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We want to count the
number of times a given
motif graph

Motif- countln)%

appears in a larger host
graph (network).

Motifs that appear more often than expected
might play an important function in the network.

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U.

Network motifs: simple building blocks of complex networks.

Science. 2002 Oct 25;298(5594).824-7.

Ribeiro P, Silva F, Kaiser M. Strategies for network motifs discovery.

InE-Science, 2009. e-Science'09. Fifth IEEE International Conference on 2009 Dec 9 (pp. 80-87). IEEE.



Graphlets

We want to count all (connected) induced
subgraphs up to a given size.
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The graphlet degree distribution or the graphlet

degree can be used to compare networks.

Przulj N, Corneil DG, Jurisica .

Modeling interactome: scale-free or geometric?.

Bioinformatics. 2004 Jul 29:20(18):3508-15

Przulj N. Biological network comparison using graphlet degree distribution.
Bioinformatics. 2007 Jan 15;23(2):e177-83.



Treedepth

Def. A graph has treedepth d if it is the
subgraph of the closure of a tree of height d.



Treedepth: centered colourings

Avertex colouring is centered if every connected
subgraph H contains a vertex whose color is
unique in H.
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Treedepth: centered colourings

Avertex colouring is centered if every connected
subgraph H contains a vertex whose color is
unique in H.
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The centered colouring number Xcen(G)
Is equal to the treedepth of G'.



Low treedepth colourings

A vertex colouring is a r-treedepth colouring if every
set of i < r colours induce a subgraph of treedepth i.
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.__ min #colours needed in
Xr(G) " an r-treedepth colouring of G
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Motif counting using X
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Inclusion-  Count in graphs
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Engineering motif-counting
f(h).QO(h2)n

f(h)-hO(h)n

Pseudocode Implementable Usable
Theory only No tricks Executable Github
(or similar)

Nesetril J, De Mendez PO.
Sparsity: graphs, structures, and algorithms.
Springer Science & Business Medla 2012 Apr 24,

|
Demaine ED, Reidl F, Rossmanith P,
Sanchez Villaamil F, Sikdar S, Sullivan BD.
Structural sparsity of complex networks:
Bounded expansion in random models and real-world graphs.
arXiv preprint arXiv:1406.2587. 2014 Jun 10.



Engineering motif-counting

tf-augmentations dtf-augmentations

s =

Absolutely Test colouring
impractical after each step
Pseudocode Implementable Usable
Theory only No tricks Executable Github
(or similar)
Nesetril J, De Mendez PO.

Sparsity: graphs structures, and algorithms.
Springer Science & Business Medla 2012 Apr 24.

|
Reidl F. Structural sparseness
and complex networks.
(Doctoral dissertation, Dissertation,
Aachen, Techn. Hochsch., 2015).



Engineering motif-counting

tf-augmentations dtf-augmentations
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Absolutely Test colouring Good engineering &
impractical after each step heuristical improvements

Pseudocode Implementable Usable

Theory only No tricks Executable Github
(or similar)

Nesetfil J, De Mendez PO. Theory in Practice Group (NCSU)

Sparsity: graphs structures, and algorithms. i

Springer Science & Business Medla 2012 Apr 24.

with great help from students

| Clayton G. Hobbs & Brandon Mork
Reidl F. Structural sparseness https:/github.com/TheorylnPractice/CONCUSS
and complex networks.

(Doctoral dissertation, Dissertation,

Aachen, Techn. Hochsch., 2015).



Is it practical?

The currentimplementation is vastly outperformed
by other algorithms (vf2) on practical instances.

Number of colours f (h) hO(h) .

Size of motif h

There are artificial graph classes in which the
algorithm performs better.

O'Brien MP, Sullivan BD.

Experimental evaluation of counting subgraph isomorphisms
in classes of bounded expansion.

arXiv preprint arXiv:1712.06690. 2017 Dec 18.



Is it practical?

The currentimplementation is vastly outperformed
by other algorithms (vf2) on practical instances.

Number of colours f (h) hO(h) .

Size of motif h

There are artificial graph classes in which the

algorithm performs better.
O'Brien MP, Sullivan BD.
Experimental evaluation of counting subgraph isomorphisms

in classes of bounded expansion.
arXiv preprint arXiv:1712.06690. 2017 Dec 18.

1) Improve colouring algorithm
2) Don't use low-treedepth colourings
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Weak coloring & bounded expansion

WReach, [G, L, v] <r
L o m
y N

u is weakly r-reachable from v if there exists a
path from v to u of length at most r such that
U is the path's leftmost vertex.
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Weak coloring & bounded expansion

WReach, |G, L, v] T
L o m
y N

u is weakly r-reachable from v if there exists a
path from v to w of length at most 7 such that
U is the path's leftmost vertex.

wcol,.(G) :== min max | WReach,[G, L, v]|
Lell(G) veG
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Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-
neighbourhood of its last vertex.

H~K,
L G

V(H) C N~ (v)



Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-
neighbourhood of its last vertex.

H~K,
L G

V(H) S N~ (v)

Therefore we can enumerate all cliques by
enumerating all cliques in N—(v) forallv € G'!

O(2%n) time!



Does it blend?
Can we 'lift’ this algorithm to wcol?
H~K,
L e |V (H) C N~ (v)
wcol,. e - |/ (H) C WReach, (v)
H
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@ \\/hat is the ‘last’ vertex of H?
Enumerate all orderings H of H.



Does it blend?
Can we 'lift’ this algorithm to wcol?

H~ K,

v
L e |V (H) C N~ (v)
weol,. e - [/ C WReach, (v)
H

@ \\/hat is the ‘last’ vertex of H?
Enumerate all orderings H of H.

@ Does H C WReach, (v) actually hold?
Only sometimes!
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Two ways to order a P,

WReach,(v) v
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Two ways to order a P,

a b C d = 1: WReach,(v) v
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Two ways to order a P,

a b C d = 1: WReach,(v) v
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Two ways to order a P,

a b C d = 1: WReach,(v) v
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Two ways to order a P,

a b C d = 1: WReach,(v) v

00000 D weol,
WReach,.(f)! o000’

a dbocef S

oo oo — weol,

WReach,.(f)... °e o’



Two ways to order a P,

d b C d S 1: WReach,(v) v

o0 0 0 0 ¢ ;G weol,
WReach,.(f)! oo o000’

a dbcef —

o ./\.—. -T wcol,
WReach,.(f) ... oo 0’

Is there a nice formalization
of this property?



Treedepth: elimination orderings
Given an ordering < of V(G), we compute
a treedepth decomposition as follows:

For every connected component of (G, remove

the minimum vertex and add it as the current
root, then recurse on the resulting components.

[ JE
adbcef adefbc /.d

adbecf adebfc \\
adbefc adebcf bf/ &<
C@ C )i



Treedepth: elimination orderings
Given an ordering < of V(G), we compute
a treedepth decomposition as follows:

For every connected component of G, remove
the minimum vertex and add it as the current
root, then recurse on the resulting components.

a

adbcef adefbc
adbecf adebfc
adbefc adebcf §



Decomposition!
a d b c e f
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Decomposition!
a d b c e f
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We can count
linear pieces!

Progress! These
pieces are linear!



Count & combine!

C1 a d e f
wcol, O 0090
C2
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Count & combine
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Count & combine!
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a d/ a d/ How do we count
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Decomposition!
a d b c e f
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Decomposition!
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Decomposition!
a d b c e f
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Decomposition!
a d b c e f
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Motif counting using wcol,
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Mandoline progress

Trie storage DAG Task planner
Test against
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Theory|only No tricks Executable Github
@ Python prototype @

(or similar)
Rust implementation |

(Private repository)



Applications & Algorithms
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fast local search  motif counting local genome

centrality ~ neighborhoods



Open questions & future work

Classification of more models!

Soa v How do we classify models like
R preferential attachment?

Can we ‘measure’ bnd. exp. in practice?

exponential dependence?
r-nbhd counting in time O(2<7(%)n)?
Make existing algorithms practical!

Approximate r-nbhd counting without d}

wecol/dtf specifically for networks!
Long term: ‘sparsity’ programming library

ansssesees v | Find (interdisciplinary) collaborations g
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