budgeted Unique Coverage, where n denotes
the size of the ground set. Moreover, if the ratio between the maximum cost of a set and
the minimum profit of an element is bounded by B, then there exists an Ω(1/ log B)-
approximation. Concerning approximation hardness, they show that Unique Cover-
age is hard to approximate to within a factor of O(logc n) for some constant 0 < c ≤ 1,
and they strengthen this inapproximability to 1/(ε log n) for some ε > 0 based on a
hardness hypothesis for Balanced Bipartite Independent Set.

Our Results. In this paper, we give first-time results on the parameterized complexity
of Unique Coverage and Budgeted Unique Coverage. Compared to the related
Set Cover problem, which is W[2]-complete with respect to the number of sets in the
solution as parameter3, Unique Coverage becomes fixed-parameter tractable with
respect to the number of uniquely covered elements. In other words, the number of
uniquely covered elements seems to be a good parameter in order to exploit and reveal
the inherent structure of coverage problems in general. Our results indicate that the

3 This can be shown by a reduction from Dominating Set [2,5]



budgeted variant, Budgeted Unique Coverage, is a much harder problem. More
specifically, we show the following.

We show that a special case of Unique Coverage where any two sets in the input
family intersect in at most c elements is fixed-parameter tractable by demonstrating a
polynomial kernel of size kc+1. This leads to a problem kernel of size kk in the general
case, proving that Unique Coverage is fixed-parameter tractable. However, the gen-
eral case can be improved using results from extremal combinatorics on strong systems
of distinct representatives to obtain a 4k kernel. For the Budgeted Unique Coverage
problem there are several variants. If the profits and costs are allowed to be arbitrary
positive real numbers, then Budgeted Unique Coverage, with parameters B and k,
is not fixed-parameter tractable unless P = NP. If we restrict the costs and profits to
be positive integers and parameterize by B, then the problem is W [1]-hard. In the case
when the number of sets intersecting any given set of the input family is bounded by a
function of k, the problem is fixed-parameter tractable with parameters B and k. The
main results of this paper along with the relevant sections in which they appear are
depicted in Figure 1.

Unique Coverage (Parameter: k) Result Sect.

Each element occurs in at most b sets (k − 1)b kernel 3.1
Intersection size bounded by c kc+1 kernel 3.2

General 4k kernel 3.3

Each set of size at most b 2b+k kernel 3.3

Budgeted Unique Coverage

Arbitrary costs/profits (pars. B and k) Not FPT (unless P = NP) 4.1
Integer weights (par. only B) W [1]-hard 4.1

Integer weights (intersection number f(k);
pars. B and k)

O∗((B · 2f(k))B+k)-time algo. 4.2

Integer weights (pars. B and k) Open

Fig. 1. Main results in this paper.

2 Preliminaries

We briefly introduce the necessary concepts concerning parameterized complexity. A
parameterized problem is a subset of Σ∗ × N, where Σ is a finite alphabet and N
is the set of natural numbers. An instance of a parameterized problem is therefore a
pair (I, k), where k is the parameter. In the framework of parameterized complexity,
the running time of an algorithm is viewed as a function of two quantities: the size
of the problem instance and the parameter. A parameterized problem is said to be
fixed parameter tractable (FPT) if there exists an algorithm for the problem with time
complexity O(f(k) · |I|O(1)), where f is a function only depending on k. The class FPT
consists of all fixed parameter tractable problems.



A common method to prove that a problem is fixed-parameter tractable is to provide
data reduction rules that lead to a problem kernel. A data reduction rule is a polynomial-
time procedure which takes a problem instance (I, k) and either

– outputs yes or no according as (I, k) is a yes or a no-instance, or
– replaces (I, k) by an equivalent instance (I ′, k′) such that |I ′| ≤ |I| and k′ ≤ k.

Two problem instances (I, k) and (I ′, k′) are equivalent if they are both yes-instances
or both no-instances. An instance to which none of a given set of data reduction rules
applies is called reduced with respect to this set of rules. A parameterized problem is said
to have a problem kernel if the resulting reduced instance has size f(k) for a function f
depending only on k. If a parameterized problem has a kernel, then it is clearly fixed-
parameter tractable. Simply use brute-force on the kernel to decide whether the given
instance is a yes-instance or not.

A parameterized problem π1 is fixed-parameter reducible to a parameterized problem
π2 if there exist functions f, g : N → N, Φ : Σ∗ × N → Σ∗ and a polynomial p(·) such
that for any instance (I, k) of π1, (Φ(I, k), g(k)) is an instance of π2 computable in time
f(k) ·p(|I|) and (I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2. The basic complexity class
for fixed-parameter intractability is W [1] as there is strong evidence that W [1]-hard
problems are not fixed-parameter tractable [2]. To show that a problem is W [1]-hard,
one needs to exhibit a fixed-parameter reduction from a known W [1]-hard problem to
the problem at hand. For more on parameterized complexity see [2,4].

We write O∗(f(k)) to denote a running time of O(f(k) · poly(n, k)), where n is
the input size and k is the parameter. That is, we use the O∗(·) notation to suppress
polynomial factors in the running time.

3 The Unique Coverage Problem

Let (U = {1, 2, . . . , n},S = {S1, S2, . . . , Sm}, k) be an instance of Unique Coverage.
Apply the following data reduction rules on (U ,S, k) until no longer applicable.

R1 If there exists Si ∈ S such that |Si| ≥ k, then the given instance is a yes-instance.
R2 If there exists S1, S2 ∈ S such that S1 = S2, then delete S1.

These reduction rules are obviously correct. In the following we always assume that the
given instance of Unique Coverage is reduced with respect to the above rules.

3.1 Bounded Number of Occurrences

We begin with the simple case where each element e ∈ U is contained in at most b sets
of S. A special case of this situation is Max Cut.

Lemma 1. If each element e ∈ U occurs in at most b sets of S then the Unique
Coverage problem admits a kernel of size b(k − 1).

Proof. Find a maximal collection T of pairwise disjoint sets in S. If |∪S∈T S| ≥ k, we are
done. Therefore assume |∪S∈T S| ≤ k−1. Since every set in S−T intersects some set in T
and since every element occurs in at most b sets in S, we have |S − T | ≤ (k− 1)(b− 1).
But |T | ≤ k − 1 and so |S| ≤ b(k − 1). ut



The proof of Lemma 1 applies a proof principle which is a basis for the proof of the
following more complicated case.

3.2 Bounded Intersection Size

Consider the situation where for all Si, Sj ∈ S we have |Si∩Sj | ≤ c, for some constant c.
In this case we say that the problem instance has bounded intersection size c and show
that the problem admits a polynomial kernel of size O(kc+1). First consider the case
when |Si ∩ Sj | ≤ 1.

Lemma 2. Suppose that for all Si, Sj ∈ S we have |Si ∩ Sj | ≤ 1. If an element e ∈ U
is covered by at least k + 1 sets, then one can obtain a solution covering k elements
uniquely in polynomial time.

Proof. Suppose an element e ∈ U is covered by the sets S1, . . . , Sk+1. Then by reduction
rule R1, at most one of these sets can have size 1. The remaining k sets uniquely cover
at least one element each. ut

One can now easily obtain a kernel of size k2 for the case when the intersection size
is at most 1.

Lemma 3. Suppose that for all Si, Sj ∈ S, |Si ∩ Sj | ≤ 1. If |S| ≥ k2, then there
exists T ⊆ S that covers at least k elements uniquely.

Proof. Greedily find a maximal collection S ′ = {S1, . . . , Sp} of pairwise disjoint sets in S.
Note that if | ∪Si∈S′ Si| ≥ k, then we are done. Therefore assume, | ∪S∈S′ S| ≤ k − 1
(this also implies p ≤ k − 1). Since |S| ≥ k2, and since every set in S intersects with at
least one set in S ′, by the pigeonhole principle there exists an element e ∈ ∪S∈S′S such
that at least k + 1 sets T1, . . . , Tk+1 in S − {S1, . . . , Sp} contain e. For otherwise, each
element in ∪S∈S′S is contained in at most k sets of S \ S ′, which implies that |S| ≤
(k − 1)k + p < k2, a contradiction. By Lemma 2, this collection T = {T1, . . . , Tk+1}
of k + 1 sets uniquely covers at least k elements. ut

Next, we generalize these observations to the case when |Si ∩ Sj | ≤ c, for some
constant c.

Theorem 1. Suppose that for all Si, Sj ∈ S we have |Si ∩ Sj | ≤ c, for some positive
constant c. If |S| ≥ kc+1 then there exists T ⊆ S that covers k elements uniquely.

Proof. By induction on c. For c = 1, this follows from Lemma 3. Assume the theorem
to hold for c > 1. Greedily obtain a maximal collection S ′ = {S1, . . . , Sp} of pairwise
disjoint sets. If |∪Si∈S′Si| ≥ k then we are done. Therefore assume |∪S∈S′S| ≤ k−1 (this
also implies p ≤ k−1). Since |S| ≥ kc+1, and since every set in S intersects with at least
one set in S ′, there exists e ∈ ∪S∈S′S such that at least kc + 1 sets in S − {S1, . . . , Sp}
contain e. For otherwise, |S| ≤ (k−1)kc+p < kc+1, a contradiction. Let T1, . . . , Tkc+1 be
some kc + 1 such sets. Delete e from each of these sets. We obtain at least kc nonempty
distinct sets T ′

1, . . . , T
′
kc (there is at most one set consisting of the element e only which

is deleted in this process). Note that any two of these sets intersect in at most c − 1



elements. By induction hypothesis, there exists a collection T ′ ⊆ {T ′
1, . . . , T

′
kc} that

uniquely covers at least k elements, and thus there exists a collection T ⊆ {T1, . . . , Tkc}
that uniquely covers at least k elements (just take the solution for T ′ and add e to every
set in it). This proves the theorem. ut

Corollary 1. Unique Coverage admits a kernel of size kc+1 for bounded intersection
size c.

Note that c ≤ k − 1 and therefore for the general case we have a kernel of size kk.

Corollary 2. The Unique Coverage problem is fixed-parameter tractable and admits
a problem kernel of size kk.

An algorithm that checks all possible subsets of a family of size kk to see whether any
of them uniquely covers at least k elements is an FPT algorithm with time complex-
ity O∗(2(kk)). But note that we can assume without loss of generality that every set
in the solution covers at least one element uniquely. Thus it suffices to check whether
subfamilies of size at most k uniquely cover at least k elements. This can be done in
time O∗(kk2

) = O∗(2k2 log k). However, this kernelization result is tailored especially
for the bounded intersection size case. It turns out that a much better kernel can be
obtained for the general case.

3.3 General Case

We now show that Unique Coverage has a kernel of size 4k using a result on strong
systems of distinct representatives. Given a family of sets S = {S1, . . . , Sm}, a system
of distinct representatives for S is an m-tuple (x1, x2, . . . , xm) where the elements xi are
distinct and xi ∈ Si for all i = 1, 2, . . . ,m. Such a system is strong if we additionally
have xi /∈ Sj for all i 6= j. The next theorem due to Füredi and Tuza appears in Jukna’s
textbook [3].

Theorem 2. In any family of more than
(
r+s

s

)
sets of cardinality at most r, at least s+2

of its members have a strong system of distinct representatives.

Given an instance (U = {1, . . . , n},S = {S1, . . . , Sm}, k) of Unique Coverage, put r =
k − 1 and s = k in the statement of the above theorem and we have a kernel of
size

(
2k−1
k−1

)
≤

(
2k
k

)
≤ 22k.

Corollary 3. Unique Coverage admits a problem kernel of size 4k.

Note that this implies that there is an O∗(4k2
) time FPT algorithm for the Unique

Coverage problem.
For the case where each set of the input family has size at most b, for some constant b,

there is a better kernel. By Theorem 2, if there exists at least
(
b+k
k

)
sets in the input

family, then there exists at least k sets with a strong system of distinct representatives.

Corollary 4. If each set S ∈ F has size at most b then the Unique Coverage problem
has a kernel of size O(2b+k).



4 The Budgeted Unique Coverage Problem

4.1 Hardness Results

We first consider the Budgeted Max Cut problem which is a specialization of the
Budgeted Unique Coverage problem. An instance of this problem is an undirected
graph G = (V,E) with a cost function c : V → R+ on the vertex set and a profit
function p : E → R+ on the edge set; positive real numbers B and k. The question
is whether there exists a cut (T, T̄ ) such that the total cost of the vertices in T is at
most B and the total profit of the edges crossing the cut is at least k.

We first show that the Budgeted Max Cut problem with arbitrary positive real
costs and profits is probably not FPT.

Lemma 4. The Budgeted Max Cut problem with arbitrary positive costs and profits
with parameters B and k is not FPT, unless P = NP.

Proof. Suppose there exists an algorithm for the Budgeted Max Cut problem (with
arbitrary positive costs and profits) with running time O(f(k, B) ·p(n)), where p is some
polynomial. We will use this to solve the decision version of Max Cut in polynomial
time. Let (G = (V,E), k) be an instance of the Max Cut problem, where |V | =
n. Assign each vertex of the input graph cost 1/n and each edge profit 1/k. Let the
budget B = 1/2 and the profit k′ = 1. Clearly, G has a maximum cut of size at least k iff
there exists S ⊆ V of total cost at most B such that the total profit of the edges crossing
the cut (S, V −S) is at least k′. And this can be answered in time O(f(1, 1/2) · p(|V |)),
implying P = NP. ut

Theorem 3. The Budgeted Unique Coverage problem with arbitrary positive costs
and profits is not FPT, unless P = NP.

Henceforth by the ‘budgeted’ version we mean the case when the costs and profits are
positive integers. We next show that the Budgeted Max Cut problem parameterized
by the budget B alone is W [1]-hard.

Lemma 5. The Budgeted Max Cut problem parameterized by the budget is W [1]-
hard.

Proof. One can show membership in W [1] by a reduction to the Short Turing Ma-
chine Acceptance Problem [2]. To show W [1]-hardness, we exhibit a fixed-parameter
reduction from the Independent Set problem to the Budgeted Max Cut problem
with unit costs and profits. Let (G = (V,E), B) be an instance of Independent Set
with |V | = n. For every vertex u ∈ V add |V | − 1 − deg(u) new vertices and connect
them to u. Call the resulting graph G′. Note that every vertex u ∈ G has degree |V |− 1
in G′. We let (G′ = (V ′, E′), B, k = B(n−1)) be the instance of Budgeted Max Cut.

Claim. G has an independent set of size B iff G′ has a cut (S, V ′−S) such that |S| = B
and at least k = B(n− 1) edges lie across it.



If G has an independent set S of size B, then clearly S is independent in G′. The
cut (S, V ′ − S) does indeed have B(n − 1) edges crossing it, as every vertex of S has
degree n−1. Next suppose that G′ has a cut (S, V ′−S) such that |S| = B and B(n−1)
edges cross the cut. Note that every vertex in S must be a vertex from G. Otherwise
the cut cannot have B(n− 1) edges crossing it. Suppose two vertices u and v in S are
adjacent. Then both u and v contribute less than n − 1 edges to the cut. Since each
vertex in S contributes at most n − 1 edges to the cut, the number of edges crossing
the cut must be less than B(n− 1), a contradiction. Hence S is independent in G′ and
hence G has an independent set of size B. ut

Since the Budgeted Unique Coverage problem is a generalization of Budgeted
Max Cut we have

Theorem 4. The Budgeted Unique Coverage problem parameterized by the bud-
get B alone is W [1]-hard.

4.2 A Fixed-Parameter Tractability Result

In this subsection, we give an FPT algorithm for Budgeted Unique Coverage,
when B and k are parameters, assuming that for every set S in the input family the
number of sets with a non-empty intersection with S is at most some function of k. This
is a natural situation in real-world applications; for example, in wireless networks. For
the Budgeted Max Cut problem, for instance, every set is intersected by at most k−1
sets.

Let (U = {1, . . . , n},S = {S1, . . . , Sm}, c, p, B, k) be an instance of the Budgeted
Unique Coverage problem where c : S → N and p : U → N. For T ⊆ S, define c(T ) =∑

S∈T c(S) and p(T ) to be the total profit of the elements uniquely covered by T . If Si ∈
S, define N [Si] to be the set of all members of S that have a nonempty intersection
with Si. We can without loss of generality assume that c(Si) ≤ B and |Si| ≤ k − 1 for
all 1 ≤ i ≤ m. In what follows, we assume that for all Si ∈ S, we have |N [Si]| ≤ f(k)
for some function f .

The FPT algorithm that we describe here builds the solution in stages. Note that
if we decide to include a set S in the solution, there is no way of deciding how many
elements S covers uniquely unless we make choices for each set in N [S]. To get around
this, the algorithm, at any stage, decides whether or not to include a subfamilyA ⊆ N [S]
for some set S. If it includes A in the solution, then it automatically excludes Ā from
it. The current solution is a pair (T , T ′), where T , T ′ ⊆ S and T ∩ T ′ = ∅. The sets
included by the algorithm in the solution till the current stage are in T ; those excluded
from the solution are in T ′.

Call a pair (T , T̄ ) a feasible solution for an instance of Budgeted Unique Cov-
erage if T̄ = S − T , c(T ) ≤ B and p(T ) ≥ k. A pair (T , T ′) is a partial solution
if T , T ′ ⊆ S and T ∩T ′ = ∅. A partial solution (T , T ′) can be extended to a feasible so-
lution if there exist X ,X ′ ⊆ S−(T ∪T ′) such that X∩X ′ = ∅ and (T ∪X , T ′∪X ′) is a fea-
sible solution. A partial solution (T , T ′) is strong if for each set Si ∈ T , N [Si] ⊆ T ∪T ′.
Given a strong partial solution (T , T ′), let U1, . . . ,Ut be a partition of S − (T ∪ T ′)
according to costs. That is, all members in any set Ui have the same cost ci and for



all i 6= j, ci 6= cj . Note that t ≤ B. For each Ui, let Umax
i denote a member of Ui with

maximum total profit.

Lemma 6. Let (T , T ′) be a strong partial solution and let U1,U2, . . . ,Ut be a partition
of S− (T ∪T ′) according to costs. Suppose (T , T ′) can be extended to a feasible solution
by adding a member of Ui to T . Then there exists an extension of (T , T ′) into a feasible
solution such that T ∩N [Umax

i ] 6= ∅.

Proof. Suppose (T , T ′) can be extended to a feasible solution (X , X̄ ) by adding a mem-
ber U ∈ Ui to T and that X ∩ N [Umax

i ] = ∅. This means N [Umax
i ] ⊆ X̄ . Remove U

from X and replace it by Umax
i . Note that every element of Umax

i is uniquely covered
and that the total profit of these newly uniquely covered elements is at least as that of
those covered by U . Since c(U) = c(Umax

i ), the new solution continues to be feasible. ut

One can use Lemma 6 to develop an FPT algorithm with time complexity O∗((B ·
2f(k))B+k). Suppose there exists a feasible solution to the given input instance. We
start with a strong feasible solution (T = ∅, T ′ = ∅). Partition the input family S
according to costs into the subfamilies U1, . . . ,Ut. Note that t ≤ B. Since there exists
a feasible solution, it has to include a set from one of the subfamilies Ui. For each
choice of a subfamily, Lemma 6 assures us that it is sufficient to consider a set S in the
subfamily which maximizes profit. We consider all possible bipartitions (A, Ā) of N [S]
such that A 6= ∅ and each member in A uniquely covers at least one element. For each
such bipartition (A, Ā), set T ← T ∪ A and T ′ ← T ′ ∪ Ā. Since by our assumption,
|N [S]| ≤ f(k), there are at most 2f(k) such bipartitions. This gives an initial branching
factor of B · 2f(k).

We then recurse using Lemma 6. In order to recurse, we must first ensure that the
current partial solution is strong. We achieve this by considering all possible bipartitions
of N [T ] − (T ∪ T ′) for all sets T ∈ T for which N [T ] − (T ∪ T ′) 6= ∅. As before, we
are interested in bipartitions (A, Ā) which have the property that each set in T ∪ A
uniquely covers at least one element. For each such bipartition (A, Ā), we set T ← T ∪A
and T ′ ← T ′ ∪ Ā. There are at most 2k such bipartitions and for each bipartition, we
either increase the cost of the solution or total profit of uniquely covered elements by
at least 1. If at any stage of recursion, we find that there is no subfamily Ui such that
for U ∈ Ui, c(U) ≤ B−c(T ), we abort that branch. If p(T ) ≥ k, at any stage, we halt and
output yes. The overall depth of the recursion tree is at most B + k and the branching
factor is at most B · 2f(k). The overall time complexity is therefore O∗((B · 2f(k))B+k).
If the algorithm does not return a solution then we can safely conclude that the given
instance is a no-instance.

Theorem 5. Suppose (U ,S, c, p, B, k) is an instance of the Budgeted Unique Cov-
erage problem where for every set S ∈ S, we have |N [S]| ≤ f(k). Then there is an
algorithm with time complexity O∗((B · 2f(k))B+k) for this problem.

The Budgeted Max Cut problem is a special case where |N [S]| ≤ k − 1 for
all S ∈ S, and the following corollary is immediate.



Corollary 5. The Budgeted Max Cut problem with positive integer costs and profits
is fixed-parameter tractable when parameterized by B and k. There is an algorithm with
time complexity O∗((B · 2k)B+k) for this problem.

5 Concluding Remarks

In this paper, we considered the parameterized complexity of the Unique Coverage
problem. There are several directions in which to proceed. Firstly, the reduction rules
that we give are almost trivial and the kernel that we obtain is exponential in k. Ker-
nelization is a very important topic in the design of FPT algorithms and the challenge
is to devise reduction rules to obtain a polynomial (linear?) kernel or prove that no such
kernel exists under some plausible complexity-theoretic assumption. Are there reduction
rules that lead to a better problem kernel? In particular, is there a polynomial kernel
for the Unique Coverage problem?

At this point, all we can show is that with respect to a broader set of reduction
rules, which we do not state here, the kernel size is at least Ω(2k/

√
k/2). The following

example illustrates this situation. Let U = {1, 2, . . . , k}, S = S1 ∪ S2, where S1 consists
of all subsets of U of size exactly dk/2e + 1 and S2 is some collection of subsets of U
of size at most k/4. Note that |S1| =

(
k

dk/2e+1

)
, which by Stirling’s approximation is,

Ω(2k/
√

k/2). If S2 = ∅ then one can show that the given instance is a no-instance. But
we can always produce an S2 6= ∅ such that the given instance is a yes-instance and
such that our reduction rules do not change the size of the input instance. For instance,
if we take S2 = {{dk/2e + 2}, . . . , {k}}, then this is a yes-instance and we can show
that our reduction rules do not alter the size of the input.

Another important question is whether there exists a good branching algorithm
for Unique Coverage. The algorithm that we gave runs in time O∗(4k2

). Finally, is
the Budgeted Unique Coverage problem with positive integer costs/profits, with
parameters B and k, fixed-parameter tractable?
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