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Complex Networks



A certainly incomplete history
1734 Euler: Königsberger Brücken
1920 First mapping of social networks by social scientists
1950 Simon: ‘Rich get richer’
1959 Erdős & Rényi: On random graphs
1965 Price: Citation network is scale-free
1967 Milgram: Six degrees of separation
1994 Wassermann & Faust: Clustering coefficient

(under different name)

1995 Molloy & Reed: Rigorious notion of degree sequences
1998 Watts & Strogatz: Comparative study of networks
1999 Barabási & Albert: Rediscover and improve Price’s work
2000 Kleinberg: Small-world routing

Networks are graphs as they appear
in the “real world”



A big field

Social Biology

Friendship Food webs
Co-authorship Neural networks
Sexual contacts Protein-protein interaction
Movie actors Cell metabolism
Telephone calls Protein folding states

Infrastructure Other

Power grid Word co-occurence
Internet Software packages
Railway networks Synonyms
Electric circuits Spacetime...?
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Yeast protein-protein interaction
2361 vertices
Average degree of ∼ 3



Western US power grid
4941 vertices
Average degree of ∼ 2.7



Call graph of a Java program
724 vertices
Average degree of ∼ 1.4



Neural network of C. elegans
297 vertices, average degree of ∼ 7.7



Central questions about networks

Network topology
• How are vertices connected?
• Diameter, average path length
• Which vertices are ‘important’?
• Navigation or mixing in networks
• Community detection
• Network resilience
• ...

Network recognition
How to distinguish networks or fingerprint them.
Network evolution
How do networks change over time?



Modeling complex networks



Networks models

Models have three goals:
1 Insight into underlying process
2 Handle for mathematical theorems
3 Provide test data

Depending on the emphasis, models are vastly different.

No one-size-fits-all!



Two important observations

Degree distribution

#v
er
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es

degree

Power-law for many networks:

P (k) ∼ k−γ

Clustering

u

Number of triangles divided by
number of triples consistent for
similar networks.



Erdős-Rényi
G(n, p): n-vertex graph in wich every edge is present with
probability p. For sparse graphs, we want np = O(1).

• Well-understood
• Simple model
• Clustering ∼ p
• Degree distribution

too symmetric



Watts-Strogatz
Parameters n, k, p: create a n-vertex cycle where every vertex
is connected to the k/2 previous and next vertices. Rewire
every edges with probability p.

• Small-world
• Clustering

independent of size
• Average degree

unrealistic
(usually k > log n)



Kleinberg
Start with a

√
n×
√
n grid-like graph. For every vertex v, add q

edges to it, weighing the probability for endpoint w by 1
d(u,w)r .

• Small-world routing
• Very restrictive

(designed to model
one single aspect)



Barabási-Albert
Rich-get-richer: start with small graph of m0 vertices.
Iteratively add a new vertex, connect it to m old vertices chosen
with probabilities proportional to their degree.

• Small-world
• Power-law degree

distribution
• Clustering

independent of size
• Not very adaptive



Fixed degree distributions
Instead of trying to achieve a certain degree distribution by
designing a model, why not just prescribe it directly?

How to formalize ‘degree distribution’ rigorously?
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Molloy-Reed

Definition
An asymptotic degree sequence is a sequence of
integer-valued functions D = d0, d1, d2, . . . such that for all n ≥ 0

1
∑n−1

i=0 di(n) = n

2 dj(n) = 0 for j ≥ n

Molloy-Reed conditions (simplified):
• Feasible: can be realized by a sequence of graphs
• Smooth: limn→∞ di(n)/n = λi for some constant λi
• Sparse:

∑∞
i=1 iλi = µ for some constant µ

• Max-degree: di(n) = 0 for i > n1/4



Structural sparsity



Back to graph theory

Our fleeting suspicion:
networks are probably sparse in a structural sense.
(If they are sparse to begin with)

But in what structural sense?

• Low treewidth? Sadly not.
• Planar? Certainly not.
• Bounded-degree? No.
• Exluding a minor/top-minor? Improbable.
• Degenerate? Very likely!

But degenerate graphs have few nice properties. Can we find
something a bit more restrictive?



Intuition

Consider a group of people
that are mutually close

in the network



Intuition

Which situation seems more likely?



Bounded expansion

A graph class G has bounded expansion if every r-shallow
minor has density at most f(r).



Our (informal) result

1 Graphs created under the Molloy-Reed model have a.a.s.
bounded expansion.

2 Adding random edges to a bounded-degree graph with
probability bounded by µ/n for some constant µ yields
a.a.s. graphs of bounded expansion.

The second result is tight in the sense that adding random
edges to a star-forest already gives dense minors with high
probability.



Applications



Clustering coefficient

• Idea: number of triangles intrinsic property of network
• Local clustering coefficient of a vertex v:

cv =
#triangles containing v
#P3s with v as center

=
2|E(N(v)|

d(v)(d(v)− 1)

• Clustering coefficient∗ of a graph G:

CG =
1

n

∑
v∈V (G)

cv



Counting triangles and P3s
Degeneracy ordering of vertices: every vertex has at most d
neighbours to the left.

vux

Counting triangles: easy. What about P3s?

vux

vux

vux



Clustering coefficient

• Best known algorithm to count triangles in general:
O(m1.41) using fast matrix multiplication.
(Along, Yuster, Zwick 1997)

• Random sampling, linear-time approximations
• We can do this with a simple algorithm in O(d2n) time in
d-degenerate graphs.

• Similar measures (transitivity) that depend on triangles and
P3s in the same time

Takeaway: if degeneracy is reasonably low, you really want this
type of algorithm.



Centrality

• Basic question: how important is a vertex in the network?
• Centrality measure c : V (G)→ R

• Degree-centrality
• Page-rank
• Betweeness-centrality
• Closeness-centrality

Closeness: c(v) =
∑

v 6=w∈G
1

d(v,w)

• Bad: needs all-pairs-shortest paths
• But: Constants-length paths can be handled well in

bounded expansion graphs
Truncated closeness: cd(v) =

∑
w∈Nd(v)

1
d(v,w)



Truncated closeness

Theorem (Nešetřil, Ossana de Mendez)
Let G be a graph of bounded expansion. For every d one can
compute in linear time a directed supergraph ~Gd with bounded
in-degree and an arc labeling ω : ~E(~Gd)→ N such that for
every vertex pair u, v ∈ G with d(u, v) ≤ d one of the following
holds:
• uv ∈ ~Gd and ω(uv) = d(u, v)

• vu ∈ ~Gd and ω(vu) = d(u, v)

• there exists w ∈ N−~Gd
(u) ∩N−~Gd

(v) such that
ω(wu) + ω(wv) = d(u, v)

In short: we have a data structure to query short distances in
constant time



Truncated closeness
For d-truncated closeness we work on ~Gd in two phases

1 Aggregate distances of direct neighbours in ~Gd

2 Aggregate distances of indirect neighbours in ~Gd

v v

u



Truncated closeness

• In O(n) time we compute |N l(v)| for v ∈ G and l ≤ d
• How useful is the truncated version?
• What about other truncated measures?



Motif/Subgraph counting
Idea: frequent structures in networks probably have a function
• Shen-Orr et al. identified network motifs in regulation

network of E. coli and analyzed their function
(Network motifs in the transcriptional regulation network of Escherichia
coli. Nature Genetics 31, 2002. )

• Milo et al. compare network motifs of regulation networks,
neural networks, food webs, electric circuits and the www
(Network Motifs: Simple Building Blocks of Complex Networks.
Science 25, 2002.)

• So far limited to motifs of size ≤ 4



Subgraph counting in bounded
expansion graphs

Tool of choice: p-centered coloring.
• graph is colored with f(p) colors in linear time
• every subgraph induced by l < p colors has treedepth at

most l
• Motifs of size p are colored by on of

(
f(p)
p

)
color

combinations
⇒ Problem reduced to counting in bounded-treedepth graphs!

We can do this even for disconnected graphs H in time
O(c|H| log |H|n) with small constants, so

(f(|H|)
|H|

)
is probably the

limiting factor.



But how many colors?

Some preliminary tests: 5-centered colorings
(Can be used for patterns of size 4)

Graph Size Avg. deg. Colors

netscience 1589 ∼ 3.5 31
diseasome 1419 ∼ 7.7 36
codeminer 726 ∼ 1.4 64
cpan-authors 840 ∼ 2.7 63
c. elegans 306 ∼ 7.7 149
football 115 ∼ 10 113

cpan-dist. 2719 ∼ 1.8 140?

Thanks to our student Kevin Jasnik for the computation!



Conclusion

• Random models of networks seem to suggest that they are
graphs of bounded expansion

• A lot of algorithmic questions are open in that field
• We have some idea of how to design algorithms for this

class, but it’s far from settled
• Preliminary experiments show that the p-centered coloring

numbers are quite low for some networks (for others not)
• We need good heuristics for these colorings!
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Resources

• C. Elegans image by Tormikotkas taken from
http://commons.wikimedia.org/wiki/File:Caenorhabditis_elegans_Oil-
Red-o.tif

• Datasets with references available at
http://wiki.gephi.org/index.php/Datasets
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