Structural sparsity of complex networks

Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, Blair D. Sullivan* and Somnath Sikdar

Theoretical Computer Science

RWTHAACHEN

*North Carolina State University

@Finse 2014

Contents

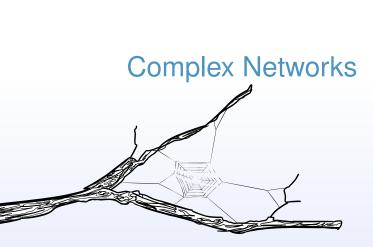
Complex Networks

Modeling complex networks

Structural sparsity

Applications

- Costa, Rodrigues, Travieso, Villas Boas, Characterization of Complex Networks: A survey of measurements. 2008
- Newman, The structure and function of complex networks. 2003
- Albert & Barabási, Statistical mechanics of complex networks. 2002
- Dorogovtsev & Mendes, Evolution of networks. 2001



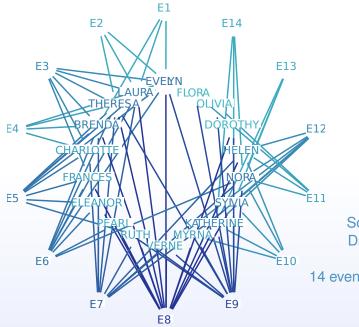
A certainly incomplete history

- 1734 Euler: Königsberger Brücken
- 1920 First mapping of social networks by social scientists
- 1950 Simon: 'Rich get richer'
- 1959 Erdős & Rényi: On random graphs
- 1965 Price: Citation network is scale-free
- 1967 Milgram: Six degrees of separation
- 1994 Wassermann & Faust: Clustering coefficient (under different name)
- 1995 Molloy & Reed: Rigorious notion of degree sequences
- 1998 Watts & Strogatz: Comparative study of networks
- 1999 Barabási & Albert: Rediscover and improve Price's work
- 2000 Kleinberg: Small-world routing

Networks are graphs as they appear in the "real world"

A big field

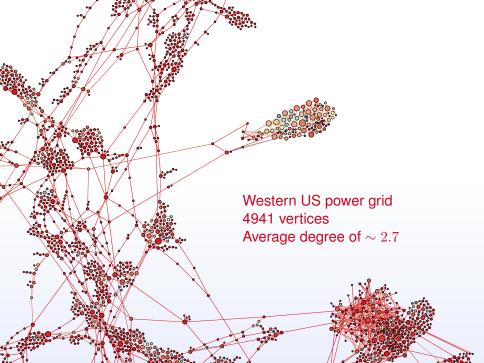
Social	Biology		
Friendship	Food webs		
Co-authorship	Neural networks		
Sexual contacts	Protein-protein interaction		
Movie actors	Cell metabolism		
Telephone calls	Protein folding states		
Infrastructure	Other		
Power grid	Word co-occurence		
Internet	Software packages		
Railway networks	Synonyms		
Electric circuits	Spacetime?		

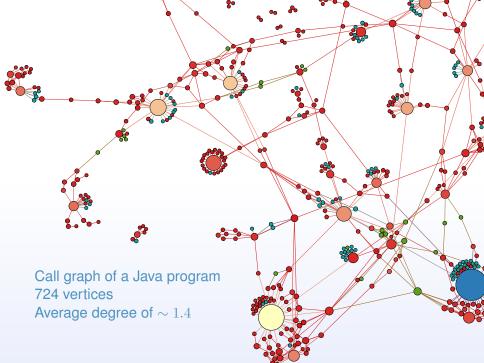


Southern Women Davis et al., 1930 18 women 14 events over 9 month Yeast protein-protein interaction 2361 vertices Average degree of ~ 3

YPL20411 ML0640

Y-MR059W





Neural network of C. elegans 297 vertices, average degree of ~ 7.7

Central questions about networks

Network topology

- How are vertices connected?
- Diameter, average path length
- Which vertices are 'important'?
- Navigation or mixing in networks
- Community detection
- Network resilience

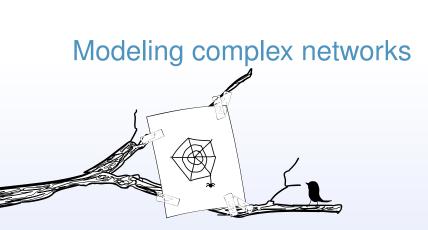
• ...

Network recognition

How to distinguish networks or fingerprint them.

Network evolution

How do networks change over time?



Networks models

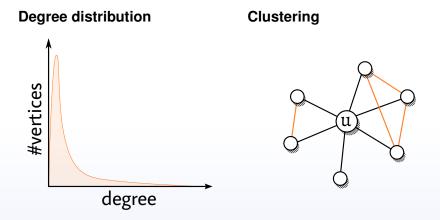
Models have three goals:

- Insight into underlying process
- 2 Handle for mathematical theorems
- Provide test data

Depending on the emphasis, models are vastly different.

No one-size-fits-all!

Two important observations



Power-law for many networks:

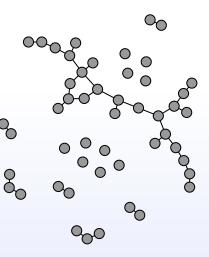
 $P(k) \sim k^{-\gamma}$

Number of triangles divided by number of triples consistent for similar networks.

Erdős-Rényi

G(n, p): *n*-vertex graph in wich every edge is present with probability *p*. For sparse graphs, we want np = O(1).

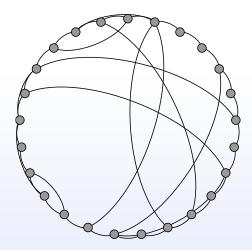
- Well-understood
- Simple model
- Clustering $\sim p$
- Degree distribution too symmetric



Watts-Strogatz

Parameters n, k, p: create a *n*-vertex cycle where every vertex is connected to the k/2 previous and next vertices. Rewire every edges with probability p.

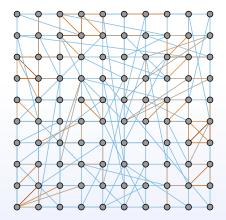
- Small-world
- Clustering independent of size
- Average degree unrealistic (usually k > log n)



Kleinberg

Start with a $\sqrt{n} \times \sqrt{n}$ grid-like graph. For every vertex v, add q edges to it, weighing the probability for endpoint w by $\frac{1}{d(u,w)^r}$.

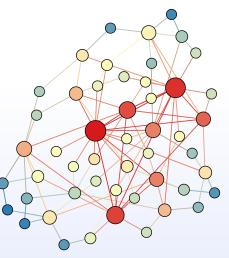
- Small-world routing
- Very restrictive (designed to model one single aspect)

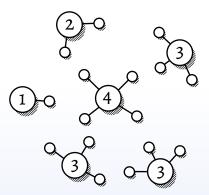


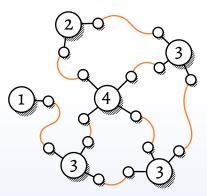
Barabási-Albert

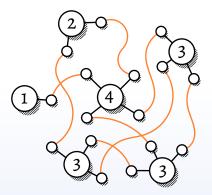
Rich-get-richer: start with small graph of m_0 vertices. Iteratively add a new vertex, connect it to m old vertices chosen with probabilities proportional to their degree.

- Small-world
- Power-law degree distribution
- Clustering independent of size
- Not very adaptive

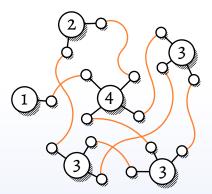








Instead of trying to achieve a certain degree distribution by designing a model, why not just prescribe it directly?



How to formalize 'degree distribution' rigorously?

Molloy-Reed

Definition

An *asymptotic degree sequence* is a sequence of integer-valued functions $\mathcal{D} = d_0, d_1, d_2, \dots$ such that for all $n \ge 0$

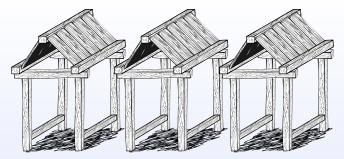
1
$$\sum_{i=0}^{n-1} d_i(n) = n$$

2 $d_j(n) = 0$ for $j \ge n$

Molloy-Reed conditions (simplified):

- Feasible: can be realized by a sequence of graphs
- Smooth: $\lim_{n\to\infty} d_i(n)/n = \lambda_i$ for some constant λ_i
- Sparse: $\sum_{i=1}^{\infty} i\lambda_i = \mu$ for some constant μ
- Max-degree: $d_i(n) = 0$ for $i > n^{1/4}$

Structural sparsity



Back to graph theory

Our fleeting suspicion: networks are probably sparse in a *structural* sense. (If they are sparse to begin with)

But in what structural sense?

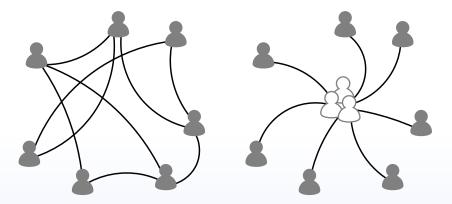
- Low treewidth? Sadly not.
- Planar? Certainly not.
- Bounded-degree? No.
- Exluding a minor/top-minor? Improbable.
- Degenerate? Very likely!

But degenerate graphs have few nice properties. Can we find something a bit more restrictive?

Intuition

Consider a group of people that are mutually close in the network

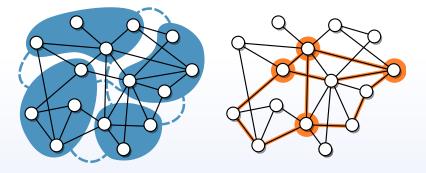
Intuition



Which situation seems more likely?

Bounded expansion

A graph class G has *bounded expansion* if every *r*-shallow minor has density at most f(r).

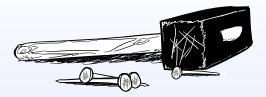


Our (informal) result

- Graphs created under the Molloy-Reed model have a.a.s. bounded expansion.
- ⁽²⁾ Adding random edges to a bounded-degree graph with probability bounded by μ/n for some constant μ yields a.a.s. graphs of bounded expansion.

The second result is tight in the sense that adding random edges to a star-forest already gives dense minors with high probability.

Applications



Clustering coefficient

- Idea: number of triangles intrinsic property of network
- Local clustering coefficient of a vertex v:

$$c_v = \frac{\# \text{triangles containing } v}{\# P_3 \text{s with } v \text{ as center}} = \frac{2}{d(v)}$$

$$=\frac{2|E(N(v))|}{d(v)(d(v)-1)}$$

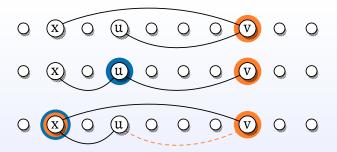
• Clustering coefficient* of a graph G:

$$C_G = \frac{1}{n} \sum_{v \in V(G)} c_i$$

Counting triangles and P_3 s

Degeneracy ordering of vertices: every vertex has at most d neighbours to the left.

Counting triangles: easy. What about P_3 s?



Clustering coefficient

- Best known algorithm to count triangles in general: $O(m^{1.41})$ using fast matrix multiplication. (Along, Yuster, Zwick 1997)
- Random sampling, linear-time approximations
- We can do this with a simple algorithm in $O(d^2n)$ time in d-degenerate graphs.
- Similar measures (transitivity) that depend on triangles and *P*₃s in the same time

Takeaway: if degeneracy is reasonably low, you really want this type of algorithm.

Centrality

- Basic question: how important is a vertex in the network?
- Centrality measure $c \colon V(G) \to \mathbf{R}$
 - Degree-centrality
 - Page-rank
 - Betweeness-centrality
 - Closeness-centrality

Closeness:
$$c(v) = \sum_{v \neq w \in G} \frac{1}{d(v,w)}$$

- Bad: needs all-pairs-shortest paths
- But: Constants-length paths can be handled well in bounded expansion graphs

Truncated closeness: $c_d(v) = \sum_{w \in N^d(v)} \frac{1}{d(v,w)}$

Truncated closeness

Theorem (Nešetřil, Ossana de Mendez)

Let *G* be a graph of bounded expansion. For every *d* one can compute in linear time a directed supergraph \vec{G}_d with bounded in-degree and an arc labeling $\omega : \vec{E}(\vec{G}_d) \to \mathbf{N}$ such that for every vertex pair $u, v \in G$ with $d(u, v) \leq d$ one of the following holds:

•
$$uv \in \vec{G}_d$$
 and $\omega(uv) = d(u, v)$

•
$$vu \in \vec{G}_d$$
 and $\omega(vu) = d(u, v)$

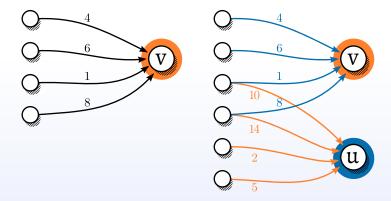
• there exists
$$w \in N^-_{\vec{G}_d}(u) \cap N^-_{\vec{G}_d}(v)$$
 such that $\omega(wu) + \omega(wv) = d(u, v)$

In short: we have a data structure to query short distances in constant time

Truncated closeness

For *d*-truncated closeness we work on \vec{G}_d in two phases

- **1** Aggregate distances of direct neighbours in \vec{G}_d
- 2 Aggregate distances of indirect neighbours in \vec{G}_d



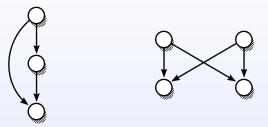
Truncated closeness

- In O(n) time we compute $|N^l(v)|$ for $v \in G$ and $l \leq d$
- How useful is the truncated version?
- What about other truncated measures?

Motif/Subgraph counting

Idea: frequent structures in networks probably have a function

- Shen-Orr *et al.* identified network motifs in regulation network of E. coli and analyzed their function (Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31, 2002.)
- Milo *et al.* compare network motifs of regulation networks, neural networks, food webs, electric circuits and the www (Network Motifs: Simple Building Blocks of Complex Networks. Science 25, 2002.)
- So far limited to motifs of size ≤ 4



Subgraph counting in bounded expansion graphs

Tool of choice: *p*-centered coloring.

- graph is colored with f(p) colors in linear time
- every subgraph induced by *l* < *p* colors has *treedepth* at most *l*
- Motifs of size p are colored by on of $\binom{f(p)}{p}$ color combinations

⇒ Problem reduced to counting in bounded-treedepth graphs! We can do this even for disconnected graphs *H* in time $O(c^{|H|\log|H|}n)$ with small constants, so $\binom{f(|H|)}{|H|}$ is probably the limiting factor.

But how many colors?

Some preliminary tests: 5-centered colorings (Can be used for patterns of size 4)

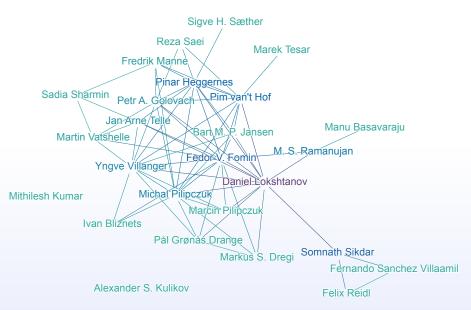
Graph	Size	Avg. deg.	Colors
netscience	1589	~ 3.5	31
diseasome	1419	~ 7.7	36
codeminer	726	~ 1.4	64
cpan-authors	840	~ 2.7	63
c. elegans	306	~ 7.7	149
football	115	~ 10	113
cpan-dist.	2719	~ 1.8	140?

Thanks to our student Kevin Jasnik for the computation!

Conclusion

- Random models of networks seem to suggest that they are graphs of bounded expansion
- A lot of algorithmic questions are open in that field
- We have some idea of how to design algorithms for this class, but it's far from settled
- Preliminary experiments show that the *p*-centered coloring numbers are quite low for some networks (for others not)
- We need good heuristics for these colorings!

Thanks!



- C. Elegans image by Tormikotkas taken from http://commons.wikimedia.org/wiki/File:Caenorhabditis_elegans_Oil-Red-o.tif
- Datasets with references available at http://wiki.gephi.org/index.php/Datasets