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What sparse city cares about

How many colours do I need
to colour a graph?

How dense can a graph get until
a complete subgraph on k vertices
appears?

Can I efficiently answer questions
framed in a certain logic?

How often does this small graph
fit into this large graph?

| %

What problems are efficiently
solvable?

Can my graph be decomposed in
a nice manner?
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Sparseness

"Not too many edges”
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Sparseness
somewhere here
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Forbidden substructures

All graphs
that do not
contain

g
as a 'substructure’

- Very nice for proofs:
if we find , We have a contradiction.

- Structural sparseness!?

Sparse City
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Substructures

(Induced) Subgraph
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Substructures
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Substructures

Topological minor
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Hierarchy (Part I)
-

Excluding a minor 6%5%;’ ei} Locally bounded

/ ¢4, ¥ treewidth

P44

Bounded
= genus

Bounded treewidth & Pl .\{ Bounded degree
Outerplanar
Bounded treedepth AA A

*K‘{ Forests
Star forests * x {

Linear forests
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Kernelisation

Polynomial-time scalpel The hard part

Apply exhaustively
Input size 71 Input size f (]C)
Parameter k Parameter k/
Instance of Kernel
parametrised problem

Sparse City



Kernelisation

Kernel size

fk)—"

Input size 71 Input size
Parameter k Parameter k/
Instance of Kernel
parametrised problem
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Kernelisation

Linear kernel

Inputsize C- k '/

Parameter k Parameter k/ S ]{

Instance of Kernel
parametrised problem

Input size 77
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Meta-Kernelisation

PROBLEM
Input:

XX XXX X X
XXX XXXXX

Parameter: xx x = x

Problem: XX XXX XX
X XX XXXXX

Suitable
problem

Sparse City



Pushing it up

H-Topological-
Minor-Free

U

H-Minor-Free Contraction-bidimensional

Treewidth-bounding

e

2

U

Bounded Genus Quasi-Coverable
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Running out of problems

Few problems

H-Topological-

o Minor-Free Treewiith-bounding
e
H-Minor-Free Cont n-bidimensional

U

Bounded Genus Qu

Many problems
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Structural parametrisation

H-Topological-
Minor-Free

U

H-Minor-Free Treewidth-t modulator

Treewidth-t modulator
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Bounded Genus Treewidth-t modulator
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Shallow minors
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Bounded expansion classes

All r-shallow

minors appearing in
this class have density
at most f(r).

Same for r-shallow topological minors.

Same for r-shallow immersions.

Admits low-treedepth colourings.
weol, < f(r)
col, < f(r)
f(r)-quasi-wide

- 'Depth-dependent sparseness’
- Robust!

Sparse City



Structural parametrisation

& Bounded expansion /

Treedepth-t modulator
nowhere dense

U

H-Topological-
Minor-Free

U

H-Minor-Free Treewidth-t modulator

Treewidth-t modulator
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Bounded Genus
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Summary

- Bounded expansion/nowhere dense classes
have extremely good algorithmic properties!

- Extension of meta-kernelisation
Thesis

- Linear kernel for Dominating Set

- First-Order model checking in linear time
Dvotak, Kral, Thomas / Grohe, Kreutzer, Siebertz

- Many nice structural properties

Some new ones in my thesis...

Sparse City






Complex networks

- Social networks
since ~1920

- Networks are
everywhere

- Very easy to
collect nowadays!

- Commonalities?

Complex City



Networks everywhere
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What complex city cares about

Density
Degree distribution
Clustering coefficient
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What complex city cares about

Density
Degree distribution
Clustering coefficient
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Degree distribution

—— Ca-HepPh
—— Diseasome
Small average

Heavily Right-skewed

1500

Frequency
[
o
o
o

500

Large maximum
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Clustering coefficient

Are friends of mine
more likely to be friends?

-~ :
r #edges between friends

pairs of friends
\( Q‘ @
&b
- Most networks 1/2

exhibit high clustering

Complex City



Centrality indices

Which node in here
is important? \

- Only use network!

no consensus e

- Many different measures, ///\

- Several measures based
around neighbourhood sizes, e.g.

c(v) = Z d(v,u)~!

ueG
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Frequent subgraphs

How often is this

iZ%)

- If a subgraph appear’s often,
it probably is important! . ¥

- Network similarity measure

- Expensive to compute!

Complex City
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D escriptiv e mOdeuing
P 3 D2 &k
rl|G| > k] < (&)

2ngkeD? /20

Mathematical

’ Theory

: . Network model
T ) - Random network
- Tunable parameters
- Replicates some statistics

“Network
ol
nstance
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The Erdos-Rényi model

« Well-understood
- Nice properties O
- No clustering

. Unrealistic degree = ©
distribution

P!
n
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The Erdos-Rényi model

- Unrealistic degree — Ca-HepPh

distribution T

—— Diseasome
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The Chung-Lu model

- Close to E.-R.

- Prescribe degree
distribution

- No “further assumptions”

- No clustering

WeWe /O\

2m
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Summary

- Very large data sets (millions of nodes)
- From very different areas 1
- A lot of algorithmic questions N

- Need very efficient algorithms!

r Hey wait, we

!

have those...

Complex City



- Work with sparse graphs - Work with sparse graphs
- Need efficient algorithms - Have efficient algorithms

- Have interesting problems - Like interesting problems




Complex Networks
Sparse graphs
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A small overlap

Sparse Erdos-Rényi

- G(n, 1n/n) has bounded expansion a.a.s.

Nesetfil, Ossona de Mendez, Wood

- Maybe Chung-Lu does, too?

/ \\ For which

What about degree distributions?
other models?

Do those appear in
the real world?

Can we even
test that?

The Crosshatch




A tale of tails

with high
Chung - Lu g raphs have probability

bounded expansion

if the degree distribution’s
tail vanishes faster than an
inverse cubic function.

1500

Frequency
—
o
o
(=]

500

Degree

- Proof idea: couple occurences of shallow top. minors
to subgraphs in a different Chung-Lu graph, bound
probability of dense subgraph in that graph.

The Crosshatch




Phase transition of Chung-Lu
- Degree distribution with tail-bound ﬁ:

Q(d3t°) bounded expansion
h(d) =4 ©(d*°1)) nowhere dense
O(d*~¢)  somewhere dense

- Proof idea for lower bounds: more coupling.

- The same works for the so-called
‘configuration model’

- Also works for similar models with
non-vanishing clustering

The Crosshatch



Tail-bounds for real networks?

- Famous claim: real degree distributions
follow power law ~ i’\ st

d tail does not vanish
fast enough

- Rigorous statistical tests: almost never
pure power law, but exponential cut-off

Clauset, Shalizi, Newman tail vanishes

quick enough
Let's see for

\ ourselves!

The Crosshatch



Real structural sparseness

Tail looks
subcubic

Statistical test .
» of degree distribution Cannot decide

Tail looks
supercubic
Denser than

Compare density ~ chungtu
to Chung-Lu w/ same Cannot decide
degree distribution

Sparser than
Chung-Lu

:‘ *
Structurally sparse’!‘

-

The Crosshatch



Chung-Lu vs. real network

Denser than
Chung-Lu

| Sparser than
Chung-Lu

The Crosshatch



Real structural sparseness

Tail looks

. L. subcubic 6
Statistical test .
of degree distribution Cannot decide
Tail looks
supercubic
Denser than
22 7
Compare d\- Aty  Chunglu
to Chung-Lu w/ same Cannot decide
degree distribution
8
Sparser than are
Chung-Lu 1“0,\{) :g{’;zpa‘se
x 14 ) %x

B Structurally sparse’!‘
%
The Crosshatch



I think most complex
networks are structurally ﬂ

/

sparse.

Hello?




Fast local search* Thesis summary
*New things
Algorithmic
applicability ﬁ Linear FO model-checking

Kernelisation results*
Fast truncated gy Nejghbourhood aggregatiort*

centrality measures
dtf-augmentations*

Fast subgraph - Computing low l I

counting treedepth colourings*
New tools
New statistic l
Stable minors*
S.tru.ctural Neighbourhood complexitf
insights Twin lemma*

l Charging lemma
No densification,
if networks ‘efficient’




Open questions and future work

Apply low treedepth
colourings to practical
problem.

What about other
network models?

Fix attachment models.

Collect interesting network
problems!

Kernel for r-Dominating

Set in nowhere dense cl

lasses?

Kernel for other problems
under natural parametrisation.

Neighbourhood complexity
of nowhere dense classes?

Better bounds for
dtf-augmentations.
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