
Linear Kernels for Graphs Excluding a
Topological Minor

A. Langer, F. Reidl, P. Rossmanith, S. Sikdar

Theoretical Computer Science

Dagstuhl 2012

Contents

Linear kernels in sparse graphs

Reduction via protrusions

(Topological) Minors

Our result and how it works

Conclusion

Linear kernels in sparse graphs

Overview
• Dominating Set in planar graphs

Alber, Fellows, Niedermeier. Polynomial-time data reduction for Dominating Set,
2004.

• Framework for planar graphs
Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar
graphs, 2007.

• Meta-result for graphs of bounded genus
Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
Kernelization, 2009.

• Meta-result for graphs excluding a fixed graph as a minor
Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels, 2010.

• Our contribution: a meta-result for graphs excluding a
fixed graph as a topological minor.

Main theorem
Theorem
Let Π be a parameterized graph problem that has

1 finite integer index, and
2 is treewidth-bounding,

both on the class of H-topological-minor-free graphs. Then Π
admits a linear kernel.

The undefined terms
1 A parameterized graph problem Π is a set of pairs (G,k),

where G is a graph and k a non-negative integer s.t.
G1 ∼= G2 implies (G1,k) ∈ Π iff (G2,k) ∈ Π.

2 A parameterized graph problem Π is treewidth-bounding
if ∃ constants c, t such that (G,k) ∈ Π implies that

∃X ⊆ V(G) s.t. |X| 6 c · k and tw(G− X) 6 t.

3 The property of finite integer index allows us to replace
large “protrusions” by smaller gadgets.

We assume that the gadgets are given. Our algorithm is
nonuniform.

The undefined terms
1 A parameterized graph problem Π is a set of pairs (G,k),

where G is a graph and k a non-negative integer s.t.
G1 ∼= G2 implies (G1,k) ∈ Π iff (G2,k) ∈ Π.

2 A parameterized graph problem Π is treewidth-bounding
if ∃ constants c, t such that (G,k) ∈ Π implies that

∃X ⊆ V(G) s.t. |X| 6 c · k and tw(G− X) 6 t.

3 The property of finite integer index allows us to replace
large “protrusions” by smaller gadgets.

We assume that the gadgets are given. Our algorithm is
nonuniform.

Reduction via protrusions

Protrusion anatomy

Definition
X ⊆ V(G) is a t-protrusion if

1 |∂(X)| = |N(X) \ X| 6 t (small boundary)

2 tw(G[X]) 6 t (small treewidth)

We want to replace a large protrusion by a smaller gadget.
1 Requires that the problem has finite integer index.
2 The gadgets can always be chosen such that the

parameter does not increase.
3 This is the only reduction.

(Topological) Minors

Edge contraction

vu

x

Contracting uv

u'

x
parallel edges
are removed

Graph relations
(now with contractions!)

Relation Operations

induced subgraph

subgraph

topological minor

minor

Graph relations
(now with contractions!)

Relation Operations

induced subgraph delete vertices

subgraph

topological minor

minor

Graph relations
(now with contractions!)

Relation Operations

induced subgraph delete vertices

subgraph delete vertices and edges

topological minor

minor

Graph relations
(now with contractions!)

Relation Operations

induced subgraph delete vertices

subgraph delete vertices and edges

topological minor

minor delete vertices and edges,
contract edges

Graph relations
(now with contractions!)

Relation Operations

induced subgraph delete vertices

subgraph delete vertices and edges

topological minor take a subgraph, contract
edges incident to a degree-2
vertex

minor delete vertices and edges,
contract edges

Properties of
H-topological-minor-free graphs

Let G be a graph excluding H as a topological minor.

• Not interested in structure of H, but its size r = |H|.
• In particular: Kr not a topological minor of G.

Important properties:
1 m 6 1

2βr
2n (for some β < 10);

2 no. of cliques 6 2τr log rn (for some τ < 4.51);
3 Closed under taking topological minors.

Properties of
H-topological-minor-free graphs

Let G be a graph excluding H as a topological minor.
• Not interested in structure of H, but its size r = |H|.
• In particular: Kr not a topological minor of G.

Important properties:
1 m 6 1

2βr
2n (for some β < 10);

2 no. of cliques 6 2τr log rn (for some τ < 4.51);
3 Closed under taking topological minors.

Properties of
H-topological-minor-free graphs

Let G be a graph excluding H as a topological minor.
• Not interested in structure of H, but its size r = |H|.
• In particular: Kr not a topological minor of G.

Important properties:
1 m 6 1

2βr
2n (for some β < 10);

2 no. of cliques 6 2τr log rn (for some τ < 4.51);
3 Closed under taking topological minors.

Our result and how it works

On the treewidth-bounding
property

Definition (Treewidth bounding)
A parameterized graph problem Π is called treewidth bounding
if ∃ constants c, t such that for every (G,k) ∈ Π, ∃S ⊆ V(G) s.t.

1 |S| 6 ck;
2 tw(G− S) 6 t.

• S usually is the solution set.
• Vertex Cover, Feedback Vertex Set in general graphs.
• Chordal Vertex Deletion in graphs with bounded clique-size.

On the treewidth-bounding
property

Definition (Treewidth bounding)
A parameterized graph problem Π is called treewidth bounding
if ∃ constants c, t such that for every (G,k) ∈ Π, ∃S ⊆ V(G) s.t.

1 |S| 6 ck;
2 tw(G− S) 6 t.

• S usually is the solution set.
• Vertex Cover, Feedback Vertex Set in general graphs.
• Chordal Vertex Deletion in graphs with bounded clique-size.

A little bit of notation

S

G-S
A

For disjoint vertex sets S,A ∈ V(G), DS(A) = |NG(A) ∩ S|.

A decomposition

S

G-S

 large small

A decomposition

S

G-S

 large small

Reduced instance: large protrusions are gone

Small-degree components

S

G-S

• DS(C) < r, therefore each component C has a boundary of
size r.

• C has constant treewidth (problem is treewidth bounding).
⇒ Each small-degree component has constant size (reduced

instance).
• What about the number of small-degree components?

Small-degree components

S

G-S

• DS(C) < r, therefore each component C has a boundary of
size r.

• C has constant treewidth (problem is treewidth bounding).

⇒ Each small-degree component has constant size (reduced
instance).

• What about the number of small-degree components?

Small-degree components

S

G-S

• DS(C) < r, therefore each component C has a boundary of
size r.

• C has constant treewidth (problem is treewidth bounding).
⇒ Each small-degree component has constant size (reduced

instance).

• What about the number of small-degree components?

Small-degree components

S

G-S

• DS(C) < r, therefore each component C has a boundary of
size r.

• C has constant treewidth (problem is treewidth bounding).
⇒ Each small-degree component has constant size (reduced

instance).
• What about the number of small-degree components?

Small-degree components

S

G-S

Small-degree components

S

G-S

Small-degree components

S

G-S

Small-degree components

S

G-S

Small-degree components

S

G-S

Small-degree components

S

G-S

Small-degree components

S

G-S

Small-degree components

S

G-S

Small-degree components

S

G-S

• How often can we do this?

• Is it exhaustive?

Small-degree components

S

G-S

• How often can we do this?
• Is it exhaustive?

Small-degree components

S

• Components now connected to cliques (or not finished)

• G[S] is H-topological minor free, therefore...
... O(|S|) = O(k) cliques
... O(|S|) = O(k) edges

• Constant number of vertices in components connected to a
common clique (or large protrusion in G)

Small-degree components

S

• Components now connected to cliques (or not finished)
• G[S] is H-topological minor free, therefore...

... O(|S|) = O(k) cliques

... O(|S|) = O(k) edges

• Constant number of vertices in components connected to a
common clique (or large protrusion in G)

Small-degree components

S

• Components now connected to cliques (or not finished)
• G[S] is H-topological minor free, therefore...

... O(|S|) = O(k) cliques

... O(|S|) = O(k) edges

• Constant number of vertices in components connected to a
common clique (or large protrusion in G)

Small-degree components

S

• Components now connected to cliques (or not finished)
• G[S] is H-topological minor free, therefore...

... O(|S|) = O(k) cliques

... O(|S|) = O(k) edges

• Constant number of vertices in components connected to a
common clique (or large protrusion in G)

Small-degree components

S

• Components now connected to cliques (or not finished)
• G[S] is H-topological minor free, therefore...

... O(|S|) = O(k) cliques

... O(|S|) = O(k) edges

• Constant number of vertices in components connected to a
common clique (or large protrusion in G)

Total size of small degree
components

O(k) vertices in small-degree components.

Large-degree components
Two ingredients:

1 At most O(k) connected subgraphs with DS > r.
2 Decompose the large degree components into subgraphs

• of constant size; and
• with a large degree in X.

Since there are O(k) such subgraphs, their total size is O(k).

Our proof that such a decomposition exists is very technical.

A simplification of our proof appears in:
A parameterized single-exponential algorithm for hitting planar minors. Kim, Paul, and
Sau.

Large-degree components
Two ingredients:

1 At most O(k) connected subgraphs with DS > r.

2 Decompose the large degree components into subgraphs
• of constant size; and
• with a large degree in X.

Since there are O(k) such subgraphs, their total size is O(k).

Our proof that such a decomposition exists is very technical.

A simplification of our proof appears in:
A parameterized single-exponential algorithm for hitting planar minors. Kim, Paul, and
Sau.

Large-degree components
Two ingredients:

1 At most O(k) connected subgraphs with DS > r.
2 Decompose the large degree components into subgraphs

• of constant size; and
• with a large degree in X.

Since there are O(k) such subgraphs, their total size is O(k).

Our proof that such a decomposition exists is very technical.

A simplification of our proof appears in:
A parameterized single-exponential algorithm for hitting planar minors. Kim, Paul, and
Sau.

Large-degree components
Two ingredients:

1 At most O(k) connected subgraphs with DS > r.
2 Decompose the large degree components into subgraphs

• of constant size; and
• with a large degree in X.

Since there are O(k) such subgraphs, their total size is O(k).

Our proof that such a decomposition exists is very technical.

A simplification of our proof appears in:
A parameterized single-exponential algorithm for hitting planar minors. Kim, Paul, and
Sau.

Large-degree components
Ingredient one

S

• Same idea as before: contract connected subgraphs into
edges in S

• Exhaustive, else Kr as a subgraph in S and thus H as a
topological minor in G

Large-degree components
Ingredient one

S

• Same idea as before: contract connected subgraphs into
edges in S

• Exhaustive, else Kr as a subgraph in S and thus H as a
topological minor in G

Large-degree components
Ingredient one

S

• Same idea as before: contract connected subgraphs into
edges in S

• Exhaustive, else Kr as a subgraph in S and thus H as a
topological minor in G

Large-degree components
Ingredient two

Every large-degree component can be broken into:
• path-like structures (paths in a tree-decomposition);
• star-like structures (join nodes in a tree-decomposition).

We use tree-decompositions to effect such a break-up.

Large-degree components
Ingredient two

Large-degree components
Ingredient two

• Walk along path-decomposition.
• If more than ω(2t+ r) vertices seen: subgraph has large

degree wrt S.

Large-degree components
Ingredient two

• Walk along path-decomposition.

• If more than ω(2t+ r) vertices seen: subgraph has large
degree wrt S.

Large-degree components
Ingredient two

• Walk along path-decomposition.
• If more than ω(2t+ r) vertices seen: subgraph has large

degree wrt S.

Examples

S

G-S

Examples

S

G-S

...

Examples

S

...

“Roots”

“ Twigs”

Conclusion

The result
Parameterized graph problems that have

1 finite integer index, and are
2 treewidth bounding,

admit linear kernels on graphs excluding a fixed topological
minor.

Examples

Trade-off: class of instances vs.
problem requirements

Open questions
• What about graphs excluding a fixed induced minor? What

other notions of sparse graphs allow such a theorem?

•
• Are there interesting polynomially treewidth bounding

problems? (We looked at linear treewidth bounding).

Thank you!

Open questions
• What about graphs excluding a fixed induced minor? What

other notions of sparse graphs allow such a theorem?
• Can we do this for Dominating Set and similar problems?

(Grohe & Marx -decomposition!)

• Are there interesting polynomially treewidth bounding
problems? (We looked at linear treewidth bounding).

Thank you!

Open questions
• What about graphs excluding a fixed induced minor? What

other notions of sparse graphs allow such a theorem?
• Can we do this for Dominating Set and similar problems?

(Grohe & Marx -decomposition!)
A O(k3)-kernel has recently been obtained. (Fomin,
Lokshtanov, Saurabh and Thilikos.)

• Are there interesting polynomially treewidth bounding
problems? (We looked at linear treewidth bounding).

Thank you!

Open questions
• What about graphs excluding a fixed induced minor? What

other notions of sparse graphs allow such a theorem?
• Can we do this for Dominating Set and similar problems?

(Grohe & Marx -decomposition!)
A O(k3)-kernel has recently been obtained. (Fomin,
Lokshtanov, Saurabh and Thilikos.)

• Are there interesting polynomially treewidth bounding
problems? (We looked at linear treewidth bounding).

Thank you!

Open questions
• What about graphs excluding a fixed induced minor? What

other notions of sparse graphs allow such a theorem?
• Can we do this for Dominating Set and similar problems?

(Grohe & Marx -decomposition!)
A O(k3)-kernel has recently been obtained. (Fomin,
Lokshtanov, Saurabh and Thilikos.)

• Are there interesting polynomially treewidth bounding
problems? (We looked at linear treewidth bounding).

Thank you!

	Linear kernels in sparse graphs
	Reduction via protrusions
	(Topological) Minors
	Our result and how it works
	Conclusion

