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COMPLEX NETWORKS
= Real world graphs

Sociology Biology InfraStructure

Friendships, Gene-gene interactions, Road networks,
Collaborations, Protein-protein inter., Power grids,
Communication, Neural networks, Computer networks,



SPEAKING OF NETWORKS
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PROPERTIES OF REAL GRAPHS

Giant connected Maximum degree
component around nS € < 1

Low

Clustered diameter

Random
(but not uniform) Sparse



A BoomiNeg FIELD

1) We collect a lot of network data
2) We need to compute things on them
3) Sparse graphs admit nice algorithms
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1) We collect a lot of network data
2) We need to compute things on them
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SUBSTRUCTURES

Select vertices, connect by

edges I

Select vertices, connect by
vertex-disjoint paths

Select connected, disjoint
subgraphs, connect by edges

=




FORBIDDEN SUBSTRUCTURES

H does not appear as a subgraph.

H does notappearasa
topological minor.

H does not appear as a minor.




FORBIDDEN SUBSTRUCTURES

Vdoes not appear as a subgraph.
= TRIANGLE-FREE GRAPHS

Vdoes not appear as a
topological minor.
= FORESTS

does not appear as a minor.
= FORESTS




FORBIDDEN SUBSTRUCTURES

H does notappearasa
topological minor.

H does not appear as a minor.




FORBIDDEN SUBSTRUCTURES

Every top. minor is sparse.

Every minor is sparse.




FORBIDDEN SUBSTRUCTURES

Every top. minor is sparse.
= Class exludes K
as a top. minor.

Every minor is sparse.

= Class exludes K
as a minor.




NOT ALL MINORS ARE EQUAL!
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NOT ALL MINORS ARE EQUAL!
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BOUNDED EXPANSION

"We allow dense minors in our graph, but
only on a large scale”
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CHOOSE YOUR POISON
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APPLICATIONS
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ERDOS-RENYI: STRUCTURALLY SPARSE
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CHUNG-LU: BETTER BY A DEGREE
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Frequency

THE DEVIL IS IN THE D-TAIL

with high

Chung-Lu graphs have probability
g-Lugrap > =
bounded expansion

if the degree distribution's
tail vanishes faster than an
inverse cubic function.
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Proofidea: couple occurences of shallow top. minors

to subgraphs in a different Chung-Lu graph, bound
probability of dense subgraph in that graph.



STRUCTURAL PHASE TRANSITION
« Degree distribution with tail-bound ﬁ :

Q(d3*t<)  bounded expansion
h(d) =4 ©(d*t°1)) nowhere dense
O(d°~¢)  somewhere dense

« Proofidea for lower bounds: more coupling

« The same works for the so-called
'configuration model'

« Also works for similar models with
non-vanishing clustering



COMPARATIVE STRUCTURAL DENSITY

Denser than Chung-Lu
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THANKS!

Questions?
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DTF-AUGMENTATIONS

Theorem: Let G € G from a bounded expansion class.
There exists a sequence GG, G5, ... of edge-weighted
digraphs such that

a) A (G,) < f(r)
b) For all u, v with distg(u,v) < r either

.r"or‘r.;

n_~@ )
or .<:' is presentinG,.
T

2
ntn=r
Moreover, for fixed r this sequence is computable
in linear time.
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CHUNG-LU: BETTER BY A DEGREE.
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