Linear Kernels for Graphs Excluding a Topological Minor

A. Langer, F. Reidl, P. Rossmanith, S. Sikdar

Theoretical Computer Science

RWITHAACHEN

Dagstuhl 2012

Contents

Linear kernels in sparse graphs

Reduction via protrusions

(Topological) Minors

Our result and how it works

Conclusion

Linear kernels in sparse graphs

Dominating Set in planar graphs

Alber, Fellows, Niedermeier. *Polynomial-time data reduction for Dominating Set*, 2004.

- Framework for planar graphs Guo and Niedermeier: *Linear problem kernels for NP-hard problems on planar graphs*, 2007.
- Meta-result for graphs of bounded genus Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta) Kernelization, 2009.
- Meta-result for graphs excluding a fixed graph as a minor Fomin, Lokshtanov, Saurabh and Thilikos: *Bidimensionality and kernels*, 2010.
- **Our contribution**: a meta-result for graphs excluding a fixed graph as a *topological minor*.

Main theorem

Theorem

Let Π be a parameterized graph problem that has

- 1 finite integer index, and
- 2 is treewidth-bounding,

both on the class of ${\rm H}\mbox{-}topological\mbox{-}minor\mbox{-}free\mbox{-}graphs.$ Then Π admits a linear kernel.

The undefined terms

A parameterized graph problem ∏ is a set of pairs (G, k), where G is a graph and k a non-negative integer s.t.

 $G_1\cong G_2 \text{ implies } (G_1,k)\in\Pi \text{ iff } (G_2,k)\in\Pi.$

2 A parameterized graph problem Π is **treewidth-bounding** if \exists constants c, t such that $(G, k) \in \Pi$ implies that

 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } tw(G - X) \leq t.$

S The property of finite integer index allows us to replace large "protrusions" by smaller gadgets.

The undefined terms

A parameterized graph problem ∏ is a set of pairs (G, k), where G is a graph and k a non-negative integer s.t.

 $G_1\cong G_2 \text{ implies } (G_1,k)\in\Pi \text{ iff } (G_2,k)\in\Pi.$

2 A parameterized graph problem Π is **treewidth-bounding** if \exists constants c, t such that $(G, k) \in \Pi$ implies that

 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } tw(G - X) \leq t.$

S The property of finite integer index allows us to replace large "protrusions" by smaller gadgets.

We assume that the gadgets are given. Our algorithm is nonuniform.

Reduction via protrusions

Protrusion anatomy

Definition $X \subseteq V(G)$ is a t-protrusion if (1) $|\partial(X)| = |N(X) \setminus X| \le t$ (2) $tw(G[X]) \le t$

(small boundary) (small treewidth)

We want to replace a large protrusion by a smaller gadget.

- 1 Requires that the problem has finite integer index.
- 2 The gadgets can always be chosen such that the parameter does *not* increase.
- 3 This is the only reduction.

(Topological) Minors

Edge contraction

Relation	Operations
induced subgraph	delete vertices
subgraph	
topological minor	
minor	

Relation	Operations
induced subgraph	delete vertices
subgraph	delete vertices and edges
topological minor	
minor	

Relation	Operations
induced subgraph	delete vertices
subgraph	delete vertices and edges
topological minor	
minor	delete vertices and edges, contract edges

Relation	Operations
induced subgraph	delete vertices
subgraph	delete vertices and edges
topological minor	take a subgraph, contract edges <i>incident to a degree-2 vertex</i>
minor	delete vertices and edges, contract edges

Properties of H-topological-minor-free graphs

Let G be a graph excluding H as a topological minor.

Properties of H-topological-minor-free graphs

Let G be a graph excluding H as a topological minor.

- Not interested in structure of H, but its size r = |H|.
- In particular: K_r not a topological minor of G.

Properties of H-topological-minor-free graphs

Let G be a graph excluding H as a topological minor.

- Not interested in structure of H, but its size r = |H|.
- In particular: K_r not a topological minor of G.

Important properties:

- 1 $m \leq \frac{1}{2}\beta r^2 n$ (for some $\beta < 10$);
- 2 no. of cliques $\leq 2^{\tau r \log r} n$ (for some $\tau < 4.51$);
- 3 Closed under taking topological minors.

Our result and how it works

On the treewidth-bounding property

Definition (Treewidth bounding)

A parameterized graph problem Π is called *treewidth bounding* if \exists constants c, t such that for every $(G, k) \in \Pi, \exists S \subseteq V(G)$ s.t.

 $|S| \leq ck;$

2 $\mathbf{tw}(G-S) \leq t$.

On the treewidth-bounding property

Definition (Treewidth bounding)

A parameterized graph problem Π is called *treewidth bounding* if \exists constants c, t such that for every $(G, k) \in \Pi, \exists S \subseteq V(G)$ s.t.

- $|S| \leqslant ck;$
- **2** $\mathbf{tw}(G-S) \leq t$.
 - S usually is the solution set.
 - Vertex Cover, Feedback Vertex Set in general graphs.
 - Chordal Vertex Deletion in graphs with bounded clique-size.

A little bit of notation

For disjoint vertex sets $S, A \in V(G)$, $D_S(A) = |N_G(A) \cap S|$.

A decomposition

A decomposition

Reduced instance: large protrusions are gone

D_S(C) < r, therefore each component C has a boundary of size r.

- D_S(C) < r, therefore each component C has a boundary of size r.
- C has constant treewidth (problem is treewidth bounding).

- D_S(C) < r, therefore each component C has a boundary of size r.
- C has constant treewidth (problem is treewidth bounding).
- ⇒ Each small-degree component has constant size (reduced instance).

- D_S(C) < r, therefore each component C has a boundary of size r.
- C has constant treewidth (problem is treewidth bounding).
- ⇒ Each small-degree component has constant size (reduced instance).
 - What about the *number* of small-degree components?

G-S

G-S

How often can we do this?

G-S

- How often can we do this?
- Is it exhaustive?

Components now connected to cliques (or not finished)

- Components now connected to cliques (or not finished)
- G[S] is H-topological minor free, therefore...

- Components now connected to cliques (or not finished)
- G[S] is H-topological minor free, therefore...

... O(|S|) = O(k) cliques

- Components now connected to cliques (or not finished)
- G[S] is H-topological minor free, therefore...
 - ... O(|S|) = O(k) cliques
 - $\dots \ O(|S|) = O(k) \text{ edges}$

- Components now connected to cliques (or not finished)
- G[S] is H-topological minor free, therefore...
 - ... O(|S|) = O(k) cliques
 - ... O(|S|) = O(k) edges
- Constant number of vertices in components connected to a common clique (or large protrusion in G)

Total size of small degree components

O(k) vertices in small-degree components.

Two ingredients:

Two ingredients:

1 At most O(k) connected *subgraphs* with $D_S \ge r$.

Two ingredients:

- 1 At most O(k) connected *subgraphs* with $D_S \ge r$.
- 2 Decompose the large degree components into subgraphs
 - of constant size; and
 - with a large degree in X.

Since there are O(k) such subgraphs, their total size is O(k).

Two ingredients:

- 1 At most O(k) connected *subgraphs* with $D_S \ge r$.
- 2 Decompose the large degree components into subgraphs
 - of constant size; and
 - with a large degree in X.

Since there are O(k) such subgraphs, their total size is O(k).

Our proof that such a decomposition exists is very technical.

A simplification of our proof appears in:

A parameterized single-exponential algorithm for hitting planar minors. Kim, Paul, and Sau.

 Same idea as before: contract connected subgraphs into edges in S

- Same idea as before: contract connected subgraphs into edges in S
- Exhaustive, else K_{τ} as a subgraph in S and thus H as a topological minor in G

Large-degree components Ingredient two

Every large-degree component can be broken into:

- path-like structures (paths in a tree-decomposition);
- star-like structures (join nodes in a tree-decomposition).

We use tree-decompositions to effect such a break-up.

• Walk along path-decomposition.

- Walk along path-decomposition.
- If more than $\omega(2t+r)$ vertices seen: subgraph has large degree wrt S.

Examples

Conclusion

The result

Parameterized graph problems that have

- 1 finite integer index, and are
- 2 treewidth bounding,

admit linear kernels on graphs excluding a fixed topological minor.

Examples

Trade-off: class of instances vs. problem requirements

• What about graphs excluding a fixed induced minor? What other notions of sparse graphs allow such a theorem?

- What about graphs excluding a fixed induced minor? What other notions of sparse graphs allow such a theorem?
- Can we do this for Dominating Set and similar problems? (Grohe & Marx -decomposition!)

- What about graphs excluding a fixed induced minor? What other notions of sparse graphs allow such a theorem?
- Can we do this for Dominating Set and similar problems? (Grohe & Marx -decomposition!) A O(k³)-kernel has recently been obtained. (Fomin, Lokshtanov, Saurabh and Thilikos.)

- What about graphs excluding a fixed induced minor? What other notions of sparse graphs allow such a theorem?
- Can we do this for Dominating Set and similar problems? (Grohe & Marx - decomposition!) A O(k³)-kernel has recently been obtained. (Fomin, Lokshtanov, Saurabh and Thilikos.)
- Are there interesting polynomially treewidth bounding problems? (We looked at *linear* treewidth bounding).

- What about graphs excluding a fixed induced minor? What other notions of sparse graphs allow such a theorem?
- Can we do this for Dominating Set and similar problems? (Grohe & Marx -decomposition!) A O(k³)-kernel has recently been obtained. (Fomin, Lokshtanov, Saurabh and Thilikos.)
- Are there interesting polynomially treewidth bounding problems? (We looked at *linear* treewidth bounding).

Thank you!