CHARACTERISING STRUCTURAL SPARSENESS

NEIGHBÓURHOOD COMPLEXITY

Or: If your neighbourhood is boring, you probably live in a sparse region.

Felix Reidl felix.reidl@gmail.com

Joint work with
Fernando Sánchez Villaamil
& Konstantinos Stavropoulos

Warwick '16

A graph measure is an isomorphism invariant function that maps graphs to \mathbb{R}^+ .

A graph measure is an isomorphism invariant function that maps graphs to \mathbb{R}^+ .

- Average degree $\frac{2|E(G)|}{|V(G)|}$
- Clique number $\omega(G)$
- Degeneracy $\max_{H\subseteq G} \frac{2|E(H)|}{|V(H)|}$
- Treewidth tw(G)

A graph measure is an isomorphism invariant function that maps graphs to \mathbb{R}^+ .

A graph measure is an isomorphism invariant function that maps graphs to \mathbb{R}^+ .

- Average degree $\frac{2|E(G)|}{|V(G)|}$
- Clique number $\omega(G)$
- Degeneracy $\max_{H\subseteq G} \frac{2|E(H)|}{|V(H)|}$

Density measures

• Treewidth tw(G)

Width measures

PARAMETRISED GRAPH MEASURES

A parametrised graph measure is a family of graph measures $(f_r)_{r \in \mathbb{N}_0}$

PARAMETRISED GRAPH MEASURES

A parametrised graph measure is a family of graph measures $(f_r)_{r \in \mathbb{N}_0}$.

PARAMETRISED GRAPH MEASURES

A parametrised graph measure is a family of graph measures $(f_r)_{r \in \mathbb{N}_0}$.

A graph class $\mathcal G$ is f_r -bounded if there exists g s.t.

$$f_r(\mathcal{G}) = \sup_{G \in \mathcal{G}} f_r(G) \leqslant g(r)$$
 for all r .

CHOOSE YOUR POISON

low td/tw colorings

splitter games

CHOOSE YOUR POISON

splitter games

CHARACTERISING STRUCTURAL SPARSENESS

SPARSENESS
SHALLOW r-CENTRED
TOPOLOGICAL COLOURING
MINGRS NUMBER5

SUBSTRUCTURES

Select vertices, connect by edges

SUBGRAPH

Select vertices, connect by vertex-disjoint paths

TOP. MINOR

Select connected, disjoint subgraphs, connect by edges

FORBIDDEN SUBSTRUCTURES

 ${\cal H}$ does not appear as a subgraph.

 ${\cal H}$ does not appear as a topological minor.

H does not appear as a minor.

FORBIDDEN SUBSTRUCTURES

does not appear as a topological minor.

= FORESTS

does not appear as a minor.
= FORESTS

FORBIDDEN SUBSTRUCTURES

does not appear as a subgraph.

= TRIANGLE-FREE GRAPHS

does not appear as a topological minor.

= FORESTS

does not appear as a minor.
= FORESTS

NOT ALL MINORS ARE EQUAL!

NOT ALL MINORS ARE EQUAL!

NOT ALL TOP. MINORS ARE EQUAL!

NOT ALL TOP. MINORS ARE EQUAL!

GRAPH + DEPTH = NOTION of STRUCTURAL SPARSENESS

GRAPH + DEPTH = STRUCTURAL SPARSENESS

 $\dfrac{\|H\|}{|H|}$ lacksquare minor depth r lacksquare

$$\frac{\|H\|}{|H|}$$

$$lacktriangledown$$
 minor depth r \blacksquare $\nabla_r(G) = \max_{H \preccurlyeq \binom{m}{r} G} \frac{\|H\|}{|H|}$

$$\max_{T \geq rC} \frac{\|H\|}{|H|}$$

$$\frac{\|H\|}{|H|}$$

minor depth
$$r$$
 \blacksquare $\nabla_r(G) = \max_{H \preccurlyeq r G} \frac{\|H\|}{\|H\|}$

$$\frac{\|H\|}{|H|}$$

+ topological minor depth
$$r$$
 = $\widetilde{\nabla}_r(G) = \max_{H \preccurlyeq_{\mathbf{t}}^r G} \frac{\|H\|}{|H|}$

$$\frac{\|H\|}{|H|} \quad + \quad \underset{\text{minor depth } r}{\text{topological}} \quad \equiv \quad \widetilde{\nabla}_r(G) = \max_{H \preccurlyeq_{\mathsf{t}}^r G} \frac{\|H\|}{|H|}$$

$$\widetilde{\nabla}_r(G) \leqslant \nabla_r(G) \leqslant 4(4\widetilde{\nabla}_r(G))^{(r+1)^2}$$

Nešetřil & Ossona de Mendez

$$\frac{\|H\|}{|H|}$$

minor depth
$$r$$
 \blacksquare $\nabla_r(G) = \max_{H \preccurlyeq_{\mathsf{m}}^r G} \frac{\|H\|}{|H|}$

$$\frac{\|H\|}{|H|}$$

+ topological minor depth
$$r$$
 = $\widetilde{\nabla}_r(G) = \max_{H \preccurlyeq_r^r G} \frac{\|H\|}{|H|}$

$$\widetilde{\nabla}_r(G) \preceq \nabla_r(G)$$

Nešetřil & Ossona de Mendez

BOUNDED EXPANSION

A graph class G has bounded expansion iff it is ∇_r -bounded.

A graph class G has bounded expansion iff it is $\widetilde{\nabla}_r$ -bounded.

"We allow dense minors in our graph, but only on a large scale"

- contains a centre, or
- contains r or more colours.

td(H)

+

colour subsets of size r

 $\chi_r(G)$

 $\begin{tabular}{ll} {\bf Minimum number of colours} \\ {\bf needed for an } r\mbox{-centred colouring of } G \\ \end{tabular}$

- contains a centre, or
- contains r or more colours.

r-Centred colourings

- contains a centre, or
- contains r or more colours.

r-Centred colourings

- contains a centre, or
- contains r or more colours.

r-Centred colourings

BOUNDED EXPANSION (AGAIN)

Nešetřil & Ossona de Mendez

A graph class \mathcal{G} has bounded expansion iff it is χ_r -bounded.

"Structurally sparse graphs can be decomposed locally into parts of bounded width"

Interlude CUT COMPLEXITY

BOUNDED CUT COMPLEXITY

(Works in many sparse classes)

BOUNDED CUT COMPLEXITY

(Works in many sparse classes)

N(X) is large...

BOUNDED CUT COMPLEXITY

(Works in many sparse classes)

N(X) is large...

...but $N(X)/N_X$ has size O(|X|)

CUT COMPLEXITY AS A MEASURE

CUT COMPLEXITY AS A MEASURE

$$\xi(G) = \max_{X \subseteq V(G)} \frac{|\{N(v) \cap X\}_{v \in G}|}{|X|}$$

$$\xi(G) = \max_{X \subseteq V(G)} \frac{|\{N(v) \cap X\}_{v \in G}|}{|X|}$$

$$\max_{X \subseteq V(G)} \frac{|\{N(v) \cap X\}_{v \in G}|}{|X|}$$

$$\xi(G) = \max_{X \subseteq V(G)} \frac{|\{N(v) \cap X\}_{v \in G}|}{|X|}$$

$$\max_{X \subseteq V(G)} \frac{|\{Nv[v] \cap X\}_{v \in G}|}{|X|}$$

$$\xi(G) = \max_{X \subseteq V(G)} \frac{|\{N(v) \cap X\}_{v \in G}|}{|X|}$$

$$\max_{|X| = 0} \frac{|\{N(v) \cap X\}_{v \in G}|}{|X|}$$

$$\xi(G) = \max_{X \subseteq V(G)} \frac{|\{N(v) \cap X\}_{v \in G}|}{|X|}$$

$$Considerate$$

$$V_r(G) = \max_{H \subseteq G, X \subseteq V(H)} \frac{|\{N^r[v] \cap X\}_{v \in H}|}{|X|}$$

$$\xi(G) = \max_{X \subseteq V(G)} \frac{|\{N(v) \cap X\}_{v \in G}|}{|X|}$$

$$\nu_r(G) = \max_{H \subseteq G, X \subseteq V(H)} \frac{|\{N^r[v] \cap X\}_{v \in H}|}{|X|}$$

"Neighbourhood Complexity"

CHARACTERISING STRUCTURAL SPARSENESS

NEIGHBOURHOOD COMPLEXITY

Part I

The story of $\nu_r(G) \leqslant f(\chi_{2r+2}(G))$

Bounding N.C. by centred cols.

	X
_	
1	
Т	•
	•
-	

BOUNDING N.C. BY CENTRED COLS.

Bounding N.C. by centred cols.

BOUNDING N.C. BY CENTRED COLS.

SIGNATURES & NEIGHBOURHOODS

For a fixed signature σ and $u, v \in Y_r$, either $N^{\sigma}(u) = N^{\sigma}(v)$ or $N^{\sigma}(u) \cap N^{\sigma}(v) = \emptyset$.

For a fixed signature σ and $u, v \in Y_r$, either $N^{\sigma}(u) = N^{\sigma}(v)$ or $N^{\sigma}(u) \cap N^{\sigma}(v) = \emptyset$.

For a fixed signature σ and $u, v \in Y_r$, either $N^{\sigma}(u) = N^{\sigma}(v)$ or $N^{\sigma}(u) \cap N^{\sigma}(v) = \emptyset$.

This would be bad: $\approx 2^{|X|}$ neighbourhood classes

This would be bad: $\approx 2^{|X|}$ neighbourhood classes

Connected subgraph

- Connected subgraph
- At most 2r + 1 colours

- Connected subgraph
- At most 2r + 1 colours
- Every colour appears at least twice

- Connected subgraph
- At most 2r + 1 colours
- Every colour appears at least twice

This subgraph has few colours and no centre!

Contradiction!

SIGNATURES: OBSERVATION II

For every σ_1 -twin class $C_1 \subseteq Y_r$ and σ_2 -twin class $C_2 \subseteq Y_r$ we have that either $C_1 \subseteq C_2$, $C_2 \subseteq C_1$ or $C_1 \cap C_2 = \emptyset$.

SIGNATURES: OBSERVATION II

For every σ_1 -twin class $C_1 \subseteq Y_r$ and σ_2 -twin class $C_2 \subseteq Y_r$ we have that either $C_1 \subseteq C_2$, $C_2 \subseteq C_1$ or $C_1 \cap C_2 = \emptyset$.

The number of twin-classes in Y_r is at most $f(\chi_{2r+2}(G))|X|$.

SIGNATURES: OBSERVATION II

For every σ_1 -twin class $C_1 \subseteq Y_r$ and σ_2 -twin class $C_2 \subseteq Y_r$ we have that either $C_1 \subseteq C_2$, $C_2 \subseteq C_1$ or $C_1 \cap C_2 = \emptyset$.

The number of twin-classes in Y_r is at most $f(\chi_{2r+2}(G))|X|$.

$$\nu_r(G) \leqslant f(\chi_{2r+2}(G))$$

CHARACTERISING STRUCTURAL SPARSENESS

NEIGHBOURHOOD COMPLEXITY

Part II—

The (shorter) story of $\widetilde{\nabla}_{r-1}(G) \leqslant f(\nu_{\leqslant r}(G))$

Dense top. minors = high complexity

BOUNDED EXPANSION (AGAIN)

$$f_1(\widetilde{\nabla}_{r-1}(G)) \leqslant \nu_{\leqslant r}(G) \leqslant f_2(\chi_{2r+2}(G))$$

R., Sánchez Villaamil, Stavropulos

A graph class \mathcal{G} has bounded expansion iff it is ν_r -bounded.

"Structurally sparse graphs have simple neighbourhood structures"

Summary & Future work

SUMMARY

GRAPH MEASURE

DEPTH =

NOTION of STRUCTURAL SPARSENESS

 $\frac{\|H\|}{|H|}$

topological minor depth r

 $\widetilde{\nabla}_r$

 $\mathbf{td}(H)$

colour subsets
of size r

cut complexity +

 $\begin{array}{c} \textbf{neighbourhood} \\ \textbf{radius} \ r \end{array}$

FUTURE WORK

Characterise nowhere dense classes by neighbourhood complexity? Need polynomial bound!

What about dense classes? Neighbourhood complexity without taking subgraphs...

Find more characterisations!

THANKS!

Questions?

References

Nešetřil, J., & de Mendez, P. O. (2012). **Sparsity: graphs, structures, and algorithms** (Vol. 28). Springer Science & Business Media.

FR. (2015). Structural sparseness and complex networks.

FR, Sánchez Villaamil, F., & Stavropoulos, K. (2016). **Characterising Bounded Expansion by Neighbourhood Complexity.** arXiv preprint arXiv:1603.09532.