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Linear kernels in sparse graphs



Overview
• Dominating Set in planar graphs

Alber, Fellows, Niedermeier. Polynomial-time data reduction for Dominating Set,
2004.

• Framework for planar graphs
Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar
graphs, 2007.

• Meta-result for graphs of bounded genus
Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
Kernelization, 2009.

• Meta-result for graphs excluding a fixed graph as a minor
Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels, 2010.

• Our contribution: a meta-result for graphs excluding a
fixed graph as a topological minor.



Main theorem
Theorem
Let Π be a parameterized graph problem that has

1 finite integer index, and
2 is treewidth-bounding,

both on the class of H-topological-minor-free graphs. Then Π
admits a linear kernel.



The undefined terms
1 A parameterized graph problem Π is a set of pairs (G,k),

where G is a graph and k a non-negative integer s.t.
G1 ∼= G2 implies (G1,k) ∈ Π iff (G2,k) ∈ Π.

2 A parameterized graph problem Π is treewidth-bounding
if ∃ constants c, t such that (G,k) ∈ Π implies that

∃X ⊆ V(G) s.t. |X| 6 c · k and tw(G− X) 6 t.

3 The property of finite integer index allows us to replace
large “protrusions” by smaller gadgets.

We assume that the gadgets are given. Our algorithm is
nonuniform.
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Reduction via protrusions



Protrusion anatomy

Definition
X ⊆ V(G) is a t-protrusion if

1 |∂(X)| = |N(X) \ X| 6 t (small boundary)

2 tw(G[X]) 6 t (small treewidth)



We want to replace a large protrusion by a smaller gadget.
1 Requires that the problem has finite integer index.
2 The gadgets can always be chosen such that the

parameter does not increase.
3 This is the only reduction.



(Topological) Minors
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Graph relations
(now with contractions!)

Relation Operations

induced subgraph delete vertices

subgraph delete vertices and edges

topological minor take a subgraph, contract
edges incident to a degree-2
vertex

minor delete vertices and edges,
contract edges



Properties of
H-topological-minor-free graphs

Let G be a graph excluding H as a topological minor.

• Not interested in structure of H, but its size r = |H|.
• In particular: Kr not a topological minor of G.

Important properties:
1 m 6 1

2βr
2n (for some β < 10);

2 no. of cliques 6 2τr log rn (for some τ < 4.51);
3 Closed under taking topological minors.
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Our result and how it works



On the treewidth-bounding
property

Definition (Treewidth bounding)
A parameterized graph problem Π is called treewidth bounding
if ∃ constants c, t such that for every (G,k) ∈ Π, ∃S ⊆ V(G) s.t.

1 |S| 6 ck;
2 tw(G− S) 6 t.

• S usually is the solution set.
• Vertex Cover, Feedback Vertex Set in general graphs.
• Chordal Vertex Deletion in graphs with bounded clique-size.
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A little bit of notation

S

G-S
A

For disjoint vertex sets S,A ∈ V(G), DS(A) = |NG(A) ∩ S|.
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Small-degree components

S

G-S

• DS(C) < r, therefore each component C has a boundary of
size r.

• C has constant treewidth (problem is treewidth bounding).
⇒ Each small-degree component has constant size (reduced

instance).
• What about the number of small-degree components?
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Small-degree components

S

• Components now connected to cliques (or not finished)

• G[S] is H-topological minor free, therefore...
... O(|S|) = O(k) cliques
... O(|S|) = O(k) edges

• Constant number of vertices in components connected to a
common clique (or large protrusion in G)
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Total size of small degree
components

O(k) vertices in small-degree components.



Large-degree components
Two ingredients:

1 At most O(k) connected subgraphs with DS > r.
2 Decompose the large degree components into subgraphs

• of constant size; and
• with a large degree in X.

Since there are O(k) such subgraphs, their total size is O(k).

Our proof that such a decomposition exists is very technical.

A simplification of our proof appears in:
A parameterized single-exponential algorithm for hitting planar minors. Kim, Paul, and
Sau.
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Ingredient one
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• Same idea as before: contract connected subgraphs into
edges in S

• Exhaustive, else Kr as a subgraph in S and thus H as a
topological minor in G
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Large-degree components
Ingredient two

Every large-degree component can be broken into:
• path-like structures (paths in a tree-decomposition);
• star-like structures (join nodes in a tree-decomposition).

We use tree-decompositions to effect such a break-up.
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• If more than ω(2t+ r) vertices seen: subgraph has large

degree wrt S.
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Examples

S

...

“Roots”

“ Twigs”



Conclusion



The result
Parameterized graph problems that have

1 finite integer index, and are
2 treewidth bounding,

admit linear kernels on graphs excluding a fixed topological
minor.



Examples



Trade-off: class of instances vs.
problem requirements
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