Complex networks & sparsity Part IV: Implementation

Felix Reidl Blair D. Sullivan DOCCOURSE '18

The long and winding road

The long and winding

Motif-counting

We want to count the number of times a given motif graph

appears in a larger host graph (network).

Motifs that appear more often than expected might play an important function in the network.

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002 Oct 25;298(5594):824-7.

Ribeiro P, Silva F, Kaiser M. **Strategies for network motifs discovery**. InE-Science, 2009. e-Science'09. Fifth IEEE International Conference on 2009 Dec 9 (pp. 80-87). IEEE.

Graphlets

We want to count all (connected) induced subgraphs up to a given size.

The graphlet degree distribution or the graphlet degree can be used to compare networks.

Pržulj N, Corneil DG, Jurisica I.

Modeling interactome: scale-free or geometric?. Bioinformatics. 2004 Jul 29:20(18):3508-15

Pržulj N. Biological network comparison using graphlet degree distribution.

Bioinformatics, 2007 Jan 15:23(2):e177-83.

Treedepth

Def. A graph has treedepth d if it is the subgraph of the closure of a tree of height d.

A vertex colouring is *centered* if every connected subgraph H contains a vertex whose color is unique in H.

The centered colouring number $\chi_{\text{cen}}(G)$ is equal to the treedepth of G.

Low treedepth colourings

A vertex colouring is a **r-treedepth colouring** if every set of i < r colours induce a subgraph of treedepth i.

$$\chi_r(G) := \min \operatorname{\#colours} \operatorname{needed} \operatorname{in} \\ \operatorname{an r-treedepth} \operatorname{colouring} \operatorname{of} \operatorname{G}$$

CONCUSS

Engineering motif-counting

$$f(h) \cdot 2^{O(h^2)} n$$

$$f(h) \cdot h^{O(h)} n$$

Sánchez Villaamil F, Sikdar S, Sullivan BD. Structural sparsity of complex networks: Bounded expansion in random models and real-world graphs. arXiv preprint arXiv:1406.2587. 2014 Jun 10.

Engineering motif-counting

Engineering motif-counting

(Doctoral dissertation, Dissertation, Aachen, Techn. Hochsch., 2015).

Is it practical?

The current implementation is vastly outperformed by other algorithms (vf2) on practical instances.

Number of colours
$$f(h)$$
 Size of motif h $h^{O(h)}n$

There are artificial graph classes in which the algorithm performs better.

O'Brien MP, Sullivan BD.

Experimental evaluation of counting subgraph isomorphisms in classes of bounded expansion.

arXiv preprint arXiv:1712.06690. 2017 Dec 18.

Is it practical?

The current implementation is vastly outperformed by other algorithms (vf2) on practical instances.

Number of colours
$$f(h)$$
 Size of motif h $h^{O(h)}n$

There are artificial graph classes in which the algorithm performs better.

O'Brien MP. Sullivan BD.

Experimental evaluation of counting subgraph isomorphisms in classes of bounded expansion.

arXiv preprint arXiv:1712.06690. 2017 Dec 18.

- 1) Improve colouring algorithm
- 2) Don't use low-treedepth colourings

Mandoline

Weak coloring & bounded expansion

 $oldsymbol{u}$ is weakly r-reachable from v if there exists a path from v to $oldsymbol{u}$ of length at most r such that $oldsymbol{u}$ is the path's leftmost vertex.

Weak coloring & bounded expansion

 $oldsymbol{u}$ is weakly r-reachable from v if there exists a path from v to $oldsymbol{u}$ of length at most r such that $oldsymbol{u}$ is the path's leftmost vertex.

$$\operatorname{wcol}_r(G) := \min_{L \in \Pi(G)} \max_{v \in G} |\operatorname{WReach}_r[G, L, v]|$$

Weak coloring & bounded expansion

 $oldsymbol{u}$ is weakly r-reachable from v if there exists a path from v to $oldsymbol{u}$ of length at most r such that $oldsymbol{u}$ is the path's leftmost vertex.

$$\operatorname{wcol}_r(G) := \min_{L \in \Pi(G)} \max_{v \in G} |\operatorname{WReach}_r[G, L, v]|$$

Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-neighbourhood of its *last* vertex.

Let's start with something easy!

We count cliques in a d-degenerate graph.

Observation: every clique is contained in the left-neighbourhood of its *last* vertex.

$$H \simeq K_q \quad v$$

$$L \qquad \qquad V(H) \subseteq N^-(v)$$

Therefore we can enumerate all cliques by enumerating all cliques in $N^-(v)$ for all $v \in G$!

$$O(2^d n)$$
 time!

Does it blend?

Can we 'lift' this algorithm to wcol?

Does it blend?

Can we 'lift' this algorithm to wcol?

$$H \simeq K_q$$
 v $V(H) \subseteq N^-(v)$ wcol r $\vec{H} \subseteq \mathrm{WReach}_r(v)$

1) What is the 'last' vertex of H? Enumerate all orderings \vec{H} of H.

Does it blend?

Can we 'lift' this algorithm to wcol?

- 1) What is the 'last' vertex of H? Enumerate all orderings \vec{H} of H.
- 2 Does $\vec{H} \subseteq \operatorname{WReach}_r(v)$ actually hold? Only sometimes!

a b c d e f wcol_r

a d b c e f

 wcol_r

Two ways to order a P₆

Is there a nice formalization of this property?

Treedepth: elimination orderings

Given an ordering \prec of V(G), we compute a treedepth decomposition as follows:

For every connected component of G, remove the minimum vertex and add it as the current root, then recurse on the resulting components.

adbcef adefbc adbecf adebfc adbefc adebcf

Treedepth: elimination orderings

Given an ordering \prec of V(G), we compute a treedepth decomposition as follows:

For every connected component of G, remove the minimum vertex and add it as the current root, then recurse on the resulting components.

adbcef adefbc adbecf adebfc adbefc adebcf

Decomposition!

Decomposition!

We can count linear pieces!

Progress! These pieces are linear!

Count & combine!

Count & combine!

Count & combine!

How do we count these graphs?

Decomposition!

adebcf

adebcf

Decomposition! Less branches More edges = longer decomposition

Motif counting using $wcol_r$

Mandoline progress

Applications & Algorithms

Open questions & future work

Classification of more models! How do we classify models like preferential attachment? Can we 'measure' bnd. exp. in practice?

Approximate r-nbhd counting without exponential dependence? r-nbhd counting in time $O(2^{\omega_r(G)}n)$? Make existing algorithms practical!

wcol/dtf specifically for networks! Long term: 'sparsity' programming library

THANKS!

Demaine ED, Reidl F, Rossmanith P, Villaamil FS, Sikdar S, Sullivan BD. Structural sparsity of complex networks: Random graph models and linear algorithms. CoRR. abs/1406.2587. 2014 Jun 10.

Sullivan BD, Farrell M, Villaamil FS, Reidl F, Lemons N, Goodrich T. Hyperbolicity, degeneracy, and expansion of random intersection graphs. Internet Mathematics. 2017 Feb 9:9062017(1):1278.

Chin AJ, Goodrich TD, O'Brien MP, Reidl F, Sullivan BD, van der Poel A. **Asymptotic Analysis of Equivalences and Core-Structures in Kronecker-Style Graph Models.**InData Mining (ICDM), 2016 IEEE 16th International Conference on 2016 Dec 12 (pp. 829-834). IEEE.

O'Brien MP, Sullivan BD. Experimental evaluation of counting subgraph isomorphisms in classes of bounded expansion. arXiv preprint arXiv:1712.06690. 2017 Dec 18.

Gutin G, Mertzios GB, Reidl F. Lower and Upper Bound for Computing the Size of All Second Neighbourhoods. arXiv preprint arXiv:1805.01684. 2018 May 4.

