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SUBSTRUCTURES

Select vertices, connect by

edges I

Select vertices, connect by
vertex-disjoint paths

Select connected, disjoint
subgraphs, connect by edges
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THE MAGIC FORMULA

NOTION ¢

GRAPH ., DEPTH STRUCTURAL

MEASURE PARAMETRE SPARSENESS
| H| . | H ||
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_ Nesettil & Ossona de Mendez
log(Vi-(G@)) = ©(log(V:(G)))



BOUNDED EXPANSION

“We allow dense minors in our graph, but
only on a large scale”
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colour subsets
td(H) + of size r = XT (G)

Minimum number of colours
needed for an r-centred colouring of G
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r-GENTRED COLOURINGS
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BOUNDED EXPANSION (AGAIN)

Nesettil & Ossona de Mendez

“Structurally sparse graphs can be decomposed
locally into parts of bounded width”
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(Works in many sparse classes)

N(X) islarge... ..but N(X)/Nx
has size O(|X]|)
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FROM CUTS TO NEIGHBOURHOODS
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BOUNDING N.C. BY CENTRED COLS.
X (2r+-2)-centred - X -

colouring with
CEENNTTEES Y

k= X2r+2(G) -
Y., colours GlEEE Y.

shade by (7”+1)k7
level colours

G S Y

CEEEEEEE )

Focus on single colour class in Y;.
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SIGNATURES: OBSERVATION 11

' ‘ . Connected subgraph

« At most 2 + 1 colours

« Every colour appears
atleast twice

This subgraph has few
colours and no centre!

Contradiction!
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DENSE TOP. MINORS
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BOUNDED EXPANSION (AGAIN)

R., Sanchez Villaamil, Stavropulos

“Structurally sparse graphs have simple
neighbourhood structures”
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SUMMARY

NOTION
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FUTUREWORK -
., Characterise nowhere dense

& classes by neighbourhood

b Complexity? Need polynomial bound!

What about dense classes?
Neighbourhood complexity @ m
without taking subgraphs...

Find more characterisations!
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THANKS!

Questions?
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