STRUCTURAL SPARSENESS & COMPLEX NETWORKS

Felix Reidl felix.reidl@gmail.com

Joint work with Erik Demaine, Peter Rossmanith, Fernando Sánchez Villaamil, Somnath Sikdar, and Blair D. Sullivan

SIAM NS'16

COMPLEX NETWORKS

= Real world graphs

(+ a lot of annotations)

Sociology

Friendships, Collaborations, Communication,

Biology

Gene-gene interactions, Protein-protein inter., Neural networks,

..

Infrastructure

Road networks, Power grids, Computer networks,

....

SPEAKING OF NETWORKS

PROPERTIES OF REAL GRAPHS

Giant connected component

Clustered

Low diameter

Random (but not uniform)

A BOOMING FIELD

- 1) We collect a lot of network data
- 2) We need to compute things on them
- 3) Sparse graphs admit nice algorithms

A BOOMING FIELD

- 1) We collect a lot of network data
- 2) We need to compute things on them
- 3) Sparse graphs admit nice algorithms

SUBSTRUCTURES

Select vertices, connect by edges

SUBGRAPH

Select vertices, connect by vertex-disjoint paths

Top. Minor

Select connected, disjoint subgraphs, connect by edges

 ${\cal H}$ does not appear as a subgraph.

 ${\cal H}$ does not appear as a topological minor.

H does not appear as a minor.

does not appear as a topological minor.

= FORESTS

does not appear as a minor.
= FORESTS

H does not appear as a topological minor.

H does not appear as a minor.

Every top. minor is sparse.

Every minor is sparse.

Every top. minor is sparse.

= Class exludes K_t as a top. minor.

Every minor is sparse.

= Class exludes K_t as a minor.

NOT ALL MINORS ARE EQUAL!

NOT ALL MINORS ARE EQUAL!

BOUNDED EXPANSION

A graph class has bounded expansion iff there exists a function f such that every r-shallow minor has density at most f(r).

"We allow dense minors in our graph, but only on a large scale"

BOUNDED EXPANSION

A graph class has bounded expansion iff there exists a function f such that every r-shallow minor has density at most f(r).

"We allow dense minors in our graph, but only on a large scale"

A graph class has bounded expansion iff there exists a function f such that every r-shallow topological minor has density at most f(r).

CHOOSE YOUR POISON

 χ_r

colorings

splitter games

APPLICATIONS

splitter games

 χ_r

(d)tf-augm.

FO model checking

low td/tw colorings

r-neighbourhood aggregation

centrality estimation

fast local search

FROM DATA TO THEORY

 $Pr[\|G\| \ge \xi k] \le \left(\frac{e\beta D^2}{2n\xi k e^{D^2/2n}}\right)^{\xi k}$

Mathematical theory

Network instances

FROM DATA TO THEORY

$$Pr[\|G\| \ge \xi k] \le \left(\frac{e\beta D^2}{2n\xi k e^{D^2/2n}}\right)^{\xi k}$$

Mathematical theory

- Random network
 - Tunable parameters
 - Replicates some statistics

ERDŐS-RÉNYI: STRUCTURALLY SPARSE

CHUNG-Lu: BETTER BY A DEGREE

THE DEVIL IS IN THE D-TAIL

Proof idea: couple occurences of shallow top. minors to subgraphs in a different Chung-Lu graph, bound probability of dense subgraph in that graph.

STRUCTURAL PHASE TRANSITION

• Degree distribution with tail-bound $\frac{1}{h(d)}$:

$$h(d) = \begin{cases} \Omega(d^{3+\epsilon}) & \text{bounded expansion} \\ \Theta(d^{3+o(1)}) & \text{nowhere dense} \\ O(d^{3-\epsilon}) & \text{somewhere dense} \end{cases}$$

- Proof idea for lower bounds: more coupling
- The same works for the so-called 'configuration model'
- Also works for similar models with non-vanishing clustering

COMPARATIVE STRUCTURAL DENSITY

Denser than Chung-Lu

Increasing r

REAL STRUCTURAL SPARSENESS

0.2

Structurally sparse!

REAL STRUCTURAL SPARSENESS

TRACTABILITY

NETSCI APPLICATIONS

PRACTICAL

ELEGANCE

Dawar Demaine Drange Dregi Dvořák Fomin Gajarský Grobe Hliněný Král Kreutzer Lokshtanov Nešetřil Obdržálek Ordyniak Ossona de Mendez Pilipczuk Pilipczuk Reidl Rossmanith Sánchez Villaamil Saurabh Siebertz Sikdar Sullivan Thomas

Wood

THANKS!

Questions?

References

Reidl, F. (2015). Structural sparseness and complex networks.

Demaine, E. D., Reidl, F., Rossmanith, P., Villaamil, F. S., Sikdar, S., & Sullivan, B. D. (2014).

Structural sparsity of complex networks:

Bounded expansion in random models and real-world graphs.

arXiv preprint arXiv:1406.2587.

DTF-AUGMENTATIONS

Theorem: Let $G \in \mathcal{G}$ from a bounded expansion class. There exists a sequence $\vec{G}_1, \vec{G}_2, \ldots$ of edge-weighted digraphs such that

a)
$$\Delta^-(\vec{G}_r) \leqslant f(r)$$

b) For all u, v with $\operatorname{dist}_G(u, v) \leqslant r$ either

$$u \xrightarrow{r} v$$
 , or $u \xleftarrow{r} v$, or $v \xrightarrow{r_1 + r_2 = r} v$ is present in \vec{G}_r .

Moreover, for fixed r this sequence is computable in linear time.

DEFICIENCY OF ER

Unrealistic degree distribution

CHUNG-LU: BETTER BY A DEGREE.

CHUNG-LU: BETTER BY A DEGREE.

CHUNG-Lu: BETTER BY A DEGREE

