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Sparse classes



The sparse class hierarchy
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The sparse class hierarchy
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Parameterised graph invariants

A graph invariant is an isomorphism invariant
function that maps graphs to IR

e.g. density, average degree, clique number, degeneracy
treewidth, etc.

A parameterised graph invariant is a family of graph
measures (fr)reNo.

A graph class G is f,.-bounded if there exists g s.t.

f-(G) = limsup f-(G) < g(r) forallr
Geg



Shallow minors & bounded expansion
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Bounded expansion

Nesetril & Ossona de Mendez:
Many notions of f-boundedness are equivalent!
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Nesetril J, Ossona de Mendez P. Sparsity.
Algorithms and Combinatorics. 2012;28.



Bounded expansion
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Nesetril J, Ossona de Mendez P. Sparsity.
Algorithms and Combinatorics. 2012;28.
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Bounded expansion is robust
Bounded expansion is preserved under the following

class operations:
Taking subgraphs / /=3 A
v

shallow minors \

!

g + v Adding an apex . %
G K Lexproduct with N\,
T a small graph — D
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But.



The humble clique

= Almost any problem is easy on cliques

= Very easy to remember (just recall n)

m Everyone is friends with everyone else! Nice!
= Absolutely not sparse



The humble clique

Why are cliques the ‘bad guys'’ in sparse classes?

In monotone classes, cliques
simply contain everything.




The humble clique

What if we restrict ourselves
to induces subgraphs?

In hereditary classes, cliques
are harmless!



Monotone classes: done.
FO model checking is FPT on nowhere dense classes.

Grohe M, Kreutzer S, Siebertz S.
Deciding first-order properties of nowhere dense graphs.
Journal of the ACM (JACM). 2017 Jun 16;64(3):17.

If G is somewhere dense and monotone, then the FO
model checking problem on G is AW[*]-complete.

Dawar A, Kreutzer S. Dvoréak Z, Kral D, Thomas R.
Parameterized complexity of first-order logic. Testing first-order properties for subclasses
InElectronic Colloguium on Computational of sparse graphs. Journal of the ACM (JACM).

Complexity, TRO9-131 2009 Dec 2 (p. 39). 2013 Oct 1;60(5):36.

Stability = Nowhere Denseness in montone classes.

Adler H, Adler I. E
Interpreting nowhere dense graph classes as a classical notion of model theory.
European Journal of Combinatorics. 2014 Feb 1;36:322-30.



We want something more robust!

Bounded expansion is not preserved under the following
class operations, but FO-tractability is:

Complementation @ %
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Dense classes



The (maybe naive) goal

Find a notion of that

...generalizes bounded expansion
on hereditary classes

...Is preserved under complementation,
set complements, lexproducts with simple
(but large) graphs

...Is preserved under powers and
FO interpretations

...generalizes established & tractable
dense classes

...has a nowhere dense equivalent
(nowhere complex?)

...has nice algorithmic properties
(e.g. FO model checking in FPT time)




A selection of dense classes
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LSD: Lew Shrubdepth Becempesition
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LSD: Lew Shrubdepth Decempesitien
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LSD: Lew Shrubdepth Decempesitien

N/

pe L | \ \ /
® o FO inter- o0~
pretation | - X -l
Vo

el Sl %
\ Bounded Structurally
! s T expansion bounded
expansion

Gajarsky et al.:
A class has SBE iff it is an
FO interpretation of a BE class.

Gajarsky J, Kreutzer S, Siebertz S, Torunczyk S, Pilipczuk M,
Ossona de Mendez P, Nesetril J. First-order interpretations of

bounded expansion classes. To appear.



LSD: Lew Shrubdepth Decempesitien
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Gajarsky et al.:

A class has SBE iff it is an
FO interpretation of a BE class.

Gajarsky J, Kreutzer S, Siebertz S, Torunczyk S, Pilipczuk M,
Ossona de Mendez P, Nesetril J. First-order interpretations of

bounded expansion classes. To appear.

LSD is great, but is it what we need?
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Vertex minors
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Vertex minors
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Induces WQO on graphs
of bounded rankwidth

Oum SI. Rank-width and well-quasi-ordering.
SIAM Journal on Discrete Mathematics.

008 Mar 28;2
Treewidth J X m Rankwidth
1 Cliguewidth
Vertex
minor
SC-depth
Treedepth AAA AAA ShrubdeptE
Kwon OJ, Oum SI. Graphs of small rank-width Hlinény P, Kwon OJ, Obdrzalek J, Ordyniak S.

are pivot-minors of c’raphs of small tree-width. Tree-depth and vertex-minors.
5 European Journal of Combinatorics.
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‘Historical’ ex.: planar graphs

Finite X, degenerate

Ma V. Homomorphieeigenschaften und
mlttlere Kantendichte von Graphen.

Decomposmon theorem
0b Seymour PD. Graph minors. XVI.

Excluded minor (A &L L RAnT]s

(\ 2

‘4‘

‘Historical’ ex.: circle graphs

X-bounded (Geelen's conj.)?
True for excluded wheels

Choi H, Kwon OJ, Oum SI, Wollan P.
Chi-boundedness of graph classes excluding
wheel vertex-minors. Electronic Notes in

Discrete Mathematics. 2017 Aug 1;




A notion of depth!

Contract a
star forest
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Locally complement a

1-shallow
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Detached: independent +
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A notion of depth!

Locally complement a

1-shallow
Vertex Minor

Detached: independent +
neighbourhoods intersect X f .\ /

in at most one vertex

Using machinery by Gajarsky et al.:

A graph class has SBE iff it can be constructed as
shallow vertex minors from a BE class.



A notion of depth!

Locally complement a

.< 1-shallow

Vertex Minor

Using machinery by Gajarsky et al.:

A graph class has SBE iff it can be constructed as
shallow vertex minors from a BE class.
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A notion of complexity?

Using machinery by Gajarsky et al.:
A graph class has SBE iff it can be constructed as
shallow vertex minors from a BE class.

A graph class has SBE iff every r-shallow vertex
minor has bounded by f(r).

V.(G)= max ((H)

HX™ G



Avoiding complexity
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Avoiding complexity
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Avoiding complexity
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Avoiding complexity

If a class contains arbitrarily large cliques as shallow
induced subdivisions, then it contains complex graphs
as shallow vertex minors.
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To sparse, from [\ 11]91 [ 13
Treedepth AAA AAA sschdregt?depth
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omin FV, Oum SI, Thilikos DM. Rank-width
and tree-width of H-minor-free graphs.

uropean Journal of Combinatorics.
2010 Oct 1;31(7):1617-28
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Induced subdivisions and bounderdrexpansion.

arXiv preprint arXiv:1706.05766. 2017 Jun 19
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Circle graphs—not the good guys?
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Circle graphs—not the good guys?

Kostochka: There exist circle graphs s.t.

X = Q(wlogw)
E ? A. Kostochka. On upper bounds on chromatic numbers of graphs.
E Stable Transaction of the Institute of mathematics, 10:204-226, 1988.
‘-



Bipartite circle graphs—not the good guys?
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Bipartite circle graphs—not the good guys?
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Good guy circle graph???
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Good guy circle graph???
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Good guy circle graph???
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THANKS!

Questions?




