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COMPLEX NETWORKS
= Real world graphs

Sociology Biology InfraStructure

Friendships, Gene-gene interactions, Road networks,
Collaborations, Protein-protein inter., Power grids,
Communication, Neural networks, Computer networks,



SPEAKING OF NETWORKS
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PROPERTIES OF REAL GRAPHS

Giant connected Maximum degree
component around nS € < 1

Low

Clustered diameter

Random
(but not uniform) Sparse



A BoomiNeg FIELD

1) We collect a lot of network data.
2) We need to compute things on them.
3) Sparse graphs have nice algorithms.
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A BoomiNeg FIELD

1) We collect a lot of network data.
2) We need to compute things on them.
3) Sparse graphs have nice algorithms.
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GOLDILOCK'S SPARSENESS PRINCIPLE

Consider class ( where

1) all subgraphs of (j are sparse.
Degenerate class: not very tractable.
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GOLDILOCK'S SPARSENESS PRINCIPLE

Consider class ( where

1) all subgraphs of (j are sparse.
Degenerate class: not very tractable.

2) all shallow minors of (j are sparse. &§7:3
Bounded expansion class:
exactly what we need!

3) all minors of ( are sparse.
Excluded minor class:
to restrictive for networks.
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SHALLOW MINORS
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ERDOS-RENYI: STRUCTURALLY SPARSE
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Unrealistic degree distribution
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CHUNG-LU: BETTER BY A DEGREE.
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CHUNG-LU: BETTER BY A DEGREE.
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Frequency

THE DEVIL IS IN THE D-TAIL

with high

Chung-Lu graphs have probability
g-Lugrap > =
bounded expansion

if the degree distribution's
tail vanishes faster than an
inverse cubic function.
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Proofidea: couple occurences of shallow top. minors

to subgraphs in a different Chung-Lu graph, bound
probability of dense subgraph in that graph.



STRUCTURAL PHASE TRANSITION
« Degree distribution with tail-bound ﬁ :

Q(d3*t<)  bounded expansion
h(d) =4 ©(d*t°1)) nowhere dense
O(d°~¢)  somewhere dense

« Proofidea for lower bounds: more coupling.

« The same works for the so-called
'configuration model'

« Also works for similar models with
non-vanishing clustering



COMPARATIVE STRUCTURAL DENSITY

Denser than Chung-Lu
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FOUR REASONS TO CARE

Tractability
Linear FO-Model checking
Linear r-DOMSET kernel
r-Domset approximation

Linear kernels for td-modulators

r-neighbourhood aggregation
All):pllcatlons
ast local search

Centrality estimates
Motif counting

Elegance
“Sparseness + depth”
Sparseness tailored to fit
Stability under class operations

Practical

Predicted by models
(almost) linear time
Parallelizable
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THANKS!

Questions? &

_ i \,§7 -



DTF-AUGMENTATIONS

Theorem: Let G € G from a bounded expansion class.
There exists a sequence GG, G5, ... of edge-weighted
digraphs such that

a) A (G,) < f(r)
b) For all u, v with distg(u,v) < r either

.r"or‘r.;

n_~@ )
or .<:' is presentinG,.
T

2
ntn=r
Moreover, for fixed r this sequence is computable
in linear time.



