STRUCTURAL SPARSENESS & COMPLEX NETWORKS

Felix Reidl, NCSU felix.reidl@gmail.com

SIAM DM '16

COMPLEX NETWORKS

= Real world graphs

(+ a lot of annotations)

Sociology

Friendships, Collaborations, Communication,

Biology

Gene-gene interactions, Protein-protein inter., Neural networks,

..

Infrastructure

Road networks, Power grids, Computer networks,

....

SPEAKING OF NETWORKS

PROPERTIES OF REAL GRAPHS

Giant connected component

Clustered

Low diameter

Random (but not uniform)

A BOOMING FIELD

- 1) We collect a *lot* of network data.
- 2) We need to compute things on them.
- 3) Sparse graphs have nice algorithms.

A BOOMING FIELD

- 1) We collect a *lot* of network data.
- 2) We need to compute things on them.
- 3) Sparse graphs have nice algorithms.

GOLDILOCK'S SPARSENESS PRINCIPLE

Consider class G where

1) all subgraphs of \mathcal{G} are sparse.

Degenerate class: not very tractable.

GOLDILOCK'S SPARSENESS PRINCIPLE

Consider class G where

1) all subgraphs of G are sparse. Degenerate class: not very tractable.

3) all minors of \mathcal{G} are sparse. Excluded minor class: to restrictive for networks.

GOLDILOCK'S SPARSENESS PRINCIPLE

Consider class G where

- 1) all subgraphs of G are sparse. Degenerate class: not very tractable.
- 2) all shallow minors of G are sparse.

 Bounded expansion class:

 exactly what we need!

3) all minors of G are sparse. Excluded minor class: to restrictive for networks.

SHALLOW MINORS

CHOOSE YOUR POISON

splitter games

FROM DATA TO THEORY

 $Pr[\|G\| \ge \xi k] \le \left(\frac{e\beta D^2}{2n\xi k e^{D^2/2n}}\right)^{\xi k}$

Mathematical theory

Network instances

FROM DATA TO THEORY

$$Pr[\|G\| \ge \xi k] \le \left(\frac{e\beta D^2}{2n\xi k e^{D^2/2n}}\right)^{\xi k}$$

Mathematical theory

- Random network
- Tunable parameters
- Replicates some statistics

ERDŐS-RÉNYI: STRUCTURALLY SPARSE

DEFICIENCY OF ER

Unrealistic degree distribution

CHUNG-LU: BETTER BY A DEGREE.

CHUNG-Lu: BETTER BY A DEGREE.

CHUNG-LU: BETTER BY A DEGREE.

THE DEVIL IS IN THE D-TAIL

Proof idea: couple occurences of shallow top. minors to subgraphs in a different Chung-Lu graph, bound probability of dense subgraph in that graph.

STRUCTURAL PHASE TRANSITION

• Degree distribution with tail-bound $\frac{1}{h(d)}$:

$$h(d) = \begin{cases} \Omega(d^{3+\epsilon}) & \text{bounded expansion} \\ \Theta(d^{3+o(1)}) & \text{nowhere dense} \\ O(d^{3-\epsilon}) & \text{somewhere dense} \end{cases}$$

- Proof idea for lower bounds: more coupling.
- The same works for the so-called 'configuration model'
- Also works for similar models with non-vanishing clustering

COMPARATIVE STRUCTURAL DENSITY

REAL STRUCTURAL SPARSENESS

0.2

Structurally sparse!

REAL STRUCTURAL SPARSENESS

FOUR REASONS TO CARE

Tractability

Linear FO-Model checking Linear r-DOMSET kernel r-Domset approximation
Linear kernels for td-modulators r-neighbourhood aggregation

Applications Fast local search

Centrality estimates Motif counting

Elegance
"Sparseness + depth"
Sparseness tailored to fit
Stability under class operations

Practical

Predicted by models (almost) linear time Parallelizable

Dawar Demaine Drange

Dregi Dvořák

Fomin Gajarský Grohe

Hliněný Král

Kreutzer Lokshtanov

Nešetřil

Obdržálek Ordvniak

Ossona de Mendez Pilipczuk

Pilipczuk Reidl

Rossmanith Sánchez Villaamil

Saurabh

Siehertz Sikdar

Sullivan Thomas

Wood

THANKS! Questions?

DTF-AUGMENTATIONS

Theorem: Let $G \in \mathcal{G}$ from a bounded expansion class. There exists a sequence $\vec{G}_1, \vec{G}_2, \ldots$ of edge-weighted digraphs such that

a)
$$\Delta^-(\vec{G}_r) \leqslant f(r)$$

b) For all u, v with $\operatorname{dist}_G(u, v) \leqslant r$ either

$$u \xrightarrow{r} v$$
 , or $u \xleftarrow{r} v$, or $v \xrightarrow{r_1 + r_2 = r} v$ is present in \vec{G}_r .

Moreover, for fixed r this sequence is computable in linear time.