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Network models

A network model Is a random process
that generates n-vertex graphs™.

Besides the size n of the graph, a network model
usually takes a vector of parameters p(n).

e p ) [ @
Param. p(n) D ‘\\.
i ® ./

* In mathematical terms: a network model is a
probability distribution over all n-vertex graphs.



Asymptotic bounded expansion

We know how to define bounded exp. for graph
classes, but what about random graphs/models?

Def. A graph model G®(n, p(n)) has bounded
expansion asymptotically almost surely (a.a.s) if
there exists a function f such that, for allr,

lim P[V,(G®(n,p(n))) < f(r)] = 1.

n—oo

It has bounded expansion with high probability
(w.h.p) if for every ¢ > 1 there exists f s.t.

P[V,(GR(n, p(n))) < f(r)] 21— O(n"°).



Asymptotic nowhere dense

Def. A graph model G®(n, p(n)) is howhere
dense asymptotically almost surely (a.a.s) if
there exists a function f such that, for allr,

lim Pl@,(G%(n,p(n))) < f(r)] =1.

n—oo

It is nowhere dense with high probability
(w.h.p) if for every ¢ > 1 there exists f s.t.

Pl@n(G(n, p(n)) < f(r)] =1~ 0(n"°).

Or(G) =w(GVr)



Asymptotic denseness

Def. A graph model G®(n, p(n))is a.a.s. some-
where dense if there exists » such that for all
functions f it holds that

lim Pl@,(G%(n,p(n))) > f(r)] =1.

n—oo

0 (G) =w(GVr)



Asymptotic denseness

Def. A graph model G®(n, p(n))is a.a.s. some-
where dense if there exists r such that for all

functions f it holds that
lim Pl@,(G%(n,p(n))) > f(r)] =1.

n—oo
Is is not a.a.s. nowhere dense if it only holds that

lim Plw,(G%(n,p(n))) > f(r)] > 0.

n—oo

0 (G) =w(GVr)



(uniformly) random graphs



The.Erdos-Rényi model

sparse

The mother of all random graphs!

G(n, %) O
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The Erdos-Rényi model

Erdés-Rényi graphs famously exhibit phase transitions,
meaning that some property suddenly changes when
we vary the parameter around a critical point.
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O(logn)’
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p <l pw>1

There is a huge body of work on
properties of Erdds-Rényi graphs!



The Erdos-Rényi model

Erdés-Rényi graphs famously exhibit phase transitions,
meaning that some property suddenly changes when
we vary the parameter around a critical point.
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Jarik & Patrice:

Sparse Erdés-Rényi graphs have asymptotically
almost surely bounded expansion.



The Erdos-Rényi model

ER
netscience
columbia-social
ca-CondMat
codeminer
Yeast
diseasome
polblogs
twittercrawl!
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soc-advogato
marvel
email-Enron



..but | want my powerlaw...



The Chung-Lu model

Generate graphs with a given degree
distribution (in expectation).

@ G (Dn) O
® o T '>\(\.
®© o o g

Degree distribution
Dn = (wl ..... wn)




Phase transition of Chung-Lu

Thm. Let (Dy)nen be a sparse degree distri-
bution sequence. Then G°Y(D,,)

@ has bounded expansion if (Dy,) has
an upper tail-bound of O( =),

@ is nowhere dense with unbounded
expansion if (D,) has a tail in ©(45), and

©® is somewhere dense if (D ) has
a lower tail-bound of Q).




Phase transition of Chung-Lu
The phase transition exists because of how
generalized harmonic numbers behave:

Lemma 4. For all integers 0 < § < A the bound R, < Z?:a k% < 5% + R,

holds where 1 i |
(0T =AY fory>1,
R,={InA—-1Ind forvy=1, and
(AT =817 for0<y <1

Lemma 5. For~y >0, r > 1 and integers r*" < § < A the bound

A
In"k In"d
R E I
k=6

kY 07

holds where ¢ is a constant and

2 (6777 "5 — A7 In" A) forvy>1,
R = ﬁ(lnrﬁ'1 A —In"t19) fory=1, and

W(Al*7 In" A — 671" §) for 0 <y < 1.



Phase transition of Chung-Lu
The phase transition exists because of how
generalized harmonic numbers behave:
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Gy (AT " A= 817V In") | for0 <y < 1.



Phase transition of Chung-Lu

Thm. Let (D, ).en be a sparse degree distri-
bution sequence. Then G (D,,)

@ has bounded expansion if (D,) has
an upper tail-bound of O(2~).

@ is nowhere dense with unbounded
expansion if (Dj) has atail in ©(J), and

©® is somewhere dense if (D,,) has

a lower tail-bound of Q().




Degree distributions

Def. An n-vertex degree distribution D,, is a rand.
variable with probability mass function f, s.t.
@ f(d)=0ford¢g[1,n—1],

@ nf(d) €N, foralld e N.

An n-vertex graph G matches D,, if the number
of vertices of degree d in G is nf,(d).

If G matches D,, then the expected value of D,
is precisely the average degree of G':

dG) == 3" |{v | dw) = i}| = EID)



Degree distribution sequence

In order to talk about degree distr's of classes,
we need a notion of asymptotic degree distr's.

Def. We call a sequence (Dy)nen of n-vertex
degree distr's a degree distribution sequence.
The limit of (D,,) is a random variable D with

(D,,) % D.
We say that (D,,) is sparse if
E[D] < oo and (E[Dy]) = E[D].

Imagine the limit of a degree distr sequence as
its overall ‘shape’.



Tail-bounds

Def. A DDS (Dy,)neny With limit D hash as

an upper (lower) tail-bound if there exists a
constant > 0 such that, for all d > 7 and large
enough n, it holds that

PID, >d] = O(ﬁ) (Q(ﬁn

If a DDS has a lower and an upper tail bound,
we simply call this function the tail.
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Thm. Let (Dy)nen be a sparse degree distri-
bution sequence. Then G“*(D,,)

@ has bounded expansion if (D,,) has
an upper tail-bound of O( =),

@ is nowhere dense with unbounded
expansion if (D,) has a tail in ©(45), and

© is somewhere dense if (D ) has
a lower tail-bound of Q).



Supercubic regime: 1%t ingredient

Lem. Let (Dy,)nen be a sparse DDS with
upper tail-bound O(d=37¢). Then the proba-
bility that G°%(D,,) contains an s-t-path of
length r is at most
Wit
Un
for some constant ¢,..

Cr



Supercubic regime: 1%t ingredient

Lem. Let (D,,)nen be a sparse DDS with
upper tail-bound O(d=37¢). Then the proba-
bility that G°%(D,,) contains an s-t-path of
length 7 Is at most
Wit
un
for some constant ¢,..

Cr

Probability of a dense r-shallow minor
~ probability of a dense subgraph!



Supercubic regime: 1%t ingredient

Probability that GC(D,,) contains an s-t-path

of length 7 is at most ¢, 27,

P[PstgG|ds:dt]:< ’ >ddtnz ZP[ = (di,...,dr—1)]

r—1 urn”



Supercubic regime: 1%t ingredient

Probability that GC(D,,) contains an s-t-path

of length 7 is at most ¢, 27,

n \dsd
P[Py CG|ds di] = <r_1> ;1;[ L PD" = (dy,...,dr1)]

dl,...,dr71
= [I >. & PDin=d]= [] ED},]
dy,..dp_q i dy,..ydr1

= OB ).



Supercubic regime: 1%t ingredient

Probability that G°¥(D,,) contains an s-t-path

of length 7 is at most ¢, 27,

dsd
P[PstCG|dsadti|:<rﬁl) /;T'I/);[’IZ’ ZP[ (d17"'7d7"—1)]

4 i dy,edp_q @

diyesdr_1 i diyensdrn

— OB

n dsdt 9 1 ddt ) 1
P|Ps; C ds,ds | < E[Dz]"~ E[D#]"~
(PaCGldudi]< (" ) o oEnlr ) = SeLOEIDE)



Supercubic regime: 1%t ingredient

Probability that G°¥(D,,) contains an s-t-path

of length 7 is at most ¢, 27,

dsd
P[P‘St CG | ds’dt] - (rﬁl) /;rl;lvl’ Z P[ (dh‘"ad?"—l)]

A 2
E[D;] = dz:: 3+e Zd1+€ - ( )

dyd,
prn”

PlPaCGldudi]< ("))

O(ED2 ) = ‘Ldtomwzr )



Supercubic regime: 2" ingredient

Lem. Let (D,,)nen be a sparse DDS with
upper tail-bound O(d=37¢). Then for £ > ©(1),
¢ = 2e andn > 4£ it holds that

1

P[3H C GY(D,)) : |H| < n/c and Vo(H) > €] < —-



Supercubic regime: 2" ingredient

Lem. Let (D,,)nen be a sparse DDS with
upper tail-bound O(d=37¢). Then for £ > ©(1),
¢ 2 2e andn > 4£ holds that

1

P[3H C G°M(D,)) : |H| < n/c and Vo(H) > ¢] < —-

Probability of dense subgraphs is low.



Supercubic regime: 2" ingredient

Lem. Let (D,,)nen be a sparse DDS with
upper tail-bound O(d=37¢). Then for £ > ©(1),
¢ 2 2e andn > 4£ holds that

1

P[3H C G™(Dy,)): |[H| < n/c and Vo(H) > €] < —-

Probability of dense subgraphs is low.

<

(in the sto-
chastic sense)

G (D,) G (¢, Dy)



Supercubic regime: 2" ingredient

P[3H C GO(D,)) : |H| < n/c and Vo(H) > £] < —

S ng

n/c n
2 (k) PLIG (D) X)) > ke ]

k=2¢

Union bound:
number of dense
subgraphs



Supercubic regime: 2" ingredient

P[EHQGCL( n): |H| <njcand Vo(H) > §]<%

n/c
2 (Z) PLIG (D) X)) > ke ]
k=2¢

n/c Ak &k
n ecd? B Group subgraphs
<X (k) ; <2n§ked2/2”> P> =d] by sum of weights D)

Probability of dense
subgraph, given D



Supercubic regime: 2" ingredient
P[3H C G°Y(D,)) : |H| < n/c and Vo(H) > €] < —

S ng

n/c n
2 (k) PLIG (D) X)) > ke ]

k=2¢
n/e Ak -
n ecd? )
< —— ) Pp=d
2 ()2, (macem) vo-
. (a lot of work)
> (5t
n/ kk



Supercubic regime: 2" ingredient

P[EHQGCL( n)) | Hl <njfcand Vo(H) > €] < —

n/c n
2 (k) PG (Da)XiDl > k¢]

k—2¢
nle , Ak W @
n ecd
<Y ()X (o) PP-a
h—2¢ k) = \2n&ke /

n/c

<SR <2 e

k=2¢

Sum is supergeometric:
bound by twice the first term.



Supercubic regime: 2" ingredient

P[3H C GOU(D,)) : |H| < n/c and Yo(H) > €] < —
n

n/c

2 (Z) PG (Da)XiDl > k¢]
k=2¢

ks n\ ex ecd? o
< _— =
<> (k>;(2n§ked2/2n> P[D = d]

Forn > 4¢ and £ > 2.5

n/c ) )
<3 ()5 B @) <&



Thm. Let (Dy)nen be a sparse degree distri-
bution sequence. Then G“*(D,,)

@ has bounded expansion if (Dy,) has
an upper tail-bound ofO(d3+€ ),

@ is nowhere dense with unbounded
expansion if (D,) has a tail in ©(Z), and

© is somewhere dense if (D ) has
a lower tail-bound of Q).




Cubic regime: ingredients

Lem. Let (D) nen be a sparse DDS with a tail
in ©(d—3). Then the probability that G°%(D,,)
contains an s-t-path of length r is at most

W
;mt -O(logn)

Lem. Let (D,,)ncy be a sparse DDS with
upper tail- bound O(d=27¢).Then for £ =2 ©(1)
and large enough n it holds that

1

[ (GH(Dp)) = 4v/E(a+ 1) a—l)}é—.

né




Cubic regime: dense minor

Lem. Let (D,,)nen be a sparse DDS with
lower tail-bound Q(d=3). Then

V1(GCY(D,)) = Q(log® n)
with high probability.



Cubic regime: dense minor

High-degree vertices
must be important!

Lem. Let (D,,)nen be a sparse DDS with
lower tail-bound Q(d~3). Then
V1 (G (D)) = Q(log? n)

with high prohability. .
Small minor
Goal: construct suffices!

dense 1-shallow
minor



Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)
A _

o)



Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

o

—n2):®(n1/3)
A
Lh /



Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

A— .
®<Z2) O(n'’?)
Vi S
A
2
5——
| Vs "o(s)



Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

A _
E[|N(z)NVs]] = 6(%)
‘/h forz eV,
Vertices in V}, have
A ® many neighbours in Vj.
5 - A
Vs
1 —



Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

A _
E[IN(z) N V;]] > ©(%)
‘/h forz eV,
Vertices in Vi, have
A ® e many neighbours in V.
5 _
1 Vs EIN() N Vall < O(3)

fory e Vv,
V Yy )



Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

A _
E[|N(z)NVs]] = 6(%)
‘/h forz eV,
Vertices in V}, have
A ® e many neighbours in V.

Vertices in Vs have very
few neighbours in V},.

Vs E[[N(y) NVl < O(5L
V foryeVsand 6§ < &




Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

With high probability, half
of N(z) N Vg has no other
neighbours than x in V3,
forallx € Vy,.




Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

With high probability, half
of N(z) N Vg has no other
neighbours than x in V3,
forallx € Vy,.

Therefore every x € V}, hasan

exclusive neighbourhood S, C V_ s
whose total weight is at least

O(Alog A)




Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

n
‘@

total vve|ght
O(AlogA)




Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

/

total weight Probability of at least one
o(A loggA) edge between sets: @(loigﬁ)

n



Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

Q
/

total weight Probability of at least one
o(A loggA) edge between sets: @(loigﬁ)

n




Cubic regime: dense minor
Vl(GCL(Dn)) = Q(log2 n)

2 With high probability:

2 2 AQ QA
Qﬂ o -o(2. 5 212
/ (n A210g2A>

© A2 n

@(log A) = @(log2 n)
R (e Probability of at least one
(3(2\1/\(/)2%) edge between sets: @ (A 1oz”A)

n




Cubic regime: dense minor

Lem. Let (D,,)nen be a sparse DDS with
lower tail-bound Q(d=3). Then

V1(GCY(D,)) = Q(log® n)
with high probability.



Thm. Let (Dy)nen be a sparse degree distri-
bution sequence. Then G“*(D,,)

@ has bounded expansion if (Dy,) has
an upper tail-bound ofO(d3+€ ),

@ is nowhere dense with unbounded
expansion if (D,) has a tail in ©(45), and

© is somewhere dense if (D ) has
a lower tail-bound of Q).




Subcubic regime: dense minor

Lem. Let (D,,)nen be a sparse DDS with
lower tail-bound Q(d—37¢). Then

V1(GH(D,)) = Q(n7=7)
with high probability.



Subcubic regime: dense minor

Lem. Let (D,,)nen be a sparse DDS with
lower tail-bound Q(d—37¢). Then

V1(GCY(D,,)) = Q(n7=<77)
with high probability.

Thm. (Dvorak, Jiang) Let £ € N and ¢ > 0.
There exists n,. and c. such that every graph
G withn > n,. vertices and at least n!™¢ edges
contains a c.-subdivision of K.

Jiang T. Compact topological minors in graphs. Dvorak Z. Asymptotical structure of
Journal of Graph Theory. 2011 Jun;67(2):139-52. combinatorial objects. PhD thesis.



Subcubic regime: dense minor

Lem. Let (D,,)nen be a sparse DDS with
lower tail-bound Q(d—37¢). Then

V1(GCY(D,,)) = Q(n7=<77)
with high probability.

Thm. (Dvorak, Jiang) Let £ € N and ¢ > 0.
There exists n,. and c. such that every graph
G withn > n,. vertices and at least n!™¢ edges
contains a c.-subdivision of K.

Somewhere dense!

Jiang T. Compact topological minors in graphs. Dvorak Z. Asymptotical structure of
Journal of Graph Theory. 2011 Jun;67(2):139-52. combinatorial objects. PhD thesis.



Configuration model

Generate multi-graphs with a given
degree distribution.

00000 D, e. 0 Random

Degree distribution - o .o\'\ M
Dn:(wl,...,wn) \/.0:

2 \ —e

GCF (Dn) o—eo

...i. &« %( f' =

—!
/.
.

eG’ H



Configuration model: sparseness

Thm. Let (Dy)nen be a sparse degree distri-
bution sequence. Then G¢¥(D,,)

@ has bounded expansion if (D,,) has
an upper tail-bound of O( =),

@ is nowhere dense with unbounded
expansion if (D,) has a tail in ©(45), and

© is somewhere dense if (D ) has
a lower tail-bound of Q(Z—=).

Proofs very similar to Chung-Lu!



Real tail-bounds!

We estimated the tail of 129 networks
using the powerlaw package.

10 - [)T(\
a—1 ( T )—a
X
8 Lmin Lmin
X fr=0
x . Supercubic:
6- X x
X
a X * x x x
XX % x
T o I L networks
X X x x x x
x - x X ;>E<>< x*x):( x §§x>< *
%x&& S8 S XX % x ¥ x x % X X
? o XX o Subcubic:

10* 102 10° 10* 10° 7: ;

Alstott J, Bullmore E, Plenz D. powerlaw:
a Python package for analysis of heavy-tailed distributions. networks
PloS one. 2014 Jan 29:9(1):e85777.

Clauset A, Shalizi CR, Newman ME. based on
Power-law distributions in empirical data.
SIAM review. 2009 Nov 6:51(4):661-703.



...what about Kevin Bacon?



The Kleinberg model
Generate graphs that admit greedy routing

Size n OIS

Short degree D Wyl2 ?>_<?>_<?>_<?>_<I I

Long degree @ - I>:<I>:<I>:<?>:<?
Distance shape 7y $>_<$>_<$>_<I>_<I
G**(n,p,q,7) 4

~ distp(u,v)™7




Greedy routing

Small world: short average path length

Greedy routing: short paths can be found
with a local routing protocol
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Small world: short average path length
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Greedy routing

Small world: short average path length

Greedy routing: short paths can be found
with a local routing protocol




Greedy routing

Small world: short average path length

Greedy routing: short paths can be found
with a local routing protocol




The Kleinberg model is dense
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The Kleinberg model is dense

o—0.
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The Kleinberg model is dense
3loglogn x 3loglogn

\

\

A

pas




The Kleinberg model is dense
3loglogn x 3loglogn

\

\l Select (loglogn)?
disjoint edges




The Kleinberg model is dense
3loglogn x 3loglogn
®

Select (loglogn)?
disjoint edges

Select 3loglogn
vertices



The Kleinberg model is dense

3loglogn x 3loglogn

,—. Probability that a specific
pair of vertices are both

7’
) /’ ' connected to a specific edge:
/¢ U4
/ / 1
,I ,I ? . ? . 3
Y4 I 1 2 og n
[4 1 1
/ ) = 5
! N (3loglogn)log” n



The Kleinberg model is dense
3loglogn x 3loglogn

—'.'h-.
,/. et e
/I \ |

/ A
——lO—O\— . _ Probability that every pair of
A ¢ o . chosen vertices is connected

HEAN / \./ \ by a specific edge each:
\ 1 O ./ \‘ / ( 1 ) (loglogn)?
Q ,' }“\ \ ,’ (3loglogn)*log® n



The Kleinberg model is dense
3loglogn x 3loglogn

—'.'h-.
,/. et e
/I \ |

/ A
——lO—O\— . _ Probability that every pair of
A ¢ o . chosen vertices is connected

HEAN / \./ \ by a specific edge each:
\ 1 O ./ \‘ / ( 1 ) (loglogn)?
Q ,' }“\ \ ,’ (3loglogn)*log® n



The Kleinberg model is dense

Contains K31oglog n as
a 3-shallow top. minor

with probab|l|ty gt 1Iea)st

( 3loglo n4log n
g



The Kleinberg model is dense

Contains K310glogn as

a 3-shallow top. minor

with probability at least
(log log n)*

1
<(3 loglog n)* log® n

Contains K31oglog n as
a 3-shallow top. minor
with probability at |

1 (log I

((3 loglogn)*log? n

Contains K310glogn as
a 3-shallow top. minor
with probabmty at least

(log log n)*

<(3 loglog n)*log? n

Contains K3 1oglog n as
a 3-shallow top. minor
with probability at least

1 (loglogn)*

([:alug logn)tlog®n

Contains K3loglogn as

a 3-shallow top. minor

with probability at least
1 (i

logn)*

( (3loglogn)log” n

Contains K3 1oglog n as
a 3-shallow top. minor
with prombwht\/ at least

(log log n)*

Contains K310glogn as

a 3-shallow top. minor

with probability a]t jeast
1 (loglogn)?

<(_; loglog n)* log® n

Contains K31oglog n as

a 3-shallow top. minor

with probability at least
1

((,i]nglngn]‘h)g n

Contains K310glogn as
a 3-shallow top. minor
with probabmty at least

(log log n)*

<u loglog n)*log? n

Contains K31oglogn as
a 3-shallow top. minor
with DFObeIMt\/ ?t least

logn)?

(<«s loglog n)*log” n

Contains K31oglogn as

a 3-shallow top. minor

with probabiht\/ﬁl least
1 og log n)

((.s loglog n)'log? n

Contains K3 1oglogn as
a 3-shallow top. minor
with probﬁblht\/ at ‘\east

(log log n)?

(<«s loglog n)*log n



The Kleinberg model is dense

Flip a coin with success probability

( 1 ) (log log n)2
(3loglogn)4log®n

n? .
a total of Eogkenz imes.

Asymptotically, the probability that
none of flips wins is at most e™ "

The Kleinberg model is
somewhere dense w.h.p.



and this... but that... or this...



Attachment models

Plausible network formation that
generates powerlaw degree distributions

s i no [ ] .\ Gno

Initial size 1 p \//’

Att.-degree k .
GBA (n, N, k)

/ \( Ch.O(ﬁEe k
.\ /' L 4 >0 neighbours
SN c, e




Clique minors in GBA
Lem. GB4(n,no, k) with k > 2 contains, for

any r <+/n/2, the complete graph K,. with
some probability p(r) > 0.



Clique minors in GBA

Lem. GB4(n,no, k) with k > 2 contains, for
any r <+/n/2, the complete graph K,. with
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Clique minors in GBA

Lem. GB4(n,no, k) with k > 2 contains, for
any r <+/n/2, the complete graph K,. with
some probability p(r) > 0.

o 7“2—|-’f’
‘ ‘ 500

Probability of forming K,
is some function of 7.

Attachment models are
not a.a.s nowhere dense!



Random intersection model

Projection of shared attributes onto
binary relationship.

Size n o — Bpo
‘Density’ « D D —yn= T
Fudge By B
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Random intersection model

— (0%
GMma ) T noue

regime a< 1 a=1 a>1
degeneracy Q(yn(1=2)/2) Q( 282 O(1)

loglogn

sparsity  Somewhere dense B.E.



Random intersection model

S (0%
GMO(ma,,7) Ty e

regime a< 1 a=1 a>1
degeneracy Q(yn(1=2)/2) Q( 282 O(1)

loglogn

sparsity  Somewhere dense B.E.
n m
: » . Contains a high-

-

degree vertex
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Random intersection model

S (0%
GMO(ma,,7) Ty e

regime o<1 a=1 a>1
degeneracy Q(yn(1=2)/2) Q(=2B1_) O(1)

log log n

sparsity  Somewhere dense B.E.

Regime with
‘tunable’ clustering



Kronecker models

Hierarchical generation of community-
like structures.

Size* k My o, B-Mi‘? Bz
) 4

Generator
=7 g
G5SK(k,a,...,7) \
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||
oy o




RMAT models

Hierarchical generation of community-
like structures.

Size* k
Edges

Generator [b c}

k.m
p
i

GRMAT(E m, a, b, c)

b c

m ‘throws’




Kronecker models

Fora > % it is easy to show that the
models are somewhere dense.



Kronecker models

Fora > % it is easy to show that the
models are somewhere dense.

Degenerate ‘slices’

1.00

0.86

0.72

0.58

0.44



Random model sparsity
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So many models!

Oe

o? Hierarchical
exp(¥)| ‘tree mode
Exponential

random graphs .
o e
Geometric

random graphs



The big question

Which ones have
bounded expansion?



