Finding classes

felix.reidl@gmail.com

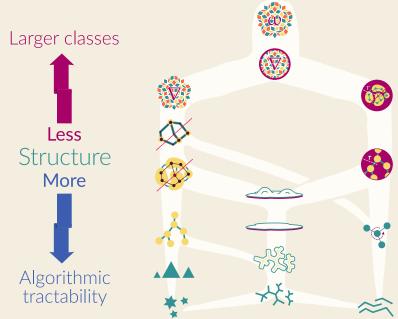
Workshop on

structural sparsity, logic & algorithms.

Part I

Sparse classes

The sparse class hierarchy



The sparse class hierarchy FO fixed-parameter tractable MSO₂ fixed-parameter tractable

Parameterised graph invariants

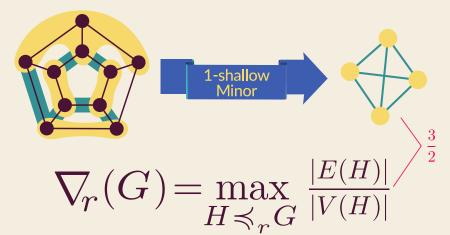
A graph invariant is an isomorphism invariant function that maps graphs to \mathbb{R}^+

e.g. density, average degree, clique number, degeneracy treewidth, etc.

A parameterised graph invariant is a family of graph measures $(f_r)_{r \in \mathbb{N}_0}$.

A graph class \mathcal{G} is f_r -bounded if there exists g s.t. $f_r(\mathcal{G}) = \limsup_{G \in \mathcal{G}} f_r(G) \leqslant g(r) \text{ for all } r.$

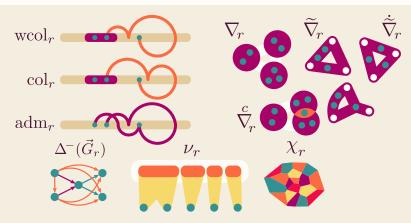
Shallow minors & bounded expansion



A graph class has bounded expansion iff it is ∇_r -bounded.

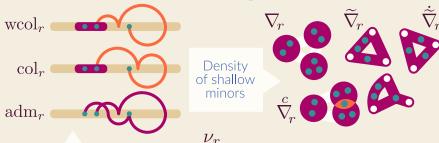
Bounded expansion

Nešetřil & Ossona de Mendez: Many notions of f_r -boundedness are equivalent!



Nešetřil J, Ossona de Mendez P. **Sparsity**. Algorithms and Combinatorics. 2012;28.

Bounded expansion



Size of r-reachable sets in ordering

Normalized number of traces r-neighbourhoods leave in any subset

Number of colours in r-treedepth colouring

Nešetřil J, Ossona de Mendez P. **Sparsity**. Algorithms and Combinatorics. 2012;28.

Bounded expansion is robust

Bounded expansion is preserved under the following class operations:

 $\mathcal{G} \ \nabla \ r$

Taking subgraphs / shallow minors

Adding an apex

 $\mathcal{G} \bullet K_r$

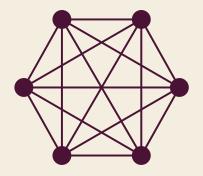
Lexproduct with a small graph

 $\mathcal{G}\oplus_r\mathcal{H}$

r-boundaried sums

But.

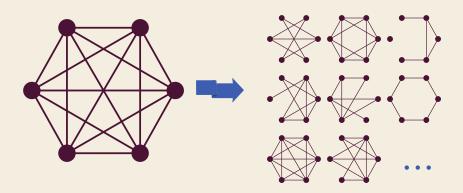
The humble clique



- Almost any problem is easy on cliques
- Very easy to remember (just recall n)
- Everyone is friends with everyone else! Nice!
- Absolutely not sparse

The humble clique

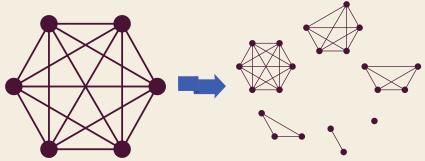
Why are cliques the 'bad guys' in sparse classes?



In monotone classes, cliques simply contain everything.

The humble clique

What if we restrict ourselves to induces subgraphs?



In hereditary classes, cliques are harmless!

Monotone classes: done.

FO model checking is FPT on nowhere dense classes.

Grohe M. Kreutzer S. Siebertz S.

Deciding first-order properties of nowhere dense graphs.

Journal of the ACM (JACM). 2017 Jun 16;64(3):17.

If $\mathcal G$ is somewhere dense and monotone, then the FO model checking problem on $\mathcal G$ is $AW[\star]$ -complete.

Dawar A. Kreutzer S.

Parameterized complexity of first-order logic. InElectronic Colloquium on Computational Complexity, TR09-131 2009 Dec 2 (p. 39).

Dvořák Z, Král D, Thomas R.

Testing first-order properties for subclasses of sparse graphs. Journal of the ACM (JACM). 2013 Oct 1;60(5):36.

Stability = Nowhere Denseness in montone classes.

Adler H, Adler I.

Interpreting nowhere dense graph classes as a classical notion of model theory. European Journal of Combinatorics. 2014 Feb 1;36:322-30.

We want something more robust!

Bounded expansion is **not** preserved under the following class operations, but FO-tractability is:

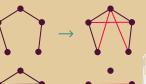
 $\overline{\mathcal{G}}$

Complementation

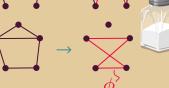
 $\mathcal{G}ullet K_{f(n)}$ Lexproduct with a big clique/stable set



 \mathcal{G}^r Taking powers



 $\mathcal{I}_{\phi}(\mathcal{G})$ FO interpretations



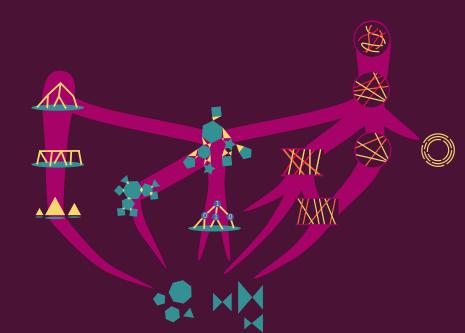
Dense classes

The (maybe naive) goal

Find a notion of bounded complexity that

- ...generalizes bounded expansion on hereditary classes
- ...is preserved under complementation, set complements, lexproducts with simple (but large) graphs
- ...is preserved under powers and FO interpretations
- ...generalizes established & tractable dense classes
- ...has a nowhere dense equivalent (nowhere complex?)
- ...has nice algorithmic properties (e.g. FO model checking in FPT time

A selection of dense classes



The logical connection

Treedepth

Shrubdepth SC-depth

Treewidth

MSO interpretation

Rankwidth Cliquewidth

Bounded degree

FO interpretation

uniform

Near

Gajarský J, Hliněný P, Obdržálek J, Lokshtanov D, Ramanujan MS. A new perspectíve on FO model checking of dense graph classes. InProceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science 2016 Jul 5 (pp. 176-184), ACM.

Bounded expansion

Power

Graphs with LSD

Kwon OJ, Pilipczuk M, Siebertz S. **On low rank-width colorings.** InInternational Workshop on Graph-Theoretic Concepts in Computer Science 2017 Jun 21 (pp. 372-385). Springer, Cham.

The logical connection

Treedepth

Shrubdepth SC-depth

Treewidth

MSO interpretation

Rankwidth Cliquewidth

Bounded degree

FO interpretation

Near uniform

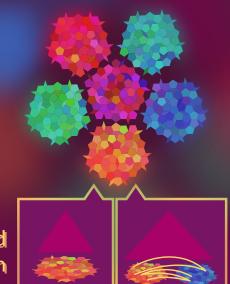
Gajarský J, Hliněný P, Obdržálek J, Lokshtanov D, Ramanujan MS. A new perspective on FO model checking of dense graph classes. InProceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science 2016 Jul 5 (pp. 176-184). ACM.

Bounded expansion

FO interpretation

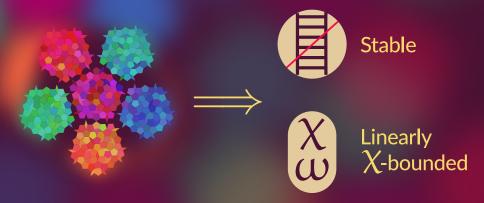
Graphs with LSD

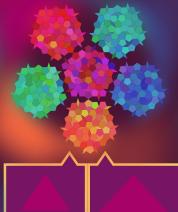
Gajarský J, Kreutzer S, Siebertz S, Toruńczyk S, Pilipczuk M, Ossona de Mendez P, Nešetřil J. **First-order interpretations o bounded expansion classes.** To appear.



Bounded shrubdepth

Bounded shrubdepth





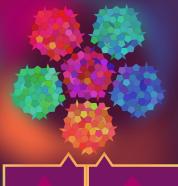
FO interpretation

Bounded expansion

Structurally bounded expansion

Gajarský et al.: A class has SBE iff it is an FO interpretation of a BE class.

Ossona de Mendez P, Nešetřil J. First-order interpretations of bounded expansion classes. To appear.



FO interpretation

Bounded expansion

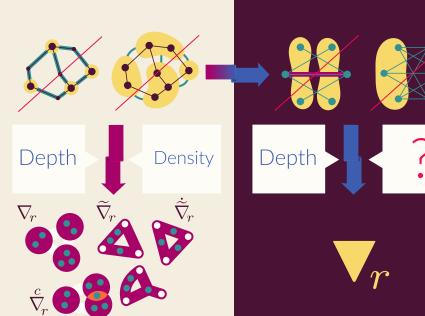
Structurally bounded expansion

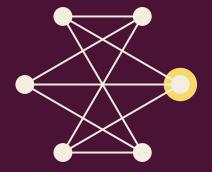
Gajarský et al.: A class has SBE iff it is an FO interpretation of a BE class.

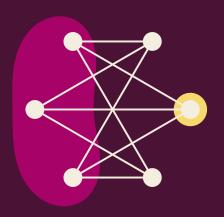
Gajarský J. Kreutzer S. Siebertz S. Toruńczyk S. Pilipczuk M. Ossona de Mendez P. Nešetřil J. First-order interpretations of bounded expansion classes. To appear.

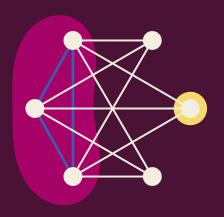
LSD is great, but is it what we need?

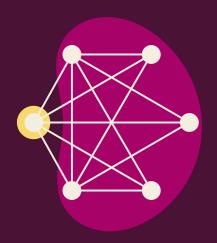
Forbidden (shallow) minors

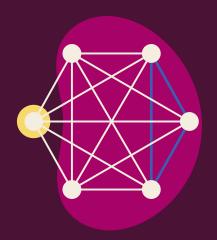


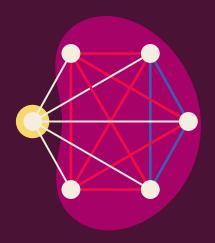


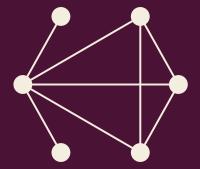


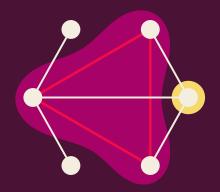


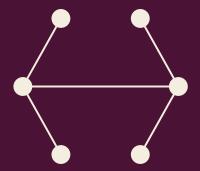












Minor vs v.minor

Induces WQO on graphs

Robertson N, Seymour PD. **Graph minors. XX. Wagner's conjecture.** Journal of combinatorial theory, Series B. 2004 Nov 1;92(2):352-357.

Induces WQO on graphs of bounded rankwidth

Oum SI. Rank-width and well-quasi-ordering. SIAM Journal on Discrete Mathematics. 2008 Mar 28;22(2):666-82.

Treewidth

Vertex minor

Rankwidth Cliquewidth

Treedepth

▲ SC-depth
Shrubdepth

Kwon OJ, Oum SI. Graphs of small rank-width are pivot-minors of graphs of small tree-width. Discrete Applied Mathematics. 2014 May 11;168:108-18.

Hliněný P, Kwon OJ, Obdržálek J, Ordyniak S. **Tree-depth and vertex-minors.** European Journal of Combinatorics. 2016 Aug 1;56:46-56.

Excluded minor vs excluded v.minor

'Historical' ex.: planar graphs

Kuratowski

Finite χ , degenerate

Mader W. Homomorphieeigenschaften und mittlere Kantendichte von Graphen.
Mathematische Annalen.
1967 Dec 1:174(4):265-8.

Decomposition theorem

Robertson N, Seymour PD. **Graph minors. XVI. Excluding a non-planar graph**. Journal of Combinatorial Theory, Series B. 2003 Sep 1;89(1):43-76.

'Historical' ex.: circle graphs

Bouche

X-bounded (Geelen's conj.)? True for excluded wheels

Choi H, Kwon OJ, Oum SI, Wollan P. Chi-boundedness of graph classes excluding wheel vertex-minors. Electronic Notes in Discrete Mathematics. 2017 Aug 1;61:247-53.

A notion of depth!

Contract a star forest

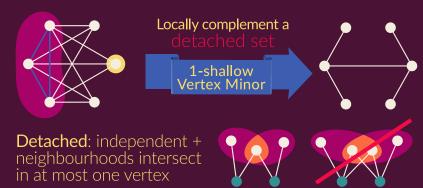
1-shallow Minor

Locally complement a detached set

1-shallow Vertex Minor

Detached: independent + neighbourhoods intersect in at most one vertex

A notion of depth!



Using machinery by Gajarský et al.:

A graph class has SBE iff it can be constructed as shallow vertex minors from a BE class.

A notion of depth!

Using machinery by Gajarský et al.:

A graph class has SBE iff it can be constructed as shallow vertex minors from a BE class.

A notion of complexity?

Using machinery by Gajarský et al.:

A graph class has SBE iff it can be constructed as shallow vertex minors from a BE class.

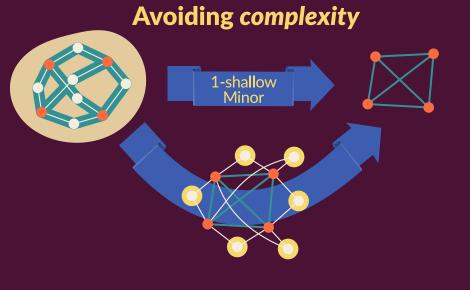
What we would like to have:

A graph class has SBE iff every r-shallow vertex minor has *complexity* bounded by f(r).

$$abla_r(G) = \max_{H \preccurlyeq_r^{\mathrm{vm}} G} \mathfrak{C}(H)$$

Avoiding complexity

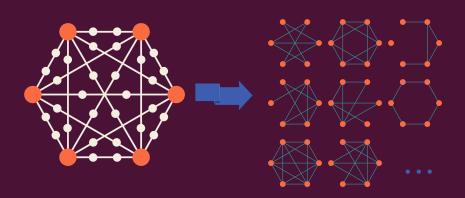
1-shallow Minor



Avoiding complexity 1-shallow Minor

Avoiding complexity

If a class contains arbitrarily large cliques as shallow induced subdivisions, then it contains *complex* graphs as shallow vertex minors.



To sparse, from low complexity

Treedepth .

Shrubdepth SC-depth

 $K_t \overline{K_{t,t}}$

Rankwidth Cliquewidth

Fomin FV, Oum SI, Thilikos DM. Rank-width and tree-width of H-minor-free graphs.

Bounded expansion

No dense induced subdivision

Bounded expansion

Induced subdivisions and bounded expansion.

Structurally bounded

To sparse, from low complexity

Treewidth

Fomin FV, Oum SI, Thilikos DM. Rank-width

Shrubdepth SC-depth

Rankwidth Cliquewidth

Bounded

and tree-width of H-minor-free graphs.

expansion

Induced subdivisions and bounded expansion.

Nowhere dense

Structurally nowhere dense

Ossona de Mendez P, Nešetřil J. WIP

Summary

From sparse to low complexity

Treedepth

Bounded degree

FO interpretation

Shrubdepth SC-depth

Near uniform

Bounded expansion

subset complement

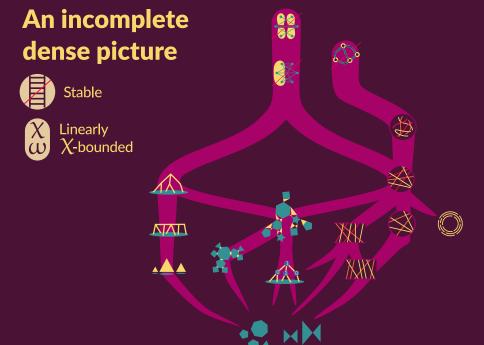
Obfuscated bounded expansion

Gajarsky J, Kral D. **Deobfuscating sparse graphs.** arXiv preprint arXiv:1709.09985. 2017 Sep 28.

Bounded expansion

FO interpretation

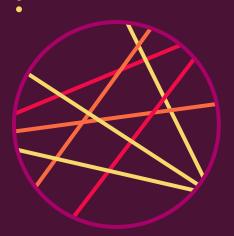
Structurally bounded expansion



Circle graphs—not the good guys?

Linearly ? X-bounded •

Stable



Circle graphs—not the good guys?

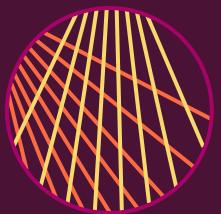
Kostochka: There exist circle graphs s.t. $\chi = \Omega(\omega \log \omega)$

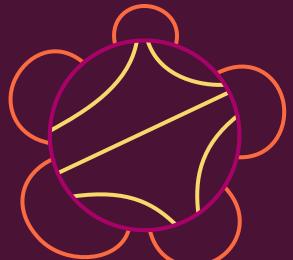
A. Kostochka. **On upper bounds on chromatic numbers of graphs.** Transaction of the Institute of mathematics, 10:204–226, 1988.

Bipartite circle graphs—not the good guys?

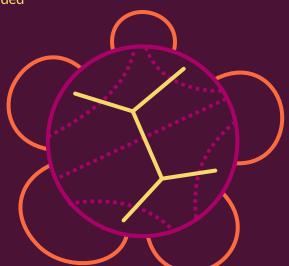
Stable

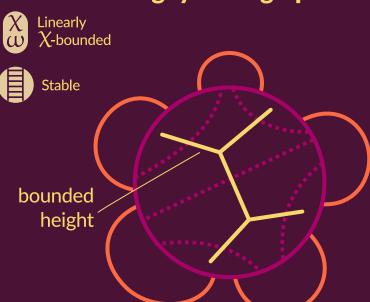
Bipartite circle graphs—not the good guys?

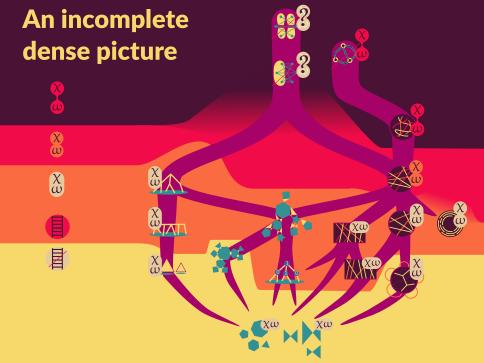




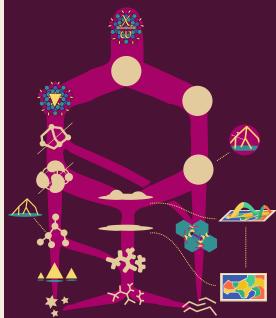
Stable







Interpreted hierarchy



THANKS! Questions?

