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A B S T R A C T

Normally the quality of a tree-decomposition is measured by its
treewidth. This suffices to bound the running time of algorithms
that works on tree-decompositions. Nevertheless the presence
of join bags, both their number and their size, can have a very
big impact on the running time of such an algorithm on specific
instances. In this thesis we deal with the analysis of the structure
of tree decompositions, not only their width. We will first define
tight asteroid triples. We will then link the appearance of this
structure in the chordalization given by a tree decomposition
with the number of joins that this tree decomposition must have.
Furthermore we will present a heuristic to minimize the size of
join bags and some ideas about how to tackle related problems
based on the notions established in this thesis.

Z U S A M M E N FA S S U N G

Normalerweisse wird die Güte einer Baumzerlegung an seiner
Baumweite gemessen. Dies reicht in den meisten Fällen aus, um
eine obere Grenze für die Laufzeit eines Algorithmus, welcher
auf Baumzerlegungen arbeitet, zu finden. Die Anwesenheit
von join-Taschen in der Baumzerlegung jedoch kann einen sehr
großen Einfluss auf die Laufzeit eines solchen Algorithmus für
eine spezifischen Instanz haben. Dabei ist sowohl die Größe als
auch die Anzahl der join-Taschen ausschlagegebend. In dieser
Arbeit werden wir uns mit der Analyse der Struktur von Baum-
zerlegungen beschäftigen. Dazu führen wir das Kozept von tight
asteroid triple ein. Wir werden dann die Häufigkeit dieser Struk-
tur in der Chordalisierung eines Graphens, die von einer Baumz-
erlegung gegeben ist, mit der Anzahl der joins, die diese Baumz-
erlegung haben muss verknüpfen. Darüber hinaus beschreiben
wir eine Heuristik, um die Größe der join Taschen zu minimieren.
Abschließend erörtern wir weitere Ideen wie man die Konzepte
dieser Arbeit benutzen könnte, um verwandte Probleme zu
lösen.

vii

[ August 10, 2011 at 16:28 ]



[ August 10, 2011 at 16:28 ]



A C K N O W L E D G M E N T S

Many thanks to Somnath, Felix, Alexander, Joachim and Prof. Ross-
manith for always having an open ear. Thanks to Birgit for forc-
ing me to have at least a modicum of organization in my life.
Finally thanks to all my friends for dealing with my stressed
self.

ix

[ August 10, 2011 at 16:28 ]



[ August 10, 2011 at 16:28 ]



C O N T E N T S

List of Algorithms xiv
List of Tables xiv
Listings xiv
1 introduction 1

2 definitions and important known results 7

2.1 Definitions and Basic Results . . . . . . . . . . . . 7

2.2 Literature Survey . . . . . . . . . . . . . . . . . . . 11

3 basic tree structure 13

3.1 Number of Joins in a Natural Tree-Decomposition 17

3.1.1 Heuristical Improvements of Algorithm 3.1 35

3.2 Size of Join Separators . . . . . . . . . . . . . . . . 36

3.2.1 Idea for a Simple Heuristic to Decrease
Join Size in tree-decompositions at the Cost
of Increasing Width . . . . . . . . . . . . . . 39

4 conclusion and future work 41

4.1 Results in This Thesis . . . . . . . . . . . . . . . . . 41

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . 42

bibliography 45

xi

[ August 10, 2011 at 16:28 ]



L I S T O F F I G U R E S

Figure 3.1 A stark,k,k and its tree-decomposition. . . . 16

Figure 3.2 Graph with asteroidal triples but no tight
asteroidal triple . . . . . . . . . . . . . . . . 20

Figure 3.3 Separator clique example . . . . . . . . . . 23

Figure 3.4 Size minimization operation . . . . . . . . . 40

L I S T O F A L G O R I T H M S

3.1 MinimumNumberJoin . . . . . . . . . . . . . . . 33

3.2 MinimizeJoinOperation . . . . . . . . . . . . . . 38

3.3 MinimizeJoinSizeHeuristic . . . . . . . . . . . . 39

xii

[ August 10, 2011 at 16:28 ]



1
I N T R O D U C T I O N

When the concept of NP-hardness was developed in the 70’s
[20], it was generally assumed that exact solutions for instances
of NP-hard could not be calculated in a reasonable time. NP-
hardness was mainly used as a framework to decide if it was
sensible to develop an exact algorithm for the problem or not.
When a solution for an NP-hard problem was needed in practice,
either an approximation algorithm or a heuristic was used to
find a solution that was in many cases “good enough”. This ap-
proach is not always satisfactory. In many applications nothing
but an exact solution is acceptable, e.g. route-planning, where
the costs inflicted by a non-optimal solution can be very large.
A particularly relevant field in this respect is computational
biology, where for some problems approximations are bad mod-
els of reality, and as such are not useful to run inexpensive
simulations of experiments instead of the costly experiments
themselves. Such problems are one of the main reasons for the
growing interest in exact algorithms for NP-hard problems. This
together with the development of Parameterized Complexity
Theory by Downey and Fellows [17], which deals with the de-
sign and analysis of exact algorithms for NP-hard problems, has
given new life to the field of exact algorithms.

The notion on which Parameterized Complexity Theory is
based is that not all instances of an NP-hard problem are diffi-
cult to solve. There are simple exact algorithms that work very
well for many, if not most instances of a problem. Often the
instances that arise in practice are a pretty restricted subclass of
all the possible instances. The problem may still be NP-hard on
this subclass, the restrictions can nevertheless help us design a
special algorithm adapted to this subclass that is fast enough
for our purposes. The natural question that arises is then: What
are the properties of an instance that make it hard to solve? The
general idea is to take this property, relate it to a parameter
k which is, for lack of a better word, a representation of the
property and then try to find a so-called fixed-parameter tractable
algorithm for it. An algorithm is fixed-parameter tractable if
its running time can be bounded by O( f (k) · poly(n)), where
n is the size of the input, poly(n) is a polynomial, k is the so-
called parameter (which also must be part of the input) and f
is an arbitrary function ( f does not even have to be decidable).
This is the most general case. For all practical situations f is a
computable and slowly growing exponential function. A prob-
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2 introduction

lem is said to be fixed parameter tractable (or in FPT) if there
exists a fixed-parameter tractable algorithm for it. If we have a
fixed-parameter tractable algorithm for a problem on a specific
parameter k it follows that all elements in a set of instances of
the problem all belonging to a class where k is fixed can be
solved in polynomial time. Even if k is not fixed, if this parame-
ter is small, and the function f (k), the polynomial over n and
the hidden constants in the big O notation are not too bad, then
it is still guaranteed that the algorithm will find a solution in a
reasonable time.

The standard parameter is the size of the solution. This means
that if an instance has a small solution, then it can be computed
in a short time. Even though this is the most common parame-
ter, and in many cases it is also the most natural. Well known
problems like Independent Set and Dominating Set probably
do not admit a fixed-parameter tractable algorithm under rea-
sonable assumptions if we take the size of the solution as the
parameter [15, 16]. Since we are free to chose a different one it
seems then logical to look for different useful parameters. One
such parameter is treewidth.

For a fixed-parameter tractable algorithm for which treewidth
is the parameter we assume that a tree-decomposition of treewidth
k is given as part of the input. We can assume this because
calculating a tree-decomposition of width k is fixed parameter
tractable, with k as a parameter [8]. The treewidth of a graph is
given by the existence of a tree-decomposition of a graph with
that width. A tree-decomposition of a graph G is composed by
a set of bags {Xi | i ∈ I} with a labeling I and a tree T = (I, E).
This structure has to have the following characteristics.

• All nodes of the graph must be contained in at least one
bag.

• If (u, v) ∈ E(G) then there must be at least one bag B such
that u, v ∈ B.

• If there are two bags B and B′ in the tree-decomposition
that both contain u, all bags in the in T path between B
and B′ must contain u too.

The width of a tree-decomposition is the size of the biggest
bag minus one. The width of a graph G is the minimum width
of all possible tree-decomposition of G. It is often said that the
width describes how tree-like a graph is, e.g. the width of a tree
is one and the width of a complete graph is the number of nodes
minus one. In recent times there has been a growing interest in
the study of algorithms on tree-decompositions. One of the main
reasons for this interest is Courcelle’s proof that all problems
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introduction 3

definable in monadic second order logic are fixed-parameter
tractable when treewidth is chosen as the parameter [14].

Bags of degree one are leaves, bags of degree two are introduce
bags and bags of degree greater than two are join bags. Algo-
rithms which work on tree-decomposition normally work on a
special kind of tree-decompositions called nice tree-decompositions.
On top of the properties previously mentioned the following
ones must also be met in nice tree-decompositions:

• The tree must be rooted.

• The tree is a binary tree.

• All leaves must contain a single node.

• If (B, B′) is an edge in the tree-decomposition then |B−
B′| ≤ 1.

• All the children (not the parent) of a join bag must be the
same as the join bag.

Every tree-decomposition can be converted into a nice tree-
decomposition in polynomial time [10]. This makes it easier to
design a dynamic programming algorithm on tree-decompositions.
Such an algorithm normally works by creating tables for the
leaves of the decomposition and then updating these tables
moving from the leaves of a tree-decomposition to its root:

• First create a table for the the leaves.

• Then “move” all tables towards the root:

– If the parent of the current bag is an introduce bag,
then create the table for this parent bag by updating
the table using a specific operation for introduce bags.

– If the parent is a join, then we need the table for the
other child of the join bag too. Create the table for the
join bag by “merging” the tables of its two children.

• The solution can be found in the table of the root bag.

The details of how this is implemented are not very impor-
tant. What is important is to see that these algorithms can have
different operations for introduce bag and join bags. Most actu-
ally have. Normally, the running time of the algorithm can
be bounded by the size of the bags (the width of the tree-
decomposition), but it is clear that the running time of such
an algorithm is affected by the structure of the tree and not
only by the size of the bags. There are algorithms where e.g. the
operation on introduce bags requires just to update the table
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4 introduction

row by row, possibly creating a constant number of extra rows
for each already existing row, while the operation on join bags
requires every row in a table of a child of the join to be com-
pared every other row in the table of the other child of the join.
Even if the upper bound of the running time of the operations
on join and introduce bags is the same, the hidden constants
and the memory requirements are generally worse for join bags.

In this thesis the problem of the structure of tree-decompositions
is dealt with. We will assume that manipulating dynamic pro-
gramming tables for join bags is costlier than for introduce bags.
We can then abstract from the actual implementation of the
algorithm and concentrate on optimizing a tree-decomposition
on the two accounts that have an impact on the running time:

• The number join bags in a nice tree-decomposition of the
graph.

• The size of these join bags.

We will mainly deal with the following question: What is
the minimum number of joins necessary in a natural tree-
decomposition of a chordal graph? A chordal graph is a graph
that contains no chordless cycles of length greater than three. A
natural tree-decomposition is one where the content of every
bag is a clique in the graph. The class of graphs that have natural
tree-decompositions is precisely the class of chordal graphs.

There is a good reason why this is a reasonable way to begin
to tackle the problem. It is known that every tree-decomposition
gives a chordalization of the graph. A chordalization of a graph
G is a set of edges that when added to G result in a chordal
graph. Even more, the minimum tree-decomposition (optimality
measured on width) gives the minimum chordalization of the
graph (number of edges added). That means that either explicitly
or implicitly calculating a tree-decomposition of general graphs
means calculating a chordalization of the graph. So this is a
special case of the general problem of finding optimal tree-
decompositions weighting the number of joins and the size of
introduce nodes. By analyzing what forces there to be joins in
the natural tree-decompositions of the underlying chordalization
of a tree-decomposition, we can investigate what causes there
to be joins in tree-decompositions of general graphs.

We will find that the necessary number of joins we need in
any case can be bounded by a specific structure in the chordal-
ization given by this tree-decomposition. It is not improbable
that this results give a good footing for further research on the
structure of tree-decompositions. Furthermore we will present
an heuristic to minimize the size of the joins bags, given a tree-
decomposition, and we will present an idea to improve the size
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introduction 5

of the join bags in a given tree-decomposition at the cost of
increasing the size of some introduce bags.

To the best of our knowledge, no structural result that bounds
the number of joins necessary in a tree-decomposition was
known. Almost all the literature on tree-decompositions uses
the width as the sole measure of optimality. Hence there is a
dearth of tools to deal with the structure of tree decompositions,
even though the structure can have a big impact on the running
time of a dynamic programming algorithm. Further work on
the results of this thesis may change that. To the best of our
knowledge heuristics, to minimize the number and the size of
joins have never been formalized. These heuristics may be very
useful in practice.

Here is a brief description of the organization of this thesis: In
Chapter 2 we will give some necessary definitions and present
known results related to this area. In Chapter 3 we will present
our results. Finally in Chapter 4, we will further elaborate on
the results of this thesis and their implications, and give ideas
for future research.
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2
D E F I N I T I O N S A N D I M P O RTA N T K N O W N
R E S U LT S

In this chapter we give all the necessary definitions and facts
needed to understand the results of Chapter 3.

2.1 definitions and basic results

Given sets A and B we let A + B denote the union A ∪ B and
A− B denote the complement A \ B. IfM is a collection of sets,
then

⋃M = {e ∈ M | M ∈ M}.
A graph is denoted by G = (V, E), where V is the set of

nodes in the graph and E is the set of edges. All graphs we will
deal with are finite, simple and undirected and, unless noted
otherwise, are connected. V(G) will denote all the nodes in the
graph G and E(G) all its edges. For V′ ⊆ V(G) we let G[V′]
denote the graph with vertex set V′ and edge set (V′ × V′) ∩
E(G). The neighborhood of a node v ∈ V(G) will be denoted
as N(v) and the closed neighborhood as N[v] = N(v) + {v}. The
degree of a node v in a graph is defined as d(v) = |N(v)|.

A path p = (p1, . . . , pl) in a graph G, is a sequence of vertices
of the graph such that pi 6= pi+1 and (pi, pi+1) ∈ E(G) for all
1 ≤ i ≤ l− 1. A cycle is a path where p1 = pl . We will abuse the
notation such that one of the elements in a path may be another
path. If (p1, . . . , pl) is a path such that for 1 ≤ i ≤ l the element
pi = (p′1, . . . , p′j) is a path, then the path we are referring to is
(p1, . . . , pi−1, p′1, . . . , p′j, pi+1, . . . , pl). If p = (p1, . . . , pl) is a path
we will denote the reversed path as pR = (pl, . . . , p1).

We will use the same notation we use for paths for pairs
and triples. If u, v and w are nodes in a graph, then (u, v) or
(u, v, w) must not be paths, they may just be a pair and a triple
of nodes respectively. What is meant will always be clear from
the context.

A partition of of a set S is a set P = {P1, . . . , Pk}, such that⋃P = S and for every pair P, P′ ∈ P , P ∩ P′ = ∅. An element
of P is called a cell.

A stark,k,k will denote a graph that is composed by three
paths (u, u1, . . . , uk), (u, u′1, . . . , u′k) and (u, u′′1 , . . . , u′′k ) such that
all nodes in {u1, . . . , uk, u1, . . . , u′k, u′′1 , . . . , u′′k } are pairwise dis-
tinct and there are no further edges in the graph (see Figure 3.1).

This thesis is about tree-decompositions, so let us define it
formally.

7
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8 definitions and important known results

Definition 2.1 (Tree-Decomposition). A tree-decomposition T of
a graph G is a pair ({Xi | i ∈ I}, T = (I, E)) where the sets Xi are
subsets of V(G), are called bags and are denoted by B(T ) and T is a
tree such that:

•
⋃

i∈I Xi = V(G).

• If (u, v) ∈ E(G) then there exists i ∈ I bag such that u, v ∈ Xi.

• For all i, j, k ∈ I where j is in the path from i to k in T, Xi ∩
Xk ⊆ Xj.

Note that every graph G has a trivial tree-decomposition
({X1 = V(G)}, T = ({1}, ∅)). The treewidth of a tree-decomposition
is the size of the biggest bag minus one. The treewidth of a graph
is the minimum treewidth over all valid tree-decomposition of
the graph. Since the bags of a decomposition are the nodes of
a tree we may treat them both as sets as well as vertices of a
graph. Hence all operations on sets and graph nodes are valid
on the bags of a tree-decomposition.

We will often use a very well known result about tree-decompositions.

Proposition 2.2 ([3]). Let T = ({Xi | i ∈ I}, T = (I, E)) be a
tree-decomposition of a connected graph and let B ∈ B(T ) be one of
its bags. If B is an inner node and we remove it, then the tree falls
apart into two components. If u is a node that is just in one of these
components and v is one that is just contained in the other, then B is
a separator of u and v.

We will use this to prove some things more easily than
through the details of the tree-decomposition definition.

When designing algorithms on tree-decompositions it is often
assumed that the tree-decomposition is a nice tree-decomposition.

Definition 2.3 (Nice Tree-Decomposition). A nice tree-decomposition
({Xi | i ∈ I}, T = (I, E)) of a graph G is a tree-decomposition where
T is a rooted binary tree such that the following properties hold:

• If i ∈ I is a leaf in T, then |Xi| = 1.

• Every node i ∈ I maps either to an introduce, a forget or a join
bag:

– Xi is an introduce bag if i has only one child j where Xi =
Xj + {u} and u ∈ V(G).

– Xi is a forget bag if i has only one child j where Xi =
Xj − {u} and u ∈ V(G).

– Xi is a join bag if i has exactly two children j and k and
Xi = Xj = Xk.
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2.1 definitions and basic results 9

Proposition 2.4 ([10]). Every tree-decomposition can be converted
into a nice tree-decomposition with the same treewidth in polynomial
time.

We need to describe further special subsets of tree-decompositions.

Definition 2.5 (Natural Tree-Decomposition). A natural tree-
decomposition of a graph G is one in which if two nodes u, v of G
are in the same bag, then (u, v) ∈ E(G).

We will see that the only graphs that have a natural tree-
decomposition are chordal graphs. There are many characteri-
zations of chordal graphs, but we will use only three of them.
First we will need to define what a perfect elimination order is.

Definition 2.6 (Perfect Elimination Order). A graph G has a
perfect elimination order iff there is an ordering {u1, . . . , un} =
V(G) of all the nodes in G such that for every 1 ≤ i < n the set
{ui+1, . . . , un} ∩ N(ui) is a clique.

Definition 2.7 (Chordal Graph). A graph G is chordal iff any one
of the following conditions hold:

• G has no chordless cycle of length greater than three.

• G has a natural tree-decomposition (see [18]).

• G has a perfect elimination order (see [3, 25]).

Proposition 2.8 ([25]). We can find a perfect elimination order of a
chordal graph G in time O(n3). This gives us all the maximal cliques
in G.

Definition 2.9 (Chordalization). A chordalization of a graph G =
(V, E) is a set of edges E′ ∩ E = ∅ such that G′ = (V, E + E′) is
chordal.

The size of a chordalization is measured by number of edges
that are added. A minimum chordalization is then one that
adds a minimum number of edges. A tree-decomposition of
minimum width of a graph G also gives us a chordalization of
G.

Proposition 2.10 ([24]). If G = (V, E) is a chordal graph and T is
a tree-decomposition of G then G′ = (V, E + {(u, v) | u, v ∈ B, B ∈
B(T )}) is a chordalization of G.

In this thesis, we will redefine the meaning of join, intro-
duce and forget nodes (see Definition 2.3) to better suit our
needs. Before we had only defined these concepts for nice tree-
decompositions, but for our purposes it is not easy to work with
nice tree-decompositions.
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10 definitions and important known results

Definition 2.11 (Join Bag). In a tree-decomposition a join bag is a
bag whose degree is greater than two. For a tree T the set of all join
bags will be J (T ).

Definition 2.12 (Introduce Bag). Any bag of a tree-decomposition
that is not a join bag is an introduce bag. The set of introduce bags
of a tree-decomposition T will be I(T ) = B(T )−J (T ).

Not that we do not distinguish between forget and introduce
nodes. There is no definition of a forget bag. Instead of working
with nice tree-decompositions, we are going to look at tree-
decompositions that handle the maximal cliques of chordal
graphs.

Definition 2.13 (Maximal Clique Tree-Decomposition). A maxi-
mal clique tree-decomposition is a natural tree-decomposition of a
chordal graph, where all the bags are maximal cliques, except the join
bags, and no bag appears more than once.

Definition 2.14 (Strict Maximal Clique Tree-Decomposition).
A strict maximal clique tree-decomposition is a natural tree-
decomposition of a chordal graph, where all the bags are maximal
cliques, and no bag appears more than once.

Lemma 2.15. All chordal graphs have a natural strict maximal clique
decomposition.

Proof. It is a well known result that all maximal cliques of a
graph must be contained in any tree-decomposition of the graph.
Since in a natural tree-decomposition all bags are cliques, all
bags must either contain a maximal clique or a subset thereof.
From [6] we know that we can convert any tree-decomposition
into a tree-decomposition such that for any two bags B and B′,
B′ * B. From this the lemma follows.

Corollary 2.16. All chordal graphs have a natural maximal clique
decomposition.

In this thesis we analyze the structure of tree-decompositions.
This means that we may have to make some assumptions about
how the running time of these algorithms relates to the struc-
ture of the tree-decompositions. Our results would improve the
running time of algorithms that fall under the definition of a
normal tree-decompositions algorithm.

Definition 2.17 (Normal Tree-Decomposition Algorithm). A al-
gorithm that works on tree-decompositions is normal if it works on
any nice tree-decomposition T of a graph G with n nodes, and there
exists an introduce function i : N×N 7→ R and an join function
j : N×N 7→ R, where for all x, n′ ∈ N, j(x, n′) ≥ i(x, n′), such
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2.2 literature survey 11

that for an instance T the running time of the algorithm is bounded
by

∑
X∈I(T )

i(|X|, n) + ∑
X∈J (T )

j(|X|, n)

The running time of a normal tree-decomposition algorithm
on a specific nice tree-decomposition will depend on the number
of join and introduce bags. We said before that we are not going
to work with nice tree-decompositions, that is why we need to
define a measure for general tree-decompositions.

Definition 2.18 (Number of Joins). The number of joins of a tree-
decomposition T is:

∑
X∈J (T )

(d(X)− 2)

Notice that we distinguish between the number of join bags
and the number of joins in a tree-decomposition. The number
of joins in any tree-decomposition T is precisely the number of
join bags in a nice tree-decomposition T ′ obtained from T .

2.2 literature survey

Bodlaender and Fomin investigate in [6] the structure of tree-
decompositiona, but only in the sense that the size of all bags
are taken into account, not just the size of the biggest one. They
relate this to a function f : N 7→ R whose value correlates with
the running time of an algorithm on a bag, given the size of the
bag. The measure they optimize for a tree-decomposition T is
then:

∑
B∈B(T )

f (|B|)

As long as the function f (n) is in Ω(2n) they proof that the op-
timal tree-decomposition is one of the minimum chordalization
of the graph. We saw before that all chordalizations of a graph
give a tree-decomposition of the graph. This means that we can
find the optimal tree-decomposition on the measure previously
given by enumerating all minimum chordalizations. Since all
minimum chordalizations of a graph can be determined by find-
ing maximal cliques in its separator graph [23], they construct a
polynomial time algorithm for graph classes with a polynomial
number of minimum separators. This way of measuring optimal-
ity is closer to the actual running time an algorithm will have
on a specific tree-decomposition, but it still does not distinguish
between join bags and introduce bags.

There were two interesting results on which we can build on
to tackle our problem. Both are based on the notion of asteroidal
triples. We will define what an asteroidal triple is in Chapter 3.
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12 definitions and important known results

One result that can be expanded upon to solve our problem is
given in [27]. Here a characterization of tree-decompositions that
have a small pathwidth is given. In this paper the measure of
catwidth is defined, which is the width of a tree-decomposition
of pathwidth one. This is an interesting measure because one can
show that the memory requirements for such tree-decompositions
are lower for many algorithms. A class of graphs where the tree-
decompositions of the graphs have this property is given. This
is done by extending the definition of asteroidal triples. Such
a result goes in the right direction for our purposes, since it is
a result about the structure of tree-decompositions, even if it
is a very narrow one. We will make a more generalized exten-
sion of asteroidal triples to talk about the number of joins in
tree-decompositions of any pathwidth.

There are other indications that asteroidal triples are a good
concept on which to base an analysis of this problem. It is a
known result that there is a tree-decomposition of minimum
width for asteroidal triple free graphs that is a path decom-
position [21]. Also, graph classes with a bounded number of
asteroidal triples have a constant factor approximation algorithm
for treewidth (the factor depends on the number of asteroidal
triples)[11]. The problem is that the classes of graphs that are
known to be asteroidal triple free graphs seems to be somewhat
restricted, e.g. having to contain a pair of nodes such that all
paths joining them are dominating sets of the graph [12, 13].

To the best of our knowledge nobody has previously at-
tempted to solve the problem of minimality of number and
size of joins in chordal graphs.
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B A S I C T R E E S T R U C T U R E

Our first objective when dealing with the structure of tree-
decompositions will be to find tree-decompositions of mini-
mum width with a minimum number of join nodes. This would
allow us to minimize the running time even more than we
would by just minimizing treewidth. This problem is of course
NP-complete, since it must be even harder than finding a tree-
decomposition of minimum width.

We know that any tree-decomposition of minimum width
implicitly specifies a minimum chordalization of a graph. We
also know that calculating a tree-decomposition for a chordal
graphs can be done in polynomial time. If we would solve the
general problem of minimumity of both width and number of
joins for general graphs, we would thus implicitly solve the
easier problem of minimum number of joins for chordal graphs.
In this chapter we are mainly going to look at this reduced
problem:

Minimum Number of Joins on Chordal Graphs

Input: A chordal graph G.
Problem: Find the minimum number of joins of any

natural tree-decompositions of G.

All natural tree-decompositions of G are of minimum width.
We could restate this problem as: Given a chordal graph G, find
a tree-decomposition of G with a minimum number of joins that
maintains the known minimum width. Finding a solution for
this problem would give us a two step heuristic for the general
problem:

1. Find some tree-decomposition of the graph G with some
of the already known algorithms that minimizes width.

2. Attempt to optimize the given tree-decomposition to de-
crease the number of joins.

More specifically this would have the following work-flow:

1. Find some tree-decomposition of the graph G with some
of the already known algorithms.

2. Calculate the chordalization G′ of G given by the tree-
decomposition.

13
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3. Try to find a natural tree-decomposition of G′ with a mini-
mum number of joins.

The interest in this subproblem goes beyond this heuristic. The
hope is that by investigating what forces the existence of joins in
the underlying chordalization given by any tree-decomposition
algorithm we might be able to control for this while constructing
tree-decompositions for general graphs.

In this chapter we are going to first deal with the problem of
finding a natural tree-decomposition with a minimum number
of joins for chordal graphs. At the end of the chapter we are also
going to give a heuristic to minimize the size of these joins.

In Chapter 2 we stated as a previously widely known result
that in a natural tree-decomposition of a chordal graph all bags
are cliques in the graph. We also stated that all maximal cliques
of a graph must be contained in some bag. This means we can
restate our problem like this:

Minimum Number of Joins on Chordal Graphs

Input: All the maximal cliques C of a chordal
graph G.

Problem: Find a natural tree-decomposition of G that
connects bags containing each a clique in C.

We will see that stating the problem in this fashion simplifies
reasoning about it. This way of looking at the problem does not
impose a big increment on the running time of any algorithm
we would develop to find a good natural tree-decompositions,
since we can calculate all the maximal cliques of a chordal graph
in O(n3) time by finding the perfect elimination order of the
graph and then removing all cliques that are a subset of other
cliques (see Proposition 2.8).

The other thing we care about besides number of joins is their
size. Ideally we would like to find a natural tree-decomposition
where the added size of all the joins is the smallest. This would
have the lowest impact on the running time. Expressed formally,
the problem we ideally would want to solve is:

Minimum Added Join Size

Input: A chordal graph G.
Problem: Find a natural tree-decomposition T of G

such that ∑X∈J (T )(d(X)− 2) · |X| is mini-
mum.

In this chapter we are first going to try to minimize the num-
ber of joins. Doing this we are going to find a certain structure
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in the underlying chordalization of any tree-decomposition that
we can link to the number of joins. At the end of the chapter
we are going to build on some minor results of this first part
to find a heuristic to minimize the size of the joins, given a
tree-decomposition, while mantaining its width.

To analyze these problem we will first prove some related
structural results about tree-decompositions, specifically the
nature of joins nodes in a tree-decomposition of a chordal graph.
There are chordal graphs that have tree-decompositions that
do not have join bags. A tree-decomposition of a graph that
has no join bags, is a called a path decomposition. This raises the
question of what the difference is between chordal graphs which
have a natural path decomposition and those which do not. On
the basis of such a characterization, we will try to link some
structure to be found in chordal graphs with the number of
joins any natural tree-decomposition of a chordal graph has to
contain. The notion of asteroidal triples suffices to characterize
these.

Definition 3.1 (Asteroidal Triple). An asteroidal triple is a triple
(x, y, z) of pairwise distinct non-adjacent nodes such that for every
pair of distinct nodes u, v ∈ {x, y, z} there is a u-v path that does not
contain any neighbor of the third node in the triple.

The following result states formally the relation between as-
teroidal triples and natural path decompositions.

Proposition 3.2 ([22]). A graph is an interval graph (has a natural
path decomposition) iff the graph is chordal and asteroidal triple free.

Therefore, if there is an asteroidal triple in a chordal graph G
then any natural tree-decomposition of G has at least one join
bag. Proposition 3.2 does not indicate where or how many joins
are necessary. The natural question that arises is whether there
is a connection between the number of asteroidal triples and the
minimum necessary number of joins. This is not the case and
it can be shown with an example: A stark,k,k graph will have at
least k− 1 asteroidal triples (with no node in common), but it
has a tree-decomposition that contains just one join bag (See
Figure 3.1). Clearly an arbitrary number of asteroidal triples can
“share” a separator in a tree-decomposition. But which are the
ones that can not “share” a separator and which are the ones
that can? To that end let us try to analyze what share means in
this context. We will try to link asteroidal triples in graphs to
asteroidal triples in tree-decompositions.

The first thing to notice is that since the nodes of asteroidal
triples form an independent set, two of them can not be con-
tained in a bag of a natural tree-decomposition. Thus the nodes
of asteroidal triples must be distributed over several bags.
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Figure 3.1: A stark,k,k and its tree-decomposition.

Definition 3.3. We will say that three bags X, Y, Z contain the
asteroidal triple (x, y, z) if x ∈ X, y ∈ Y and z ∈ Z.

With the help of this definition, the location of join bags in
any tree-decomposition can be related to the bags that contain
asteroidal triples.

Lemma 3.4. Let T be a tree-decomposition of a chordal graph G and
let X, Y and Z be bags in T , whose content are maximal cliques of G.
If X, Y, Z contain an asteroidal triple there is a join bag J that lies in
every path in T between two of these bags.

Proof. Assume the contrary. W.l.o.g. assume that the bag Y is
the one that lies in a path from X to Z. For the asteroidal triple
to be valid, there must be a path between x and z that does not
intersect any node in Y, since Y ⊆ N[y], as y is in the clique. Let
p be any such path. In this configuration Y is a separator of X
and Z, which means that it is also a separator of x and z. This
implies that no such path p can exist, which would mean that
(x, y, z) is not an asteroidal triple.

We have deduced this far that if we have three maximal cliques
in our chordal graph, such that they contain an asteroidal triple,
the bags containing these maximal cliques must be connected
through a join at some point.

It is clear that there are maximal cliques that contain different
asteroidal triples but nevertheless can share a join bag in a nat-
ural tree-decomposition. Again, in our stark,k,k example, which
can be seen in Figure 3.1, we can see that the tree-decomposition
has just one join for all the asteroidal triples in the graph. The
investigations in the next section will be based on this intuition.
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3.1 number of joins in a natural tree-decomposition

First we are going to investigate what the minimum necessary
number of joins is. To make things easier, we are going to show
that it is enough to look at tree-decompositions where all bags
are maximal cliques, to solve this problem.

Lemma 3.5. For a chordal graph G the minimum number of join bags
of strict maximal clique decomposition1 is the same as for natural tree-
decompositions.

Proof. Let T be a natural tree-decomposition of G and let J be a
join bag in T . Since it is a natural tree-decomposition, we know
that G[J] is a clique. As such G[J] is either a maximal clique or a
subset of at least one maximal clique J′ of G. The maximal clique
J′ must be contained in some bag of T . J must be connected
to J′ and all bags in the path between them must be a superset
of J. We can create a strict maximal clique decomposition that
has the same number of join bags by performing the following
operations repeatedly until there are no more changes:

1. Find a bag J which is not a maximal clique. If no such bag
exists we are done.

2. Let J′ be the nearest bag in T containing a maximal clique
which is a superset of J. Substitute the content of J with
the content of J′.

3. Contract all edges in the new tree-decomposition that
connect two bags with the same content.

The contraction operation does not increase the number of
joins, which means that this conversion will give us a strict
maximal clique decomposition with the same number of joins
as before.

The other direction is trivial, since strict maximal cliques de-
compositions of chordal graphs are natural tree-decompositions.

Remark 3.1. There is a mapping between strict and non-strict max-
imal clique decompositions.

We will use this notion of converting between strict and non-
strict maximal clique decompositions later for a heuristic that
tries to minimize the size of the join bags.

Having obtained a simplified version of the problem, let us
investigate which maximal cliques we will have to use as joins.
We will prove that there is a direct relation between a spe-
cial kind of asteroidal triples (which we will call tight asteroidal

1 All bags must contain maximal cliques.
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triple) and the number of join bags necessary in any natural
tree-decomposition of a chordal graph. We first need another
definition.

Definition 3.6 (Validating Path). A validating path is a shortest
path between any two nodes of an asteroidal triple that does not cross
the closed neighborhood of the third node.

Notice that there can be more than one validating path be-
tween two nodes of a triple.

Definition 3.7 (Tight Asteroidal Triple). An asteroidal triple (x, y, z)
is tight if no node u in a validating path of the triple forms an aster-
oidal triple (u, v, w) where u /∈ {x, y, z} and v, w ∈ {x, y, z}.

We will be able to show that non-tight asteroidal triples are
not necessary to bound the minimum number of joins necessary
in a natural tree-decomposition. Any tree-decomposition of a
chordal graph has to contain enough join bags to separate all
asteroidal triples, so let us find a connection between tight and
non-tight asteroidal triples over their separators.

Definition 3.8 (Separator of an Asteroidal Triple). The separator
of an asteroidal triple (x, y, z) of a graph G is a set of nodes S (
V(G), that separates each distinct pair u, v ∈ {x, y, z} in the triple.

First we need to proof something about cycles in chordal
graphs. We will now specify where chords must appear in
cycles of chordal graphs.

Lemma 3.9. In any cycle C = (. . . , u, x, v, . . . ) of a chordal graph
G, if x is not connected to another node in the cycle besides u and v
then (u, v) ∈ E(G).

Proof. Let C′ be an induced cycle of the graph that contains u, x
and v and let V(C′) ⊆ V(C). If there is no edge between u and
v this cycle has clearly length greater than three, which would
mean that G is not chordal.

Lemma 3.10. An asteroidal triple (x, y, z) in a chordal graph is ei-
ther tight or there exists a tight asteroidal triple (x′, y′, z′) such that
each node u ∈ {x′, y′, z′} is either a node of (x, y, z) or lies in a
validating path of (x, y, z). We will call (x′, y′, z′) a corresponding
tight asteroidal triple of (x, y, z).

Proof. We will show that we can find the corresponding tight
asteroidal triple of an asteroidal triple (x, y, z) in the following
fashion:

1. If (x, y, z) is a tight asteroidal triple we are done.
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2. If (x, y, z) is not tight, find a node u in a validating path
that forms an asteroidal triple (u, v, w) with v, w ∈ {x, y, z}.
Repeat step 1 for (u, v, w).

This would always yield a corresponding tight asteroidal
triple if we can show that in chordal graphs this loop ends, i.e. if
no node can be selected two times in step 2.

Since it must be possible to construct a maximal clique de-
composition of any chordal, there must be a maximal clique S
that separates (x, y, z) (See 2.15). W.l.o.g let the node u selected
in step 2 be in a validating path pxy between x and y and let
(u, y, z) be the new asteroidal triple. The selected node u can not
be an element of S, since no node connected to a separator of
(x, y, z) can form an asteroidal triple with two nodes of the triple.
At least one node of pxy must be contained in S. W.l.o.g. let u be
in a part of pxy between x and the nearest node to x in pxy that
is an element of S. So that in a later iteration x can be selected
again, it would have to be in a validating path of (u, y, z). The
validating paths from u to y must be a subset of the ones from x
to y in (x, y, z), since u lies in pxy. Any validating path of (u, y, z)
that crosses x must also be a path between two nodes of (x, y, z)
that crosses S. Let pxs be the part of such a path from x to a
node in S.

If we assume that there is no such path pxs that does not cross
u, then this is trivially true. Assume then that pxs is a path such
that u /∈ pxs. Let see what happens if u is connected to a node
in pxs. There are two options:

• If pxs is part of a validating path of (u, y, z) from y to z,
then it would intersect the neighborhood of u and which
goes against our assumption that it is part of a validating
path (u, y, z).

• If pxs is part of a validating path of (u, y, z) from u to z
then it would not be a shortest path between u and z that
does not intersect the neighborhood of y.

This means if such a validating path of (u, y, z) that contains
x exists, then there can be no edge between u and a node in pxs.
Since we are assuming u is not connected to any node in pxs,
the path pxs and the part of pxy from x to a node in S form a
cycle of at least length four. If u is not connected to any chord
of the cycle, we know from Lemma 3.9 that its neighbors in the
cycle are connected. This would mean that pxy is not an induced
path in G. Since this is not possible, and u can not be connected
to any other node in pxy for the same reason, it follows that
there is a chord between u and a node in pxs, which goes against
assumption.
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Figure 3.2: Graph with asteroidal triples but no tight asteroidal triple

Since we proved that this configuration is not possible in any
case, then the loop must end and the lemma follows.

Corollary 3.11. Any chordal graph that does not have a natural path
decomposition will contain at least one tight asteroidal triple.

Expressed in a less formal way, we could say that tight as-
teroidal triple lie inside non-tight asteroidal triples in chordal
graphs. The notion of corresponding tight asteroidal triples does
not work for general graphs. An example of why corresponding
tight asteroidal triples do not make sense in non-chordal graphs
can be seen in Figure 3.2. Here (0, 3, 6) is an asteroidal triple.
But if we take a node in one of its validating paths and make an
asteroidal triple with two other nodes in (0, 3, 6) (e.g. (1, 3, 6)),
then the node we removed from the triple is in a validating
path of the new asteroidal triple (for (1, 3, 6) the node 0 lies in a
validating path from 1 to 6).

Lemma 3.12. Let (x, y, z) be an non-tight asteroidal triple in a chordal
graph G. There exists a tight asteroidal triple (x′, y′, z′) such that ev-
ery separator of (x′, y′, z′) is also a separator of (x, y, z).

Proof. If (x, y, z) is a non-tight asteroidal triple it means that
there is a node u in a validating path of (x, y, z) that form a tight
asteroidal triple with two nodes of this triple. W.l.o.g. let this
triple be (u, y, z) and let u lie in a validating path pxy from x to
y.

Let S be a separator of (u, y, z). We want to show that S must
also be a separator of (x, y, z). Let pxu be the part of pxy that
goes from x to u and puy the part that goes from u to y. The
path puy must be a validating path of (u, y, z), which means that
at least one node of puy is contained in S. The node u can not
be contained in S, since no node of an asteroidal triple can be
connected to a separator of the triple. Ever validating path p
must be an induced path G[

⋃
p], because validating paths are

shortest paths. If a node in of pxu would be contained in S, since
at least one node of pxy must be contained in S there would
be an edge between two non-consecutive nodes in the path pxy.
Since then pxy would not be a shortest path it follows that no
node of pxu is in S.
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If we assume that S is not a separator of (x, y, z), then there
must be a path between either x and y or x and z that does not
intersect S. It can not be a path between y and z because then
S would not be a separator of (u, y, z). W.l.o.g. let there be a
path p′xy that goes from x to y that does not intersect S. Then
we could reach y from u without intersecting S by using pux
in reverse and then going over p′xy. This would mean that S is
not a separator of (u, y, z), which goes against our assumptions.
From this follows that all separators of (u, y, z) are separators of
(x, y, z).

We can use this argument repeatedly for each new asteroidal
triple we get. From the proof of Lemma 3.10 we know that
we will repeat this a finite number of times and arrive at a
tight asteroidal triple with this process. From this the lemma
follows.

This leads us to or first theorem about the number of separa-
tors in any natural decomposition of a chordal graph.

Theorem 3.13. The minimum number of natural separators needed
to separate all asteroidal triples of a chordal graph is the same as the
minimum number of separators needed to separate the tight asteroidal
triples of a chordal graph.

Proof. All sets of separators that separator all asteroidal triples
in a chordal graph necessarily separate all tight asteroidal triples.
From Lemma 3.12 it follows that separating all tight asteroidal
triples suffices.

Theorem 3.13 seems to be a good reason to investigate tight as-
teroidal triples further. First let us prove the following property
of shortest paths in chordal graphs, which help us to character-
ize validating paths even further.

which we will use to investigate the nature of tight asteroidal
triples in chordal graphs.

Lemma 3.14. Let u and v be two nodes in a chordal graph G. Let
P = (u, p1, . . . , pl, v) and P′ = (u, p′1, . . . , p′l, v) be two shortest
path between u and v where l ≥ 1 and such that pj 6= p′k for 1 ≤
j, k ≤ l. Then {(pi, p′i) | 1 ≤ i ≤ l} ⊆ E(G).

Proof. Clearly this configuration forms a cycle of length greater
then three. The lemma is obviously true for l = 1. Let us as-
sume that l > 1 then. There can be no chord between two
non-consecutive nodes of one of the paths, since this would
mean that P and P′ are not shortest paths between u and v.
There can also not be be a chord in the cycle between two nodes
pi and p′j where 1 ≤ i, j ≤ l and |i− j| ≥ 2. If there would be
such a chord then there would a shorter path between u and
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v over the chord. This means there can only be chords in this
cycle between pi and p′j iff |i − j| ≤ 1. We want to show that
we have to add all edges where |i− j| = 0. It is not possible to
make a cycle non-chordal by adding chords to it. This means
that we can not block any possible chordalization of the cycle
by adding all edges where |i− j| = 1. But doing this still leaves
every two nodes pi and p′j where |i− j| = 0 in a cycle of length
four. More specifically, let w ∈ P be a node in one of the paths.
Let w be either u or a node in {p1, . . . , pl−1}. The node w must
be connected to two nodes pk and p′k where 1 ≤ k ≤ l. The
nodes pk and p′k must again be connected to the same node
w′, which is either v or pk+1. This means that there is a cycle
of length four (w, p′k, w′, pk, w), where (w, pk, w′) and (w, p′k, w′)
are two shortest path between w and w′. At the beginning we
concluded that there must be an edge between pk and p′k in
such a configuration. Since we can do this for any pair (pi, p′i),
1 ≤ i ≤ l, the lemma follows.

Corollary 3.15. Let (x, y, z) be a tight asteroidal triple in a chordal
graph. All nodes that are in a validating path between two nodes
u, v ∈ {x, y, z} at the same distance to u will form a clique.

Let us investigate separators of tight asteroidal triples by
looking at the maximal cliques of the graph that cut some of
its validating paths. This simplifies the following arguments
as it enables us to work with sets of nodes instead of sets of
validating paths.

This means that instead of looking at the paths it will be easier
to look at the set of nodes contained in the validating paths.

Definition 3.16 (Validating set). Let (x, y, z) be an asteroidal triple
of a chordal graph G and P = {p1, . . . , pk} be the set of all validating
paths of (x, y, z). Then we call the set {u ∈ V(G) | p ∈ P, u ∈ p}
the validating set of (x, y, z).

First, let us prove that for any node in a tight asteroidal triple
of chordal graph, we can find a maximal clique that contains the
node and all the nodes of the validating set of the triple with
which the node is connected. This will be the corollary of the
next lemma.

Lemma 3.17. Let (x, y, z) be a tight asteroidal triple in a chordal
graph G. Furthermore let M be the validating set of (x, y, z). Then
for any node u ∈ {x, y, z} the set N(u) ∩M is a clique.

Proof. From Lemma 3.14 we know that all nodes in the neighbor-
hood of u that are in a path from u to a node v ∈ {x, y, z} − {u}
and have the same distance to u must form a clique. This means
that the nodes that have distance one to u, which are the ones
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Figure 3.3: A chordal graph with a tight asteroidal triple (0, 5, 6) and a
tree-decomposition of the graph with two separator cliques
{1, 2, 3} and {2, 3, 4}

that are in N(u), must also form a clique. It is left to show that
for two distinct nodes v, w ∈ {x, y, z} − {u} the node v′ of any
validating path puv from u to v for which (u, v′) ∈ E(G) and
the node w′ in any validating path puw from u to w for which
(u, w′) ∈ E(G) must be connected by an edge.

In a chordal graph there has to be a maximal clique S that
separates (x, y, z). This means that since both puv and puw cross
the clique S the tree nodes v′, u and w′ must lie in a cycle. The
node u can no be connected to any other nodes of puv or puw
besides v′ and w′, else puv and/or puw would not be shortest
paths. Then from Lemma 3.9 it follows that (v′, w′) ∈ E(G).
Since this is valid for any such pair of nodes connected to u the
lemma follows.

Corollary 3.18. For any node in a tight asteroidal triple there is a
maximal clique containing the node and all the nodes in the validating
set connected to the node.

We will analyze now the relationship between the maximal
cliques which are separators of a tight asteroidal triple and the
cliques that are not separators, but intersect such separators.

Definition 3.19 (Separator Clique). The separator cliques of a tight
asteroidal triple (x, y, z) in a chordal graph G are the maximal cliques
of G that separate (x, y, z).

Definition 3.20 (Connection Clique). Let (x, y, z) be a tight aster-
oidal triple in a chordal graph G and letM be the set of its separator
cliques. A connection clique is a maximal clique C /∈ M of G for
which there is a separator clique S ∈ M such that C ∩ S 6= ∅.

Definition 3.21 (Connection Cut). Let (x, y, z) be a tight asteroidal
triple of a chordal graph and letM be the set of its separator cliques.
Furthermore let C be one of its connection cliques. The connection
cut c(C) of C is an intersection C∩ S with a separator clique S ∈ M,
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such that there is no separator clique S′ ∈ M for which |C ∩ S′| >
|C ∩ S|.

Definition 3.22 (Maximal Cut). Let (x, y, z) be a tight asteroidal
triple of a chordal graph and let C be the set of its connection cliques.
A connection clique C ∈ C has a maximal cut if there is no other
connection clique C′ ∈ C such that c(C) ( c(C′).

A rough sketch of the algorithm we want to create based on
these notions is the following:

1. Find a tight asteroidal triple (x, y, z) in the chordal graph
G.

2. Find all the separator cliquesM of (x, y, z).

3. Call the algorithm recursively on G[
⋃M] which gives us

the tree-decomposition TM.

4. Partition all the maximal cliques of G that are not separator
cliques of (x, y, z) in such a way that a tree-decomposition
of a cell of the partition can be connected to TM with a
single edge.

5. Call the algorithm on each cell of the partition and get the
trees {T1, . . . , Tk}.

6. Make a tree-decomposition of the current graph by con-
necting each element of {T1, . . . , Tk} to TM with a single
edge.

Furthermore we are going to show that we can make such
an algorithm where the number of joins in the resulting tree-
decomposition will be bounded by the number of tight aster-
oidal triple in the chordal graph. The work needed to show
that a partition like the one described in step 4 of the previous
algorithm sketch is rather involved. We will start by defining
certain things that will be useful later.

Definition 3.23 (Connection Partition). Let (x, y, z) be a tight as-
teroidal triple of a chordal graph G, let M be the set of separator
cliques of (x, y, z) and let C be the set of connection cliques of (x, y, z).
The connection cuts of G can be ordered as a partially ordered set with
respect to set inclusion relation. Let I be the set of maximal elements
in this partially ordered set. The connection partition is a partition
of C with respect to the elements of I . A connection clique C ∈ C can
be in a cell belonging to I ∈ I if c(C) ⊆ I.

Notice that a connection partition must not be unique. Before
we use this partition as a basis for our algorithm we have to
proof certain properties of connections cliques.
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Lemma 3.24. Let (x, y, z) be a tight asteroidal triple of a chordal
graph G and let M be the set of all separator cliques of (x, y, z).
If C /∈ M is a maximal clique of G then there is no natural tree-
decomposition T of G, such that C is in a path between two separator
cliques S, S′ ∈ M.

Proof. Since S, C and S′ are maximal cliques and they are in a
path, it means that there must be a node u ∈ S such that u /∈ C, S
and a node v ∈ S′ such that v /∈ A, S and u 6= v. We know then
that C must be a separator of u and v (see Proposition 2.2). C
is by construction not a separator of (x, y, z), which means that
there is a path p between two nodes in the triple that does not
cross C. A node of p must be contained in both S and S′, which
means that we can use part of p to reach v from u without
crossing C. This would mean that C is not a separator of u and
v, which is a contradiction.

Lemma 3.25. Let (x, y, z) be a tight asteroidal triple in a chordal
graph and let C be one of its connection cliques. The connection cut
of C is unique.

Proof. If the connection cut of C would not be unique there
would have to be two separator cliques S and S′ of (x, y, z) such
that |C ∩ S| = |C ∩ S′| but C ∩ S 6= C ∩ S′. This means that one
of two things must be true:

• C must lie in a path between S and S′. The previous lemma
makes this impossible, since C is by definition not a sepa-
rator.

• There must be a separator clique S′′ such that C ∩ S (
C ∩ S′′ ) C ∩ S′. This would mean that neither C ∩ S
nor C ∩ S′ are connection cuts of C, since the intersection
C ∩ S′′ would be bigger than both of them. This would
also go against our assumptions.

Since both options are impossible, the lemma follows.

Lemma 3.26. Let (x, y, z) be a tight asteroidal triple in a chordal
graph G and let C and C′ be two connection cliques of (x, y, z).
If c(C) * c(C′) and c(C′) * c(C) then there is no node u /∈
c(C), c(C′) such that u ∈ C ∩ C′.

Proof. Let T be natural tree-decomposition of G. Let us assume
that a node u exists. For both C and C′ there must be a path
in T that connects them to the nearest separator cliques in T
of (x, y, z), S ⊇ c(C) and S′ ⊇ c(C′) respectively. Since neither
c(C) ⊆ c(C′) nor c(C′) ⊆ c(C), it follows that neither S∩C * C′

nor S′ ∩ C′ * C. This means that C can not lie in a path from
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C′ to S′ nor can C′ lie in a path from C to S. From Lemma 3.24

we know that neither C nor C′ can lie in a path of T between
to separator cliques of (x, y, z). This means that there must be
a path in T from C to C′ such that S and S′ are in the path.
Since both C and C′ contain u, and then every bag in the path
between them must also contain u, it follows that u ∈ S, S′. But
this would mean that u ∈ c(C), c(C′), which goes against our
assumptions.

Corollary 3.27. Let (x, y, z) be a tight asteroidal triple of a chordal
graph, let M be the set of separator cliques of (x, y, z) and let C
be a connection clique of (x, y, z) with a maximal cut. For any node
u ∈ C− c(C), N(u) ∩⋃M = c(C).

Proof. If C has a maximal cut and u is connected to some node
in a separator clique that is not in c(C), then there must be
some connection clique C′ that contains part of these edges. The
connection cut c(C′) can then not be a subset of c(C). Since C
is a maximal cut it can not be a proper superset either. This
means that if C and C′ both contain u, it would go against
Lemma 3.26.

Lemma 3.28. Let (x, y, z) be a tight asteroidal triple in a chordal
graph G, letM be the set of separator cliques and C be the set of con-
nection cliques of (x, y, z). Furthermore let H be a connected compo-
nent of G[V(G)−⋃ C]. Let also C and C′ be two connection cliques
with maximal cuts such that c(C) * c(C′) and c(C′) * c(C). Then
either G[

⋃M+V(H)+C] or G[
⋃M+V(H)+C′] has more than

one component.

Proof. Notice the graph G[
⋃M+ V(H)] has to have two com-

ponents. G[
⋃M] can only have one component because else

there would have to be a maximal clique which would be
a separator of two components of G[

⋃M], which would go
against Lemma 3.24. G[V(H)] has one components by defini-
tion. There can be no edge between a node of G[V(H)] and
G[

⋃M] because any such node must be contained in the part
of a connection clique that is not its connection cut. None of
these nodes are present in G[

⋃M+ V(H)]. Let us assume that
G[

⋃M+ V(H) + C] and G[
⋃M+ V(H) + C′] have both just

one component. We are going to show that this would mean
that G is not chordal.

Let C and C′ be two connection cliques with maximal cuts.
Let u ∈ C− C′ and v ∈ C′ − C be two nodes such that neither
of them is in c(C) nor in c(C′). We know from Lemma 3.26

that such nodes must exist. Furthermore let u′ ∈ c(C)− c(C′)
and v′ ∈ c(C′)− c(C). What we are going to show is that in this
configuration there are node u, u′, v and v′ that lie in a chordless
cycle of at least length four.
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Now we are going to show that the nodes u′, v′ either form an
edge (u′, v′) ∈ E(G) or there is a shortest path pu′v′ from u′ to
v′ that does not intersect C ∩ C′. The node u′ is in c(C), which
means that it is contained in a separator clique S of (x, y, z).
There must be a path pxyz between two nodes of (x, y, z) that
does not intersect C, else C would be a separator of (x, y, z)
instead of a connection clique. Since there must be a node of
pxyz in S, u must be connected to a node in pxyz. The node v′

must also be contained in some separator clique S′ and there
must be a node of pxyz in S. Now there are two options:

• The node v′ is a node in pxyz. Then we can reach v′ from
u′ over the path pxyz without intersecting C ∩ C′.

• The node v′ is not a node in pxyz. Let w be the node of pxyz
to which v′ is connected. Then we can reach v′ from u′

using the part of pxyz that goes to w and then to v′ without
intersecting C ∩ C′.

There must be a shortest path puv from u to v that only
contains node of V(H). Let us assume that there is a path puv
where if a node of puv is connected to nodes in

⋃M it must be
connected to a subset of C ∩ C′. Then we can show that there is
a chordless cycle of at least length four in G:

Let us look that the cycle (u, u′, pu′v′ , v′, v, pR
uv, u). In any case

this cycle contains a chordless cycle of at least length four:

• From Corollary 3.27 we know that u and v can not be
connected to any node to which they are note connected
in C and C′ respectively. This means that there is no chord
(u, v′) ∈ E(G), (v, u′) ∈ E(G) nor between u or v and a
node of pu′v′ .

• pu′v′ and puv are shortest paths, which means that there is
no edge between two non-consecutive nodes.

• No node of pu′v′ is connected to a node of puv, since no
node in pu′v′ is in C ∩ C′ and node in puv can only be
connected to node in C ∩ C′.

• Neither v′ nor u′ are in C ∩ C′ so no node in puv can be
connected to either of them.

These are all possible chords. If pu′v′ and puv are empty, i.e.
(u, v) ∈ E(G) and (u′, v′) ∈ E(G), then there is a chordless cycle
of length four. That means that if a path puv exists we would
have proofed the lemma.

Let puv be a shortest path between u and v that contains a
node w such that N(w) ∩ ⋃M * C ∩ C′. From Corollary 3.27
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we know that there must be a connection clique with a maximal
cut C′′ that contains all these edges. The connection cut c(C′′)
can not be a subset of c(C) and c(C′). It can not be a proper
superset of c(C) or c(C′) either, since then C and C′ would then
not have maximal cuts. This means that either c(C) * c(C′′) and
c(C′′) * c(C) or c(C′) * c(C′′) and c(C′′) * c(C′). W.l.o.g. let
us say that c(C) * c(C′′) and c(C′′) * c(C). This means that we
can apply the logic of this proof to C and C′′ from the beginning.
This time we can take w ∈ C′′ instead of u ∈ C′ as the node that
is not in the connection cut of C′′. As a shortest path between u
and w we can take a part of puv. Since puv is always a shortest
path, this can only happen a finite number of times.

As such we will reach a configuration were we can start the
proof with two connection cliques C and C′ where there is a
path puv between u and v where no node is connected to a node
in

⋃M that is not in C ∩ C′. As we showed before, then we can
find a chordless cycle of at least length four, which goes against
the chordality of G.

Definition 3.29 (Clique Components Partition). Let (x, y, z) be
a tight asteroidal triple of a chordal graph G, let M be the set of
separator cliques and C the set of connection cliques of (x, y, z) and
let R be the set of maximal cliques of G that are neither separator nor
connection cliques of (x, y, z). Furthermore let CP be a connection
partition of C. Then a clique component partition is a partition of
C +R which is constructed as follows:

• Start with CP which already partitions C. We will keep the
same number of cells as CP has.

• From Lemma 3.28 we know that for a connected component H
of G[V(G)− ⋃M] all the edges that connect a node in H to
a node in G[M] must be in connections cliques which are all
contained in a single cell of CP.

• Every maximal clique R ∈ R must be contained in a compo-
nent H of G[V(G)−⋃M].

• The maximal clique R is then contained in the cell that contains
all connection cliques C ∈ C such that G[M+V(H) + C] has
a single component.

Lemma 3.30. Let (x, y, z) be a tight asteroidal triple of the chordal
graph G and letM be the set of its separator cliques. Furthermore let
CCP = {C1, . . . , Ck} be a clique components partition of (x, y, z).
We can then construct a natural tree-decomposition of G by con-
structing one natural tree-decompositions of M and and a natural
tree-decomposition for each cell in CCP and then connecting each of
these with one edge to a tree-decomposition decomposition ofM.
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Proof. From Lemma 3.24 we know that the maximal cliques
in M must form a single component in any strict maximal
clique decomposition of G. We can therefore first construct a
tree-decomposition of bags containing the cliques inM and use
it in a tree-decomposition of the whole of G.

Let C ∈ CPP be a component of the clique components parti-
tion of (x, y, z). The subgraph G[

⋃ C] must be by construction
a single component in the graph. Also by construction, there is
a set S that is a superset of every connection clique contained
in C. That means that we can connect a bag containing a clique
of S ⊆ M ∈ M and a a bag containing a connection clique
S ⊆ C ∈ C and get a valid tree-decomposition of G[

⋃M+
⋃ C].

The subgraph G[
⋃M] separates all subgraphs G[

⋃ C], this
means that in no tree-decomposition of G a bag containing a
clique in one component can be directly connected to a bag
containing a clique of another component. This proofs the
lemma.

This lemma gives us a footing to develop a recursive algorithm
that works on the maximal cliques of a chordal graph, which
finds a tight asteroidal triple and its separator cliques, calculates
a clique component partition and then is called recursively on
each cell C of the partition and the separator cliques, until no
tight asteroidal triple can be found anymore. If we can not find
a tight asteroidal triple we know from Corollary 3.11 that there
is a path decomposition of C. At that point we can end the
recursion.

But before we describe this algorithm in detail let us find
the boundaries of how many joins a tree-decomposition con-
structed this way could have with respect to the number of tight
asteroidal triples in the graph.

First a preliminary result we will need to locate asteroidal
triples between connections cliques:

Lemma 3.31. Let (x, y, z) be a tight asteroidal triple in a chordal
graph, let M be the set of separator cliques of (x, y, z) and let C be
connection clique of (x, y, z) such that there is no u′ ∈ {x, y, z} for
which c(C) ⊆ N(u′). Then there are two nodes u, v ∈ {x, y, z} +⋃M and a node w ∈ C − c(C) such that (u, v, w) is a tight aster-
oidal triple.

Proof. If C is a connection clique of (x, y, z) it can not be separa-
tor of (x, y, z), so there must be two nodes in (x, y, z) that are not
separated by C. Let u, v ∈ {x, y, z} be two nodes not separated
by C. We want show that (u, v, w) is a tight asteroidal triple. We
know there is a path from u to v that does not intersect C, which
means that it does not intersect N(w) either. We still have to
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show that there is a path from u to w that does not intersect
N(v) and a path from v to w that does not intersect N(u).

By assumption there must be a node w′ ∈ c(C) that is not
in the neighborhood of u, else c(C) would be a subset of N(u).
There must also be a path pz′v from the third node in the triple
z′ ∈ {x, y, z} − {u, v} to v that does not intersect N(u). Either
w′ is a node in pz′v or, since a node of pz′v must be contained
together with w′ in a separator clique S, w′ must be connected
to a node in pz′v, which means there is a path from w to v
over w′ that does not cross the neighborhood of u. The same
argumentation can be done to show that is a path from w to
u that does not cross the neighborhood of v. It follows that
(u, v, w) is an asteroidal triple.

Let p be a validating path of (u, v, w) from w to some other
u′ ∈ {u, v}. The node w′ ∈ p connected to w must be in c(C).
Since all nodes in c(C) must be contained in some separator of
(x, y, z) it means that w′ must be contained in a separator clique
of (x, y, z) and thus it is connected to a separator of u and v.
This means that (u, v, w′) can not be an asteroidal triple. From
this is follows that if (u′, v′, z′) is the correspind tight asteroidal
triple of (u, v, w′) then w ∈ {u′, v′, z′}. The other two nodes of
must lie in the path to a separator clique S of (u′, v′, z′), which
is also a separator clique of (x, y, z). This means that these two
nodes are either u or v or a node in a separator clique.

Corollary 3.32. Let (x, y, z) be a tight asteroidal triple in a chordal
graph, letM be the set of separator cliques of (x, y, z) and let CPP =
{C1, . . . , Ck} be a clique components partition of (x, y, z). Then there
is for every cell C ∈ CPP in the partition there is a node u ∈ ⋃ C
that forms a tight asteroidal triple (u, v, w) with two nodes u, v ∈
{x, y, z}+⋃M.

Proof. If u ∈ {x, y, z} then this is trivial. Let C be a connection
clique such that c(C) ⊆ N(u′) where u′ ∈ {x, y, z}. This means
that {u′}+ c(C) forms a clique, which means that there must
be some connection clique C′ ⊇ {u′}+ c(C), which means that
any such connection clique C must be contained in a cell that
also contains C′ and thus also contains a node of (x, y, z). Every
cell must contain at least one connection clique. This means
that every cell which does not contain a node of (x, y, z) must
contain a connection clique that because of Lemma 3.31 must
contain a node that makes a tight asteroidal triple (u, v, w) with
two nodes u, v ∈ {x, y, z}+⋃M. It also follows that there must
be k− 2 such tight asteroidal triples.

We know for now that we are able for a tight asteroidal triple
to find all the separator cliques and make a tree out of them. We
also must be able to take all the cliques that contain the cut of
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one node in the triple with its validating set and connect it to
bags in the validating set and connect them to this path. With
the added knowledge of the existence of tigh asteroidal triples
that Lemma 3.31 gives us, let us try to pinpoint the number of
joins necessary.

Lemma 3.33. Let (x, y, z) be a tight asteroidal triple of the chordal
graph G, let M be the set of separator cliques of (x, y, z) and let
CCP = {C1, . . . , Ck} be a clique components partition of (x, y, z).
The minimum number of joins necessary in any natural tree-decomposition
of G to separate all asteroidal triples (x′, y′, z′) such that x′ ∈ ⋃ C ∈
CCP and y′, z′,∈ {x, y, z}+⋃M is k− 2.

Proof. For every asteroidal triple in G there must be a separator
S contained in some bag in any tree-decomposition of G (see
Lemma 3.4). Let (x′, y′, z′) and (x′′, y′′, z′′) be two asteroidal
triples such that at least two nodes u ∈ {x′, y′, z′} and v ∈
{x′′, y′′, z′′} are contained in different cells of CCP. For them to
share a a join there would have to be two connection cliques
u ∈ C and v ∈ C′ that lie in a path to S. In Lemma 3.30 we
showed that this is not possible.

Since we know from Corollary 3.32 that there have to be at
least k− 2 such tight asteroidal triples, it follows that there will
be at least k− 2 joins in any natural tree-decomposition of G.

Lemma 3.34. Let (x, y, z) be a tight asteroidal triple of the chordal
graph G and let CCP = {C1, . . . , Ck} be a clique components parti-
tion of (x, y, z). The maximum number of joins necessary in a tree-
decomposition of G to separate all tight asteroidal triples (x′, y′, z′)
contained in three distinct cells C, C ′, C ′′ ∈ CCP of the partition
[x′ ∈ ⋃ C, y′ ∈ ⋃ C ′ and z′ ∈ ⋃ C ′′] is 2k.

Proof. From Lemma 3.30 we know that we can create a tree-
decomposition of the cliques of each cell in the clique compo-
nents partition and then connect it with one edge to a path
decomposition of the separator cliques. Each such edge can
only create two more joins. In such a tree-decomposition every
(x′, y′, z′) is separated.

We can now construct Algorithm 3.1 based on the notions we
have been developing.

Lemma 3.35. Algorithm 3.1 calculates a natural tree-decomposition
of a chordal G where if t is the number of tight asteroidal triples in G
the number of joins in the tree-decomposition is less or equal to 6t.

Proof. In every call of the recursive algorithm we create at most
2k joins, where k is the number of cells in the clique components
partition. From Lemma 3.31 we know that the number of tight
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asteroidal triples we are separating at this point must be at least
k− 2. LetM be the set of separator cliques of a tight asteroidal
triple (x, y, z) selected in line 6. Furthermore let {T1, . . . , Tk}
be the tree-decompositions from the recursive calls on line 13

on each cell of the clique component partition of (x, y, z). The
minimum number of joins we may have to add at this point is
zero. This is the case if there are already k leaves in the tree-
decomposition TM of the graph that only contains separator
cliques G[M] (line 8) and we can connect a leaf of each T ∈
{T1, . . . , Tk} to a leaf of TM. The worst case is clearly when we
have to add zero joins but we add 2k by looping over line 15.
Let us show that nevertheless we can bound the number of joins
on t.

In the final call of the recursion there can be no tight asteroid
triples in the graph induced on the nodes of the separator cliques.
This means the separator cliques will become a path. Every of
the k− 2 joins necessary will must be created when connecting
each element of {T1, . . . , Tk} with TM. This will create at most
2k joins. The ration between the minimum number of joins we
have to create and the worst case is 2k/k− 2. Three is the worst
case of 2k/(k− 2), since with growing k the fraction 2k/(k− 2)
goes against two and k will be at least three. This means that
here we create at most six times to many joins.

In every other call of the recursion in lines 8 or 13 the graph
on which we call the function recursively has to have at least
one tight asteroidal triple less than G. This means that at every
step, k− 2 already existing bags may suffice, but the algorithm
creates 2k on top of it. The ratio between the minimum and the
number of joins we create on top of it is again 2k/(k− 2). This
can happen at most t times since t bounds the recursion depth.
The number of cells in a clique components partition has to be
at least three. This means that in every recursive call we create
6 times more joins that necessary, which gives us the desired
bound of 6t.

From this lemma and since we can always apply Algorithm 3.1
to any chordal graph the following theorem must be true.

Theorem 3.36. If a chordal graph has t tight asteroidal triples, there
exists a natural tree-decomposition of the graph with no more than 6t
joins.

We want to show now that Algorithm 3.1 is a polynomial time
6t-approximation algorithm. First we will need to proof that
some of its steps can be done in polynomial time.

Lemma 3.37. Let G be a chordal graph. All tight asteroidal triples in
G can be found in polynomial time.
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Algorithm 3.1: MinimumNumberJoin

input : A chordal graph G.
output : A tree-decomposition of G with a minimum

number of joins.

1 C = All maximal cliques in G
2 TAT = All tight asteroidal triples in G
3 if TAT = ∅ then
4 return makePath(C)
5 end
6 (x, y, z) ∈ TAT
7 M = Separator cliques of (x, y, z)
8 TS = minNumJoins(G[

⋃M])
9 C = C −M

10 {C1, . . . , Ck} = cliqueComponentPartition(G, C,M)
11 RES = Ts
12 foreach G′ ∈ {G[

⋃ C1], . . . , G[
⋃ Ck]} do

13 T = minNumJoins(G′)
14 C = (∪T) ∩ (∪P)
15 connectTwoBags(RES, T)
16 end
17 return RES

Proof. First notice that the number of triples of nodes in a graph
is bounded by n3 if n = |V(G)|. Thus if each one of them can
be tested to be a tight asteroidal triple in polynomial time we
are done.

Let us show that we can test if a triple of nodes (x, y, z) in G
is an asteroidal triple in polynomial time. If the nodes in the
triple are not pairwise distinct then it can not be an asteroidal
triple. Neither can it be an asteroidal triple if for u, v ∈ {x, y, z}
the edge (u, v) ∈ E(G) exists.

Let us then assume that the three nodes in (x, y, z) are pair-
wise distinct and form an independent set. Let u, v ∈ {x, y, z}
be two distinct nodes in the triple and let w ∈ {x, y, z} − {u, v}.
If u and v are in the same component of G[V(G)− N[w]] then
there is a path in G from u to v that does not intersect the
neighborhood of the third node in the triple. We can clearly
test this in polynomial time for each pair u, v ∈ {x, y, z}. Iff a
path in G[V(G)− N[w]] between u and v exists for every pair
u, v ∈ {x, y, z} then (x, y, z) is an asteroidal triple. This means
that we can test in polynomial time if a triple (x, y, z) is an
asteroidal triple.
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We want to use this to show that we can test in polynomial
time if a triple (x, y, z) is a tight asteroidal triples. First we can
test in polynomial time if it is an asteroidal triple. If it is not, it
can not be a tight asteroidal triple either. If it is, then for every
pair u, v ∈ {x, y, z} we make the following test: Starting at u we
calculate a breadth first search tree in G. From this tree we can
read all shortest path from u to v. For every node w′ in such
a path, we can test for every pair of node in u′, v′ ∈ {x, y, z}
if (u′, v′, w′) is an asteroidal triple in polynomial time. Only if
every such test fails for every w′,u′,v′,u and v, then (x, y, z) is
a tight asteroidal triple. Since this is a polynomial number of
tests, each one of the them taking polynomial time, the lemma
follows.

Surely the algorithm presented in the proof of Lemma 3.37 is
rather naïve and its running time could be improved greatly in
practice.

Lemma 3.38 ([26]). A path-decomposition of an circular-arc graph
can be found in polynomial time.

Corollary 3.39. A path-decomposition of an interval graph can be
found in polynomial time.

Proof. All interval graphs are circular-arc graphs.

Theorem 3.40. There is a polynomial time 6t-approximation algo-
rithm for the minimum join number problem on chordal graphs G,
where t is the number of tight asteroidal triples in G.

Proof. From the definition of a clique components partition we
can see that a clique components partition can be found in
polynomial time. The depth of the recursion is bounded by
the number of tight asteroidal triples which is itself bounded
by n3, where n = |V(G)|. This together with Lemma 3.37 and
Corollary 3.39 means that Algorithm 3.1 runs in polynomial time.
We also know that Algorithm 3.1 calculates a 6t-approximation.
From this the theorem follows.

There seems to be a strong connection between the number
of tight asteroidal triples in a chordal graph and the number
of joins necessary in any natural tree-decomposition of such a
graph. That is why we conjecture that the following holds true.

Conjecture 3.1. The necessary number of joins in any natural tree-
decomposition of a chordal graph G is the same as the number of
separators necessary to separate all tight asteroidal triples in G.

It seems that we could make an even stronger conjecture.
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Conjecture 3.2. Algorithm 3.1 has a run that generates a tree-decomposition
with a minimum number of joins.

The problem of finding the natural tree-decomposition of
a chordal graph with a minimum number of joins remains
nevertheless open.

Conjecture 3.3. The problem of deciding the minimum number of
joins in a natural tree-decomposition of a chordal graph is NP-complete.

3.1.1 Heuristical Improvements of Algorithm 3.1

Some of the places where improvements could be made in a
practical implementation would be:

• Take the bags we are connecting in line 15 and try to
move them so that they become leafs. Doing this we try to
minimize the number of joins we created when connecting
several partial tree-decompositions into one.

• When calculating a clique component partition, try to con-
nect components over a connection clique where all bags
in one component are a subset of one of the connection
cuts. Only if this is the case two connection cliques that
contain nodes of different tight asteroidal triples as of
Lemma 3.31 can all be in a path to a separator clique, and
thus it increases the chances that we can find a leaf to
which we can connect a separator clique.

• When selecting a tight asteroidal triple in line 6 select
one that has a single separator clique if there is one. If
we can find such a tight asteroidal triple, we know it
must be separated by this clique, as does every connection
clique that contains a node of a tight asteroidal triple as of
Lemma 3.31.

• If there is no tight asteroidal triple with a single separa-
tor clique, try to find a tight asteroidal triple such that
the induced graph over the separator cliques has a path
decomposition. In this case, if we have k components, we
know that we will have to create at least k− 2 joins when
connecting the tree-decompositions of the components to
the separator clique path. This lowers the relative number
of joins the algorithm can create unnecessarily.

• If no such tight asteroidal triples exist, take one with a
minimum number of tight asteroidal triples itself. This in-
creases the chances that the tree made of separator cliques
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will have a small number of leafs, and thus, again, this low-
ers the relative number of joins the algorithm can create
unnecessarily.

3.2 size of join separators

We have investigated the number of joins necessary in a natural
tree-decomposition of a chordal graph, but would still like to
say something about the size of the join bags. We are going to
make some assumptions here about the strict maximal clique
decompositions that we can construct, but the results will be
applicable as a heuristic.

Definition 3.41 (Minimum Separator of an Asteroidal Triple).
A minimum separator of an asteroidal triple is a separator of an
asteroidal triple S, where no strict subset S′ ( S is also a separator of
the same triple.

When it came to the number of joins in a tree-decomposition
we only looked at natural tree-decompositions. But if we look at
the definition of minimum separators for asteroidal triples, the
question if we should use a separator that is not a clique in the
chordal graph arises. Maybe it would be better if we construct a
tree-decomposition where all the bags would contain maximal
cliques except the join bags, which could contain anything, more
specifically, sets that are not necessarily cliques in the graph. We
will see that this is not the case, but first we need to proof some
things about what join bags have to contain in any possible
tree-decomposition.

Lemma 3.42. Let C1, C2 and C3 be three different cliques. Then S =
C1 ∩ C2 + C1 ∩ C3 + C2 ∩ C3 is also a clique.

Proof. Let us take two nodes u, v ∈ S where u 6= v. If u and
v are in the same clique then there is an edge between them.
Since they are both in S it means that they where contained in
one of the three possible cuts between the cliques. If they are
contained in the same cut, they have to be connected since there
would be two cliques that contain both. Any of the cuts between
two cliques share a clique, which means that even if they are
contained in S because they are contained in two different cuts,
these cuts will have a clique in common, which means that there
is a clique that contains both nodes. Since these are all possible
cases and this is true for all pairs in S, the lemma follows.

Lemma 3.43. The optimal natural tree-decomposition of a chordal
graph and the optimal non-strict maximal clique tree-decomposition
of a chordal is the same.
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Proof. Because of the properties that a tree-decomposition has
to have, every join bag has to contain any node that appears
in at a least two of the bags connected to the join bag. That
together with Lemma 3.42 means that the content of any join
bag will contain a clique in the graph and that this clique is
sufficient. That means that if we have a valid tree-decomposition
of a chordal graph where all introduce bags are maximal cliques
and join bags contain any set of nodes of the graph, we can
reduce the join bags until they only contain cliques. From this
the lemma follows.

Theorem 3.44. Let s = ∑X∈J (T )(d(X) − 2) · |X| be the smallest
sum for any natural tree-decomposition T of a chordal graph G and
let s′ = ∑X∈J (T ′)(d(X)− 2) · |X| for any tree-decomposition of G.
If s′ < s then the width of T ′ is bigger than the width of T .

Proof. This follows from Lemma 3.43

This means that if we want to make the join bags of a tree-
decomposition of a chordal graph smaller than in the optimal
natural tree-decomposition, we will have to incur the penalty of
increasing the width.

The problem of minimizing the sum over the sizes of the joins
of a natural tree-decomposition seems to be a lot harder than
finding the minimum number of joins. It is not even clear if the
natural tree-decomposition T where ∑X∈J (T )(d(X)− 2) · |X| is
minimum has the same number of joins as the maximal clique
decomposition with a minimum number of joins. Nevertheless
it seems natural to construct a heuristic to find good natural tree-
decompositions by trying to minimize the number of joins and
then trying to minimize their size on a chordal graph. This can
be useful together with an algorithm to calculate or approximate
tree-decompositions of minimum width. The heuristic would
then be used in a second step to improve the result of such an
algorithm, which would hopefully lower the running time of
a normal tree-decomposition algorithm on that instance. We
are going to use Remark 3.1 to construct a heuristic that tries
to minimize the number and size of the join bags in a tree-
decompositions.

Notice that the mapping we use to map all non-strict maximal
clique decomposition to strict maximal clique decompositions
can be reversed (although the order in which we reverse the
steps can change the result). To reverse this mapping we need
the following operation:

Definition 3.45 (Join Minimization). Take a join bag J and three
bags B1, B2 and B3 that are connected to J of a tree-decomposition.
Create three new possible join bags taking to bags B, B′ ∈ {B1, B2, B3}
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Algorithm 3.2: MinimizeJoinOperation

input : A natural tree-decomposition T of a chordal graph
G, a join bag J ∈ B(T ) and three children
B1, B2, B3 ∈ B(T ) of J.

output : A tree with a join that separates B1, B2 and B3.

1 C1 = B1 ∩ B2 + B1 ∩ J + B2 ∩ J
2 C2 = B1 ∩ B3 + B1 ∩ J + B3 ∩ J
3 C3 = B2 ∩ B3 + B2 ∩ J + B3 ∩ J

4 if |C1| ≤ |C2|, |C3| then
5 Disconnect J from B1 and B2
6 Connect C1 to J, B1 and B2
7 return Changed tree T
8 end

9 if |C2| ≤ |C1|, |C3| then
10 Disconnect J from B1 and B3
11 Connect C2 to J, B1 and B3
12 return Changed tree T
13 end

14 if |C3| ≤ |C1|, |C2| then
15 Disconnect J from B2 and B3
16 Connect C3 to J, B2 and B3
17 return Changed tree T
18 end

and creating the the possible cliques C = B ∩ B′ + B ∩ J + B′ ∩ J.
Take the smallest one and change the tree-decomposition by using C
as a join bag to separate J, B and B′ from each other, thus decreasing
the degree of J. A more formal description is given in Algorithm 3.2.

It is easy to see how we can go back to the tree-decomposition
we had before, by changing the new bag containing by a bag
containing J and then contracting the edge between the new
bag and J, as we would have done in the proof of Lemma 3.5.
It is also clear that by using this operation several times on the
result of the last join minimization operation we can reach any
tree-decomposition that can be converted into the strict maximal
clique decomposition we would use the heuristic on. Recursively
using the join minimization on a graph, can only decrease the
size of the joins and never increase the number of them. This
is a good argument as to why it would make a good heuristic.
From that moment on, no join minimization operation could
decrease the size of the join bags in the tree-decomposition. This
heuristic is described formally in Algorithm 3.3. This heuristic
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Algorithm 3.3: MinimizeJoinSizeHeuristic

input : A strict maximal clique decomposition T of a
chordal graph G.

output : A non-strict maximal clique decomposition of G.

1 J = All the join bags of T
2 while ∃J ∈ J (T ) that is not the result of a minimize join

operation do
3 B1, B2, B3 = three children of J
4 T = minimizeJoinOperation(T ,J,B1,B2,B3)
5 end

could be tweaked further by selecting a join in line 2 and its
three children in line 3 in an intelligent way.

We have been talking about improving a tree-decomposition
heuristically by first using Algorithm 3.1 and then attempting
to improve this tree-decomposition using Algorithm 3.3. Doing
it this way, would mean that the operations of one algorithm
would be completely uncoupled from the other, but clearly
which bags we choose to make join bags (we have a degree
of freedom on this) in Algorithm 3.1 has an influence on the
heuristic. Another way to heuristically improve this is to change
the call on line 15 of Algorithm 3.1. If instead of taking any node
of the tree of separator cliques we connect the one where the
minimize join operator would find the smallest join, it could in-
crease the chances of the later heuristic finding smaller join bags.
Intuitively the heuristic would then have a higher probability of
improving the size of the joins.

3.2.1 Idea for a Simple Heuristic to Decrease Join Size in tree-decompositions
at the Cost of Increasing Width

Something that would be useful in practice would be to have
an algorithm that tries to find tree-decompositions for general
graphs with minimum width but so that all join bags are smaller
than some maximum size m. To find such an algorithm seems
to be very complicated. A different approach would be to use a
two step heuristic:

1. Use one of known algorithms that optimizes treewidth.

2. Operate on the resulting tree-decomposition to get smaller
joins.

A similar approach is already used for treewidth. First a tree-
decomposition with some known algorithm is found and is
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Figure 3.4: Size minimization operation. J = A ∩ B + A ∩ C + B ∩ C,
J′ = B ∩ C + B ∩ D + C ∩ D and B′ = B + J

then manipulated heuristically trying to make the width even
smaller [28]. A special case of this approach is when we want
to not have any joins left after the second step. Then we would
be calculating the pathwidth of a chordal graph. In [19] it was
shown that this problem is NP-hard, which means that even this
simplified two step approach is NP-hard.

We propose the operation seen in Figure 3.4 to heuristically
improve a given tree-decomposition. The hope is that we can
find either a join bag J′ at some point by repeating this operation
or that we will reach a point where B is a leaf.

There is a reason related to tight asteroidal triples why this
may be a good idea. Let us assume that B contains a node x
which is part of a tight asteroidal triple (x, y, z) and that J is a
separator (x, y, z). After the operation we connect x to all nodes
in J. This means that (x, y, z) can not be an asteroidal triple in
the underlying chordalization anymore.

This operation could be reapeated recursively looking to look
for a small enough join bag, as long as we do not make some
introduce bag too big in the process. The problem with this
approach would be that on the way to a smaller join we can
create an unacceptable big one. But there is no reason why we
should constrain ourselves to making a child of a join a child of
a different child of the join. We could just look for a place where
the join would be small enough, and then add the separator on
every bag on the way.
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C O N C L U S I O N A N D F U T U R E W O R K

4.1 results in this thesis

Most of the results in this thesis were based on the notion of
tight asteroidal triples and work on graphs that have natural
tree-decompositions, which are tree-decompositions where the
content of each bag forms a clique in the graph. The class of
graphs that have natural tree-decompositions is precisely the
class of chordal graphs. We showed that tight asteroidal triples
can be found in any chordal graph that does not have a natural
path decomposition. We defined a separator of a tight asteroidal
triple as a clique in the graph that separates each pair in the
triple. There have been two main result, both of them based on
this structure and their separators:

• If G is a chordal graph and k is the minimum number of
maximal cliques of G needed to separate all tight asteroidal
triples in G, then any natural tree-decomposition of G has
at least k joins.

• If G is a chordal graph and t is the number of tight as-
teroidal triples in G, then there is a a polynomial time
6t-approximation algorithm for the problem of finding a
natural tree-decomposition of G with a minimum number
of joins. We did not only show that such an algorithm
exists, but gave one that may be useful in practice.

Thus we found a lower and an upper bound for the number of
joins in a natural tree-decomposition of a chordal graph. There
are two reasons why this results are of interest.

First, there is a strong connection between tree-decompositions
of general graphs and chordalizations of graphs. Every tree-
decomposition of a graph G gives a chordalization of G. Even
more, every minimum tree-decomposition of G, measured in
treewidth, gives a minimum chordalization of G, measured in
number of edges added. This means that the previous result
result on natural tree-decomposition for chordal graphs tells us
something about general tree-decompositions of general graphs:

Let G be any graph, T be a tree-decomposition of G and let
G′ be the chordalization of G given by T . Furthermore let k
be the minimum number of maximal cliques of G′ needed to
separate all tight asteroidal triples in G′ and t be the number of
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tight asteroidal triples in G′. Then either T has between k and 6t
joins or we can find a tree-decomposition T ′ of G in polynomial
time with the same width as T and between k and 6t joins. Thus
the result is not just a result on chordal graphs, but on general
graphs.

Second, since we showed the existence of a 6t-approximation
algorithm constructively, we can use that algorithm to build a
heuristic that finds tree-decomposition for general graphs and
tries to minimize width and number of joins:

1. Let G be a graph. Use one of the many know algorithms
that try to find tree-decomposition T of G with small
width.

2. Calculate the chordalization G′ of G given by T . Use Algo-
rithms 3.1 to try to minimize the number of joins without
increasing treewidth.

These seem to be clear indications that the notion of tight
asteroidal triples will be useful for many problems where the
structure of tree-decompositions is analyzed, i.e. a difference
between introduce and join bags is made.

4.2 future work

In Chapter 3 we presented three conjectures:

• The problem of finding a natural tree-decomposition with
a minimum number of joins is NP-hard.

• If k is the minimum number of maximal cliques needed to
separate all tight asteroidal triples of a chordal graph G,
then there is a tree-decomposition of G with k joins. This
would mean that our lower bound is tight.

• Algorithm 3.1 has a run that generates a natural tree-
decomposition of a chordal graph with a minimum num-
ber of joins.

These are all interesting questions and can be a good starting
point for further research.

It would also be interesting run experiments on Algorithms 3.1
and 3.3 to see how well they work in practice. For Algorithm 3.1
it would be specially interesting to see how much the heuristic
improvements proposed in Section 3.1.1 help.

There are several other doors that tight asteroidal triples
open. It may be interesting to develop an algorithm to find
tree-decompositions of general graphs that takes into account
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how many tight asteroidal triples it is generating in the under-
lying chordalization. This would increase the chances of Algo-
rithms 3.1 to work well on the resulting tree-decomposition.

Furthermore, during the course of Chapter 3 we showed
several properties that tight asteroidal triples must posses in
chordal graphs. It is possible that some heuristics for tree-
decompositions of small width can be improved by taking into
account these properties of tight asteroidal triples. Theorem 3.44

seems to indicate that minimizing width means maximizing
number of joins. It could be that e.g. guessing which are triples
are going to be tight asteroidal triple and adapting the structure
of the graph to their known features before using an already
known heuristic for treewidth could improve its results. It may
even be possible to find some tight asteroidal triples in a general
graph. Maybe it is a good idea to try to keep them as tight
asteroidal triples.

In Section 3.2.1 we gave an idea for an operation on which to
base an algorithm that would manipulate tree-decompositions
and try find a tree-decomposition of the graph with smaller
join bags, at the necessary cost of increasing the size of some
introduce bags. It may be very useful for practice to develop a
heuristic based on this operation for the following problem:

MinRunningTime for chordal graphs

Input: A graph G, a tree-decomposition T of G, an
integer sj giving the maximum size of join
bags and an integer si giving a maximum
size for introduce bags, where sj ≤ si.

Problem: Let G′ be the chordalization of G given by
T . Find a tree-decomposition of G′ where
the size of the join bags is smaller than sj
and the size of the introduce bags is smaller
than si.

By choosing the appropriate variables si and sj one could ex-
press the difference in running time of normal tree-decompositions
algorithms on join and introduce bags.

Finally one could attempt to tackle a much more complicated
problem:
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MaxIntroduceAndJoin for chordal graphs

Input: A graph G, And one introduce function and
one join function i, j : N 7→ R

Problem: Find the tree-decomposition T of G where
the sum

∑
I∈I(T )

i(|I|) + ∑
J∈J (T )

j(|J|)

is minimal.

This definition of optimality will be, if i and j are relatively
tight, very close to optimizing the actual running time of a
normal tree-decomposition algorithm. This problem seems to
be much harder then the other problem we have looked at. This
does not mean that an heuristic for this problem could not be
useful and work well for certain instances or practical cases.

It seems that there are a lot of venues open for further research
on the structure of tree-decompositions.
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