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Abstract. We study the parameterized complexity of an NP-complete
geometric covering problem called d-dimensional Rectangle Stab-

bing where we are given a set of axis-parallel d-dimensional hyperrectan-
gles, a set of axis-parallel (d−1)-dimensional hyperplanes and a positive
integer k; the question is whether one can select at most k hyperplanes
so that every hyperrectangle is intersected by at least one of them. This
problem is well-studied from the approximation point of view, while its
parameterized complexity remained unexplored so far. We show that the
case d ≥ 3 is W[1]-hard with respect to the parameter k. The case d = 2
is still open and we investigate several natural restrictions of this case
and show them to be fixed-parameter tractable.

1 Introduction

A geometric covering problem, in the broadest sense, consists of a set of geomet-
ric objects and a set of “resources”; the goal is to find a small set of resources
that “covers” all objects. Geometric covering problems arise in many practical
applications and are subject of intensive research (see [6, 7, 11]). In this paper
we consider a geometric covering problem known as d-dimensional Rectan-

gle Stabbing. Here, the input consists of a set R of axis-parallel d-dimensional
hyperrectangles, a set L of axis-parallel (d − 1)-dimensional hyperplanes, and a
positive integer k; the question is whether there is a set L′ ⊆ L with |L′| ≤ k

such that every hyperrectangle from R is intersected by at least one hyperplane
from L′. In the special case of d = 2, the set R consists of axis-parallel rectangles
in the plane, and L consists of vertical and horizontal lines. In the approximation
setting, the optimization version of d-dimensional Rectangle Stabbing is
considered, which asks for a minimum-cardinality set L′ ⊆ L to cover all rect-
angles from R.

The literature provides a bunch of results concerning the approximability
of d-dimensional Rectangle Stabbing. Hassin and Megiddo [8] described
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a factor-d2d−1 approximation algorithm for the problem variant where L con-
sists of lines instead of hyperplanes and all hyperrectangles in R are identical.
Gaur et al. [6] gave a factor-2 approximation algorithm for the case d = 2 and
extended this result to the problem d-dimensional Rectangle Stabbing,
for which they provided a factor-d approximation algorithm. Moreover, Mecke
et al. [12] gave a factor-d approximation algorithm for a problem called d-C1P-

Set Cover, which is a generalization of d-dimensional Rectangle Stab-

bing. A restricted version of 2-dimensional Rectangle Stabbing, where for
every rectangle the number of horizontal lines intersecting it is bounded from
above by one, is known as Interval Stabbing. This problem was considered by
Kovaleva and Spieksma [9, 10], leading to constant-factor approximation algo-
rithms for several variants of the problem. Hassin and Megiddo [8] gave approx-
imation algorithms for the more general variant of Interval Stabbing where
for every rectangle the number of horizontal lines or the number of vertical lines
intersecting it is bounded from above by one. Weighted and capacitated ver-
sions of 2-dimensional Rectangle Stabbing have been considered by Even
et al. [2].

Here, we consider d-dimensional Rectangle Stabbing from the point of
view of parameterized complexity. More specifically, we investigate whether d-

dimensional Rectangle Stabbing is fixed-parameter tractable with respect
to the parameter “solution size” k, that is, if there exists an algorithm running
in O(f(k) · |R ∪ L|O(1)) time with f depending only on k.

On the one hand, we show in Section 3 that for d ≥ 3 the problem is W[1]-
hard, meaning that it is unlikely that there exists such an algorithm. On the other
hand, in Section 4 we consider several natural restrictions of the case d = 2 and
show them to be fixed-parameter tractable. The parameterized complexity for
the case d = 2 without further restrictions remains open.

2 Preliminaries

A parameterized problem is a subset of Σ∗ × N, where Σ is a finite alphabet
and N is the set of natural numbers. An instance of a parameterized problem
is therefore a pair (I, k), where k is called the parameter. In the framework of
parameterized complexity [1, 4, 13], the running time of an algorithm is viewed as
a function of two quantities: the size of the problem instance and the parameter.
A parameterized problem is said to be fixed parameter tractable (FPT) if there
exists an algorithm for the problem running in f(k) · |I|O(1) time, where f is a
computable function only depending on k.

A common tool in the development of fixed-parameter algorithms is to use a
set of data reduction rules to obtain what is called a problem kernel. A data reduc-
tion rule is a polynomial-time algorithm which takes a problem instance (I, k)
and either decides whether (I, k) is a yes-instance or outputs an instance (I ′, k′)
such that |I ′| ≤ |I|, k′ ≤ k, and (I ′, k′) is a yes-instances iff (I, k) is a yes-
instance. An instance to which none of a given set of data reduction rules applies
is called reduced with respect to these rules. A reduced instance (I ′, k′) is called
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a problem kernel if its size is bounded from above by a function f depending only
on k. If a parameterized problem has a kernel, then it is clearly fixed-parameter
tractable.

A parameterized problem π1 is fixed-parameter reducible to a parameterized
problem π2 if there are two computable functions f, g : N → N and an algo-
rithm Φ which transforms an instance (I, k) of π1 into an instance (I ′, f(k)) of π2

in g(k) · |I|O(1) time such that (I ′, f(k)) is a yes-instance for π2 iff (I, k) is a
yes-instance for π1. The basic complexity class for fixed-parameter intractabil-
ity is W [1], as there is strong evidence that W [1]-hard problems are not fixed-
parameter tractable [1, 4, 13]. To show that a problem is W [1]-hard, one needs
to exhibit a fixed-parameter reduction from a known W [1]-hard problem to the
problem at hand.

A graph G = (V, E) is called k-colorable if there is a function c : V →
{1, . . . , k} satisfying ∀{u, v} ∈ E : c(u) 6= c(v); the function c is then called a
proper vertex k-coloring for G.

To achieve our our hardness result, we consider d-dimensional Rectangle

Stabbing as a covering problem on binary matrices, which is a restriction of
the following, very general matrix problem:

Set Cover
Given: A binary matrix M and a positive integer k.
Question: Is there a set of at most k columns of M such that the
submatrix M ′ of M that is induced by these columns has at least one 1
in every row?

To define restricted versions of Set Cover, we need the following definitions.

Definition 1 1. Given a binary matrix M , a block of 1’s in a row of M is a
maximal set of consecutive 1-entries in this row.

2. A binary matrix M has the d-consecutive ones property (d-C1P) if every row
of M has at most d blocks of 1’s.

3. A binary matrix M with columns c1, . . . , cn has the separated d-consecutive
ones property (d-SC1P) if the columns of M can be partitioned into d sets of

consecutive columns C1 = {c1, . . . , cn1}, C2 = {cn1+1, . . . , cn2}, . . . , C
d

=
{cnd−1+1, . . . , cn} such that for every p ∈ {1, . . . , d} the submatrix of M

induced by C
p

has at most one block of 1’s per row.

If Set Cover is restricted by demanding that the input matrix M must have
the d-C1P, then we call the resulting problem d-C1P-Set Cover; if M must
have the d-SC1P, then we call the resulting problem d-SC1P-Set Cover.

Observation 1 The problems d-dimensional Rectangle Stabbing and d-

SC1P-Set Cover are equivalent.

This observation is easy to see—the ith dimension in a d-dimensional Rec-

tangle Stabbing instance can be represented by the column set C
i

in a d-

SC1P-Set Cover instance and vice versa.
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For some of our FPT algorithms, we make use of the following well-known
fact: Given a set of axis-parallel rectangles and a set of vertical (horizontal) lines,
the task of finding a minimum-cardinality subset of these vertical (horizontal)
lines that intersects all rectangles is polynomial-time solvable3: Order the rect-
angles with respect to their right (bottom) end. Then, repeatedly take the first
rectangle r in this order, include the rightmost vertical (bottommost horizontal)
line l that intersects r into the solution, and delete all rectangles intersected by l,
until all rectangles are deleted. The solution obtained is a minimum-size set of
vertical (horizontal) lines that are required to intersect all rectangles. Moreover,
all rectangles r together that are selected by the algorithm form a “certificate”
in the sense that they cannot be intersected by a set of vertical (horizontal) lines
that is smaller than the solution found by the algorithm. The pseudocode of this
algorithm is displayed in Figure 2.

3 W[1]-Hardness Proof for d-Dimensional Rectangle
Stabbing with d ≥ 3

In this section we prove that d-dimensional Rectangle Stabbing with pa-
rameter k is W[1]-hard for every d ≥ 3. To this end, we exhibit a parameterized
reduction from Multicolored Clique, which is defined as follows, to 3-SC1P-

Set Cover.

Multicolored Clique
Given: An undirected k-colorable graph G = (V, E), a positive integer k,
and a proper vertex k-coloring c : V → {1, . . . , k} for G.
Question: Is there a size-k clique in G?

Multicolored Clique is W[1]-complete [3]4. Fellows et al. [3] give a pa-
rameterized reduction from Multicolored Clique to 3-C1P-Set Cover,
which proves the W[1]-hardness of the latter problem. However, this reduction
does not show the W[1]-hardness of 3-SC1P-Set Cover because of its more
restricted nature.

The basic scheme of the reduction. The basic scheme of our reduction is
fairly similar to the one used in the hardness proof for 3-C1P-Set Cover given
by Fellows et al. [3]. The key idea is using an alternative, equivalent formulation
of Multicolored Clique: Given an undirected k-colorable graph G = (V, E),
a positive integer k, and a proper vertex k-coloring c : V → {1, . . . , k} for G,
find a set E′ ⊆ E with |E′| =

(

k
2

)

and a set V ′ ⊆ V with |V ′| = k that satisfy
the following constraints:

1. For every unordered pair {a, b} of colors from {1, . . . , k}, the edge set E′

contains an edge whose endpoints are colored with a and b.

3 This problem is equivalent to Clique Cover on interval graphs.
4 For a proof sketch see the Appendix.
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2. For every color from {1, . . . , k}, the vertex set V ′ contains a vertex of this
color.

3. If E′ contains an edge {u, v}, then V ′ contains the vertices u and v.

Given an instance (G, k, c) of Multicolored Clique, we construct an
equivalent instance (M, k′) of 3-SC1P-Set Cover based on this alternative for-
mulation. To this end, define the color of an edge {u, v}, denoted with d({u, v}),
as d({u, v}) = {c(u), c(v)}. We order the edges E = {e1, . . . , e|E|} and ver-
tices V = {v1, . . . , v|V |} of G such that edges and vertices of the same color
appear consecutively. (That is, for every pair p1, p2 ∈ {1, . . . , |E|} with p1 < p2

it holds that if d(ep1) = d(ep2) then ∀p3 ∈ {p1 + 1, . . . , p2 − 1} : d(ep3) =
d(ep1) = d(ep2); for every pair q1, q2 ∈ {1, . . . , |V |} with q1 < q2 it holds that if
c(vq1) = c(vq2 ) then ∀q3 ∈ {q1 + 1, . . . , q2 − 1} : c(vq3 ) = c(vq1) = c(vq2).)

The idea of the reduction is that every column of M corresponds to an edge or
a vertex of the given graph G; the rows of M are constructed in such a way that
any column subset of M that is a solution for 3-SC1P-Set Cover on (M, k′)
corresponds to a solution (E′, V ′) for Multicolored Clique on (G, k, c). To
this end, the rows of M must enforce that the three constraints for Multicol-

ored Clique mentioned above are satisfied. In order to obtain a matrix that
has the 3-SC1P, we need not only one, but two columns in M for every edge e

in G. Hence an instance (G, k, c) of Multicolored Clique is mapped to an
instance (M, k′), where k′ = 2 ·

(

k
2

)

+k. We next describe the construction of M .

The columns of M . The matrix M has 2 · |E|+ |V | columns, partitioned into
three sets C1 = {c1

1, . . . , c
1
|E|}, C2 = {c2

1, . . . , c
2
|E|}, and C3 = {c3

1, . . . , c
3
|V |} and

ordered as follows: c1
1, . . . , c

1
|E|, c

2
1, . . . , c

2
|E|, c

3
1, . . . , c

3
|V |.

The rows of M . The rows of M have to ensure that every solution for 3-

SC1P-Set Cover on (M, k′ = 2 ·
(

k
2

)

+ k) corresponds to a subset of edges and
vertices of G satisfying the three constraints mentioned above. Because there
are two columns in M for every edge in G, we need four types of rows: Rows of
Type 1 and 2 ensure that any set of k′ columns that forms a solution for 3-SC1P-

Set Cover contains exactly
(

k
2

)

columns from C1—one of each edge color—,
(

k
2

)

columns from C2—one of each edge color—, and k columns from C3—one of
each vertex color. Type 3 rows ensure that the columns chosen from C1 and C2

are consistent: if a solution contains the column c1
j then it must contain c2

j and

vice versa. Finally, Type 4 rows ensure that if a solution contains a column c1
j

corresponding to the edge {u, v} then it also contains the columns corresponding
to the vertices u and v. See Fig. 1 for an illustration.

Type 1 rows. For every edge color {a, b}, add two rows r1
{a,b},C1 and r1

{a,b},C2

to M . For i = 1, 2, the row r1
{a,b},C

i has a 1 in every column c
i

j ∈ C
i

with d(ej) =

{a, b}, and 0’s in all other columns.

Type 2 rows. For every vertex color a ∈ {1, . . . , k}, add a row r2
a to M which

has a 1 in every column c3
j ∈ C3 with c(vj) = a, and 0’s in all other columns.
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C1 C2 C3

. . .

. . .

. . .. . .. . .. . .. . .. . .

. . .

. . .. . .. . . . . .. . .. . . {red,blue}{red,blue} red blue

r1
{red,blue},C1

r1
{red,blue},C2

r2
red

r2
blue

r3
{red,blue},1

r3
{red,blue},2

r3
{red,blue},3

r3
{red,blue},4

r3
{red,blue},5

r3
{red,blue},6

r4
e5,v2

r4
e5,v8

c
1

4
c
1

5
c
1

6
c
1

7
c
2

4
c
2

5
c
2

6
c
2

7
c
3

2
c
3

3
c
3

7
c
3

8
c
3

9

1

1111

1111

1111

1111

1111

1111

111 1

1111

11

11

1111

1111

Fig. 1. Example for the construction of M . We assume that in G there are exactly
two red vertices v2, v3 and exactly three blue vertices v7, v8, v9, among vertices of other
colors. The only edges between red and blue vertices are e4, e5, e6, e7 with e5 = {v2, v8}.
Note that first({red, blue}) = 4.

Type 3 rows. For every edge color {a, b}, define

E{a,b} := {e ∈ E | d(e) = {a, b}},

first({a, b}) := min{p ∈ {1, . . . , |E|} | d(ep) = {a, b}}.

Now, for every edge color {a, b}, add a set of 2 · (|E{a,b}| − 1) rows r3
{a,b},i

where 1 ≤ i ≤ 2 · (|E{a,b}|−1). A row r3
{a,b},i, i ∈ {1, . . . , |E{a,b}|−1}, has a 1 in

– every column c1
j ∈ C1 with d(ej) = {a, b} and j < first({a, b}) + i and

– every column c2
j ∈ C2 with d(ej) = {a, b} and j ≥ first({a, b}) + i,

and 0’s in all other columns. A row r3
{a,b},i

with i ∈ {|E{a,b}|, . . . , 2·(|E{a,b}|−1)}
has a 1 in

– every column c1
j ∈ C1 with d(ej) = {a, b} and j ≥ first({a, b})+i−(|E{a,b}|−

1) and
– every column c2

j ∈ C2 with d(ej) = {a, b} and j < first({a, b})+i−(|E{a,b}|−
1),

and 0’s in all other columns.

Type 4 rows. For every edge ep = {vq1 , vq2} ∈ E, add two rows r4
ep,vq1

and r4
ep,vq2

to M . For i = 1, 2, the row r4
ep,vqi

has a 1 in
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– every column c1
j ∈ C1 with j < p,

– every column c2
j ∈ C2 with j > p, and

– the column c3
qi

∈ C3,

and 0’s in all other columns.

Lemma 1. Let (G, k, c) be an instance of Multicolored Clique and let
(M, k′) be the instance of 3-SC1P-Set Cover obtained by the above construc-
tion. Then G has a clique of size k if and only if there exists a set of k′ = 2·

(

k
2

)

+k

columns in M that hits a 1 in every row.

Proof. Omitted due to lack of space. ⊓⊔

Theorem 1. For every d ≥ 3, d-dimensional Rectangle Stabbing is W[1]-
hard with respect to the parameter k.

By adding some additional columns to the above construction, we get the
following result.

Theorem 2. For every d ≥ 3, the restricted variant of d-dimensional Rec-

tangle Stabbing where every hyperrectangle in R is a hypercube is W[1]-hard
with respect to the parameter k.

With a very similar reduction from Multicolored Clique we can also
show the W[1]-hardness of the following problem: Given a set R of axis-parallel
d-dimensional hyperrectangles, a set L of axis-parallel lines, and a positive inte-
ger k, is there a set L′ ⊆ L with |L′| ≤ k such that every hyperrectangle from R

is intersected by at least one line from L′?

Theorem 3. For every d ≥ 3, the problem of stabbing hyperrectangles with lines
as described above is W[1]-hard with respect to the parameter k.

4 FPT Algorithms for Restrictions of 2-Dimensional
Rectangle Stabbing

In the previous section we have shown that d-dimensional Rectangle Stab-

bing with parameter k is W[1]-hard for d ≥ 3. However, the parameterized
complexity of 2-dimensional Rectangle Stabbing, where a set R of axis-
parallel rectangles has to be stabbed with at most k lines chosen from a given
set L of vertical and horizontal lines, is still open. In this section we consider
some natural restrictions of this problem and show them to be fixed-parameter
tractable.

For an instance (R, L, k) of 2-dimensional Rectangle Stabbing, let L =
V ⊎ H , where V = {v1, . . . , vn} are the vertical lines ordered from left to right
and H = {h1, . . . , hm} are the horizontal lines ordered from top to bottom. For
a rectangle r ∈ R, let l(r), r(r), t(r), b(r) be the index of the leftmost, rightmost,
topmost and bottommost line intersecting r. Define the width w(r) := r(r) −
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l(r) + 1 and the height h(r) := b(r) − t(r) + 1 as the number of vertical and
horizontal lines, respectively, intersecting r.

We start with some well-known reduction rules for 2-dimensional Rectan-

gle Stabbing, whose correctness is obvious.

1. If there is a rectangle that is intersected by no line from L, the given instance
is a no-instance.

2. If there is a rectangle that is intersected by exactly one line l ∈ L, then
delete l, delete all rectangles that are intersected by l, and decrease k by
one.

3. If there are two lines l1, l2 ∈ L such that ∀r ∈ R : (l2 intersects r) ⇒
(l1 intersects r), then delete l2.

4. If there are two rectangles r1, r2 such that ∀l ∈ L : (l intersects r1) ⇒
(l intersects r2), then delete r2.

The following observation is an immediate consequence of Reduction Rule 3.

Observation 2 In a reduced problem instance, for every vertical line vj ∈ V

there exist rectangles r, r′ ∈ R with l(r) = j and r(r′) = j. For every horizontal
line hi ∈ H there exist rectangles r, r′ ∈ R with t(r) = i and b(r′) = i.

In particular, Observation 2 implies that in a reduced problem instance there
exist rectangles r, r′ ∈ R such that w(r) = 1 and h(r′) = 1.

4.1 Case 1: Rectangles Have Bounded Height

We first consider the case where the height of every rectangle in R is bounded by
a number b. The special case b = 1 where every rectangle is a horizontal segment
is NP-complete; Hassin and Megiddo [8] and Kovaleva and Spieksma [9, 10] gave
approximation algorithms for this case and some of its variants.

For our FPT considerations, we use a simple search-tree algorithm using
Observation 2. At every step, apply the reduction rules until the current instance
is reduced, search for a rectangle r with r(r) = 1, and branch as follows: either
select the single vertical line that intersects r or select one of the at most b

horizontal lines that intersect r.

Theorem 4. The restricted variant of 2-dimensional Rectangle Stabbing

where the height h(r) of every rectangle r ∈ R is bounded from above by a
number b can be solved in O((b+1)k ·nO(1)) time and is therefore fixed-parameter-
tractable with respect to the combined parameters k and b.

This algorithm can be modified to work for the weighted version of the prob-
lem where every line has a weight that is bounded from below by 1 and from
above by a number b′. The reduction rules need modification for this problem
version; the running time of the algorithm is O((b + b′)k · nO(1)).
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4.2 Case 2: Rectangles Have Bounded Width or Height

Next, we consider a generalization of Case 1: Here, for every rectangle r in R the
width w(r) or the height h(r) is bounded from above by a number b. The special
case b = 1, where every rectangle is either a horizontal or a vertical segment, is
NP-complete and was already considered by Hassin and Megiddo [8] from the
approximation point of view.

The approach outlined in Section 4.1 does not work anymore since in a re-
duced instance the height of every rectangle r with r(r) = 1 may be unbounded.
However, there is again a search-tree algorithm. Let Rh ⊆ R be the set of rectan-
gles with bounded height and let Rv ⊆ R be the set of rectangles with bounded
width. Now, we write k as a sum kh + kv in all possible ways, where kh and kv

denote the number of horizontal and vertical lines, respectively, allowed to be
chosen into the solution. For every split of k into kh and kv, we run a branching
algorithm, which performs in every step the following actions.

First, compute the minimum number of vertical lines required to intersect
the rectangles in Rh. This is polynomial-time doable, and the simple greedy
algorithm in Figure 2 obtains such a set of vertical lines. If Rh cannot be stabbed
with a set of at most kv vertical lines, then the algorithm in Figure 2 outputs
a set R0

h ⊆ Rh of size kv + 1 such that the optimum number of vertical lines
needed to intersect all rectangles in R0

h is exactly kv + 1. Any solution for d-di-

mensional Rectangle Stabbing on (R, L, k) consisting of at most kv vertical
and at most kh horizontal lines must intersect at least one rectangle in R0

h by a
horizontal line. Hence, branch on the (kv + 1) · b possibilities to do so.

If, however, all rectangles in Rh can be intersected with kv vertical lines, we
use the greedy algorithm to check whether the rectangles in Rv can be intersected
with kh horizontal lines. If not, we branch on (kh + 1) · b possibilities in analogy
to the branching for R0

h described above; otherwise, we return the union of the
solutions returned by the two calls to the greedy algorithm. Figure 3 shows a
pseudocode for this algorithm. The branching number is at most bk, which leads
to the following theorem.

Theorem 5. The restricted variant of 2-dimensional Rectangle Stabbing

where the width or the height of every rectangle in R is bounded from above by a
number b can be solved in O((bk)k ·nO(1)) time and is therefore fixed-parameter-
tractable with respect to the combined parameters k and b.

4.3 Case 3: Bounded Intersection

In this subsection we consider a restriction of 2-dimensional Rectangle

Stabbing in which every horizontal line intersects at most b rectangles from R;
this restriction was already considered by Kovaleva and Spieksma [9, 10] from the
approximation point of view. For b = 1, this problem is clearly polynomial-time
solvable since the horizontal lines can just be ignored. For b = 2 the problem
is NP-complete5, but there is an easy O(kk · nO(1))-time branching algorithm.

5 For a proof see the Appendix.
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1 function greedy(R, L, k) {
// Input: R: a set of rectangles,
// L: a set of lines that are either all vertical or all horizontal,
// k: a nonnegative integer.
// Output: Either L′ ⊆ L or R0 ⊆ R.
// If all rectangles from R can be stabbed with a set L′ of at most k lines
// from L, then such a set L′ is returned.
// Otherwise, a set R0 of k + 1 rectangles from R is returned that cannot be
// stabbed with at most k lines from L.

2 R′ := R; R0 := ∅; L′ := ∅;
3 while R′ 6= ∅: {
4 if L contains only vertical lines: {
5 r := a rectangle from R′ with minimum r(r); l := vr(r) ; }
6 else { // L contains only horizontal lines
7 r := a rectangle from R′ with minimum b(r); l := hb(r) ; }

8 R0 := R0 ∪ {r}; L′ := L′ ∪ {l};
9 delete all rectangles from R′ that are intersected by l;

10 if |R0| = k + 1: return R0; }
11 return L′; }

Fig. 2. Greedy algorithm for stabbing a set R of rectangles with at most k lines chosen
from a given set L of vertical lines or horizontal lines.

However, this algorithm cannot be generalized for the case b ≥ 3. In this subsec-
tion, we show that this restriction of 2-dimensional Rectangle Stabbing is
fixed-parameter tractable with respect to the combined parameters k and b by
developing a problem kernel.

First, in addition to the reduction rules mentioned previously, we use the
following reduction rule:

5. If there are bk + 2 rectangles r1, . . . , rbk+2 ∈ R such that for each i ∈
{1, . . . , bk + 1} it holds that every vertical line that intersects ri also in-
tersects rbk+2, then delete rbk+2.

The correctness of this reduction rule follows from the fact that k horizontal lines
cannot intersect all rectangles r1, . . . , rbk+1. Hence, if the instance with rbk+2

deleted is a yes-instance, every solution must contain a vertical line stabbing
some of the rectangles r1, . . . , rbk+1, and this line also stabs rbk+2 in the original
instance, which, therefore, is also a yes-instance.

The following two observations are immediate consequences of Reduction
Rule 5.

Observation 3 For every rectangle r in a reduced instance there are at most bk

rectangles r′ 6= r with l(r′) ≥ l(r) and r(r′) ≤ r(r).

Observation 4 In a reduced instance, for every j ∈ {1, . . . , n} there are at most
bk + 1 rectangles r with l(r) = j.

Lemma 2. For every rectangle r ∈ R in a reduced instance it holds that r(r) ≤
(bk + 1) · l(r).
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1 function stab(Rh, Rv , H, V, kh, kv) {
// Input: Rh: a set of rectangles with bounded height,
// Rv : a set of rectangles with bounded width,
// H, V : a set of horizontal lines and a set of vertical lines,
// kh, kv : nonnegative integers.
// Output: A subset of H ∪ V containing ≤ kh lines from H and ≤ kv lines from V
// that stabs all rectangles from Rh ∪ Rv , or null, if no such subset exists.

2 if greedy(Rh, V, kv) returns a set R0
h ⊆ Rh of rectangles: {

3 if kh = 0: return null;
4 for every r ∈ R0

h: for every h ∈ H(r): {
5 R′

h := Rh \ Rh(h); R′
v := Rv \ Rv(h); H′ := H \ {h};

6 A := stab(R′
h, R′

v , H′, V, kh − 1, kv);
7 if A 6= null: return A ∪ h; }
8 return null; }
9 if greedy(Rv , H, kh) returns a set R0

v ⊆ Rv of rectangles: {
10 if kv = 0: return null;
11 for every r ∈ R0

v: for every v ∈ V (r): {
12 R′

h := Rh \ Rh(v); R′
v := Rv \ Rv(v); V ′ := V \ v;

13 A := stab(R′
h, R′

v , H, V ′, kh, kv − 1);
14 if A 6= null: return A ∪ v; }
15 return null; }
16 B := solution V ′ returned by greedy(Rh, V, kv);
17 C := solution H′ returned by greedy(Rv , H, kh); return B ∪ C; }

Fig. 3. Branching algorithm for stabbing a set Rv ∪ Rh of rectangles with at most kv

lines chosen from a given set V of vertical lines and at most kh lines chosen from a
given set H of horizontal lines.

Proof. By induction on l(r). By Observation 3, the lemma is true for all rect-
angles r with l(r) = 1. Now assume the lemma to be true for all rectangles r

with 1 ≤ l(r) ≤ j, and let r be a rectangle with l(r) = j + 1. For the sake of a
contradiction, assume that r(r) ≥ (bk + 1) · l(r) + 1. Observation 2 implies that
there must be a rectangle r′ with r(r′) = p for every p ∈ {l(r), . . . , r(r) − 1}.
Due to Observation 3, at most bk of these rectangles can have l(r′) ≥ l(r),
and, hence, there exists p ∈ {r(r) − bk − 1, . . . , r(r) − 1} such that there is a
rectangle r′ with r(r′) = p and l(r′) < l(r). But then, by the induction hypothe-
sis, r(r′) ≤ (bk+1)·(l(r)−1), which is a contradiction to r(r′) = p ≥ r(r)−bk−1,
since we assumed that r(r) ≥ (bk + 1) · l(r) + 1. This proves the lemma. ⊓⊔

Lemma 3. In a reduced instance, for every j ∈ {1, . . . , n − 1} there is a rect-
angle r ∈ R with l(r) > j and r(r) ≤ (bk + 1) · j + 1.

Proof. Assume for the sake of contradiction that there exists j ∈ {1, . . . , n − 1}
such that for every rectangle r ∈ R with l(r) > j it holds that r(r) > (bk+1)·j+1.
Consider a rectangle r′ with r(r′) = (bk + 1) · j + 1. Such a rectangle exists by
Observation 2. Then it holds that l(r′) ≤ j due to our assumption. But by
Lemma 2 we have r(r′) ≤ (bk + 1) · j, a contradiction. ⊓⊔

Corollary 1. Let q ≤ n, and let {vj1 , vj2 , . . . , vjq
} ⊆ V with j1 < j2 < . . . < jq

be a set of vertical lines stabbing all rectangles from R in a reduced instance.

Then for every i ∈ {1, . . . , q} it holds that ji ≤
(bk+1)i−1

bk
.

Proof. By induction on i. For i = 1, the statement holds because in any reduced
instance there is a rectangle r with l(r) = r(r) = 1. Assume that the statement
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holds for i−1, that is, ji−1 ≤ (bk+1)i−1−1
bk

. By Lemma 3, there is a rectangle r ∈ R

with l(r) > ji−1 and r(r) ≤ (bk + 1) · ji−1 + 1. Clearly this rectangle is not
stabbed by any line from {vj1 , . . . , vji−1} and therefore, we have ji ≤ r(r) ≤

(bk + 1) · ji−1 + 1 ≤ (bk+1)i−1
bk

. ⊓⊔

Observation 5 If an instance of the restricted variant of 2-dimensional Rec-

tangle Stabbing is a yes-instance, then there is a set V ′ ⊆ V of at most bk

vertical lines that intersect all rectangles in R.

Proof. Replace every horizontal line h in an optimal solution by at most b vertical
lines that intersect the rectangles intersected by h. ⊓⊔

Now we are ready to prove the existence of a problem kernel.

Theorem 6. The restricted variant of 2-dimensional Rectangle Stabbing

where every horizontal line intersects at most b rectangles has a kernel of size
O((bk + 1)bk) and is therefore fixed-parameter tractable with respect to the com-
bined parameters k and b.

Proof. Given an instance of this restricted version, first find the optimal num-
ber of vertical lines needed to intersect all rectangles. As noted before, this is
polynomial-time doable. If the optimal solution size is greater than bk, report
that the given instance is a no-instance. Otherwise, by Corollary 1, we know
that every set of vertical lines {vj1 , . . . , vjbk

} that intersects all rectangles in R

has jbk ≤ (bk+1)bk−1
bk

. If the given instance is a yes-instance, then R cannot con-
tain any rectangle r with l(r) > jbk. For every j ∈ {1, . . . , jbk}, however, there
are at most bk + 1 rectangles r with l(r) = j due to Observation 4. Hence, if R

contains more than O((bk + 1)bk) rectangles, report that the given instance is a
no-instance. ⊓⊔

5 Open Questions

We showed that d-dimensional Rectangle Stabbing with d ≥ 3 is W[1]-
hard. However, the parameterized complexity of the perhaps most interesting
case d = 2 remains open, as well as that of 2-C1P-Set Cover. Even for the
restriction of 2-dimensional Rectangle Stabbing where no two rectangles
from R “overlap” (two rectangles r1, r2 overlap if there exist a vertical line v

and a horizontal line h that intersect both r1 and r2) we do not know the
parameterized complexity. For d-dimensional Rectangle Stabbing, we do
not know if the restricted variant is W[1]-hard where all hyperrectangles in R

are hypercubes of the same edge length. Another open question is whether there
are faster parameterized algorithms for the restrictions of 2-dimensional Rec-

tangle Stabbing considered here.
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Appendix

Proof Sketch of the W[1]-Hardness of Multicolored Clique

We describe a parameterized reduction from the W[1]-complete problem Clique [1]
to Multicolored Clique.

Clique
Given: An undirected graph G = (V, E) and a positive integer k.
Question: Is there a clique of size at least k in G?

Given an instance (G = (V, E), k) of Clique, construct an instance (G′ =
(V ′E′), k, c) of Multicolored Clique as follows. The vertex set V ′ consists
of k copies of V , that is, for every vertex v ∈ V there are k vertices v1, v2, . . . , vk

in V ′. The edge set E′ is given by

E′ =
⋃

i,j∈{1,...,k}∧i6=j

{{ui, vj} | {u, v} ∈ E},

and the coloring c is given by c(vi) = i. The correctness of this reduction is
obvious.

Proof Sketch for the NP-Hardness of a Restricted Variant of
2-Dimensional Rectangle Stabbing

We show that 2-dimensional Rectangle Stabbing is NP-hard even when
every horizontal line in the input intersects at most two rectangles from R. The
reduction is from the NP-complete problem Vertex Cover (see [5]). Given a
graph G = (V, E) with V = {v1, . . . , vn} and E = {e1, . . . , em}, first transform it
into a graph G′ by replacing every edge e = {vi, vj} of G by a path vj-xe-ye-vj .
Then G′ has a vertex cover of size |E|+ k iff G has a vertex cover of size k. Now
the vertex cover instance (G′, |E| + k) can be transformed into an instance of
2-SC1P-Set Cover as follows. Let r = |V |+ 2|E| and s = 3|E|, and let M be
an s× r-matrix whose columns represent the vertices and whose rows represent
the edges of G′. The columns of M are ordered as follows:

v1, v2, . . . , vn, xe1 , ye1 , . . . , xem
, yem

.

An entry in a row i and a column j of M is 1 if and only if the edge ei is incident
to the vertex corresponding to column j. Clearly M has the 2-SC1P with C1 =
{v1, v2, . . . , vn} and C2 = {xe1 , ye1 , . . . , xem

, yem
}. Moreover, there are exactly

two 1’s in every column xe1 , ye1 , . . . , xem
, yem

. Therefore, the matrix M can be
transformed into an equivalent instance of the restricted variant of 2-dimensi-

onal Rectangle Stabbing. One can easily show that G′ has a vertex cover
of size |E| + k if and only if M has a set cover solution of size |E| + k.
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