Treedepth & bounded expansion redux

(with lots of colors!)

Felix Reidl

Theoretical Computer Science

RWTHAACHEN

@Bergen 2013

Contents

The big picture

Treedepth

Graph classes of bounded expansion

Algorithms

Conclusion

The big picture

Treedepth

A strange width measure...

"Why should this be useful?"

-common first reaction to treedepth

A graph G has *treedepth* at most d if

- G is a subgraph the closure of a tree (forest) of height $\leq d$
- *G* has a *centered coloring* with *d* colors
- G has a *ranked coloring* with d colors
- *G* is the subgraph of a *trivially perfect graph* with clique size at most *d*

Interesting tidbits about treedepth

- Treedepth is subgraph-closed
- $\mathsf{tw}(G) \le \mathsf{pw}(G) \le \mathsf{td}(G) 1$
- Maximum path length is $2^{\operatorname{td}(G)}-1$

Interesting tidbits about treedepth

- Treedepth is subgraph-closed
- $\operatorname{\mathsf{tw}}(G) \le \operatorname{\mathsf{pw}}(G) \le \operatorname{\mathsf{td}}(G) 1$
- Maximum path length is $2^{\operatorname{td}(G)} 1$
- \Rightarrow a DFS is a treedepth-decomposition of depth $\leq 2^{\operatorname{td}(G)} 1$

Interesting tidbits about treedepth

- Treedepth is subgraph-closed
- $\mathsf{tw}(G) \le \mathsf{pw}(G) \le \mathsf{td}(G) 1$
- Maximum path length is $2^{\operatorname{td}(G)} 1$
- $\Rightarrow~$ a DFS is a treedepth-decomposition of depth $\leq 2^{\operatorname{td}(G)}-1$
 - Minor-closed property (thus in fpt) and MSO-expressible (thus in fpt, again)
 - Graphs of bounded treedepth are WQO under the induced subgraph relation (Even true if one allows a finite set of vertex labels)

Graph classes of bounded expansion

Minors, top-minors

Shallow minors, top-minors

For a graph G we denote by $G \bigtriangledown r$ the set of its r-shallow minors.

For a graph G we denote by $G \bigtriangledown r$ the set of its r-shallow minors.

Definition (Grad, Expansion)

For a graph G, the greatest reduced average density is defined as |F(H)|

$$\nabla_r(G) = \max_{H \in G \,\forall\, r} \frac{|E(H)|}{|V(H)|}$$

For a graph G we denote by $G \bigtriangledown r$ the set of its r-shallow minors.

Definition (Grad, Expansion)

For a graph G, the greatest reduced average density is defined as

$$\nabla_r(G) = \max_{H \in G \, \triangledown \, r} \frac{|E(H)|}{|V(H)|}$$

For a graph class ${\mathcal G}$ the expansion of ${\mathcal G}$ is defined as

$$\nabla_r(\mathcal{G}) = \sup_{G \in \mathcal{G}} \nabla_r(G)$$

For a graph G we denote by $G \bigtriangledown r$ the set of its r-shallow minors.

Definition (Grad, Expansion)

For a graph G, the greatest reduced average density is defined as

$$\nabla_r(G) = \max_{H \in G \, \triangledown \, r} \frac{|E(H)|}{|V(H)|}$$

For a graph class ${\mathcal G}$ the expansion of ${\mathcal G}$ is defined as

$$\nabla_r(\mathcal{G}) = \sup_{G \in \mathcal{G}} \nabla_r(G)$$

A graph class \mathcal{G} has *bounded expansion* if there exists a function f such that $\nabla_r(\mathcal{G}) \leq f(r)$ for all $r \in \mathbf{N}$.

$$\nabla_r(G) = \max_{H \in G \, \triangledown \, r} \frac{|E(H)|}{|V(H)|}$$

$$\nabla_r(G) = \max_{H \in G \,\forall\, r} \frac{|E(H)|}{|V(H)|}$$

 $G \bigtriangledown 0$

$$\nabla_r(G) = \max_{H \in G \, \triangledown \, r} \frac{|E(H)|}{|V(H)|}$$

 $G \bigtriangledown 0$

$$\nabla_r(G) = \max_{H \in G \, \triangledown \, r} \frac{|E(H)|}{|V(H)|}$$

$$\nabla_{r}(G) = \max_{H \in G \, \nabla \, r} \frac{|E(H)|}{|V(H)|}$$

$$G \, \nabla \, 0$$

$$G \, \nabla \, 0$$

$$G \, \nabla \, 1$$

$$G \, 0$$

$$G \, \nabla \, 1$$

$$G \, \nabla \, 1$$

$$G \, 0$$

$$G \, \nabla \, 1$$

$$G \, \nabla \, 1$$

$$G \, 0$$

$$G \,$$

 $|\mathbf{\Gamma}(\mathbf{U})|$

Note that $G \triangledown 0 \subseteq G \triangledown 1 \subseteq \ldots$

$$\nabla_{r}(G) = \max_{H \in G \, \triangledown \, r} \frac{|E(H)|}{|V(H)|}$$

6/5

 $G \bigtriangledown 0$

 $G \bigtriangledown 1$)<mark>> 5/4</mark>

(plus the above)

Note that $G \triangledown 0 \subseteq G \triangledown 1 \subseteq \ldots$

$$\nabla_0(G) = 1.2$$
$$\nabla_1(G) = 1.25$$

$$\nabla_t(G) = 1.25, t \ge 1$$

Graph classes with bounded expansion

Class	f(r)
Planar	3
H-minor-free	$O(H \log H)$
H-top-minor-free	$O(H ^2)$
d-regular	$d(d-1)^{r-1}$
Crossing number c	$O(\sqrt{cr})$
$\mathcal{G}(n,p/n)$	a.a.s with some $g(r, p)$

Alternative characterizations

A graph class C has bounded expansion if there exists a function f such that for each $G \in C$ and each $r \in \mathbf{N}$

- $\tilde{\nabla}_r(G) \leq f(r)$ (Using top-shallow-minors)
- G admits an r-centered-coloring with $\leq f(r)$ colors
- *G* admits a *r*-treedepth-coloring with $\leq f(r)$ colors
- G has a linear ordering such that the number of weakly-r-accessible vertices is ≤ f(r)
- For each orientation \vec{G}_0 of G with $\Delta^-(\vec{G}_0) \le f(0)$ there exists a *transitive fraternal augmentation*

$$\vec{G}_0 \subseteq \vec{G}_1 \subseteq \vec{G}_2 \dots$$

such that $\Delta^-(\vec{G}_i) \leq f(i)$

Top-grad

Grads can also be defined via shallow topological minors:

$$\tilde{\nabla}_r(G) = \max_{H \in G\tilde{\nabla}r} \frac{|E(H)|}{|V(H)|}$$

where $G\tilde{\bigtriangledown}r$ denotes the set of all *r*-shallow top minors.

Top-grad

Grads can also be defined via shallow topological minors:

$$\tilde{\nabla}_r(G) = \max_{H \in G\tilde{\nabla}r} \frac{|E(H)|}{|V(H)|}$$

where $G\tilde{\nabla}r$ denotes the set of all *r*-shallow top minors. Grad and Topgrad are related as follows:

$$\tilde{\nabla}_r(G) \le \nabla_r(G) \le 4(4\tilde{\nabla}_r(G))^{(r+1)^2}$$

r-centered-coloring

Vertex-coloring of the graph G such that every connected subgraph $H \subseteq G$

- either receives more than *r* colors
- at least one color appears exactly once in *H*

Graphs classes of bounded expansion are exactly those classes whose members need only $\chi_r(G) < f(r)$ colors. In particular

$$\nabla_r(G) \le (2r+1) \binom{\chi_{2r+2}(G)}{2r+2}$$
$$\chi_r(G) \le poly(\tilde{\nabla}_{2^{r-2}+1/2}(G))$$

where the degree of the polynomial is roughly 2^{2^r}

r-centered-coloring

3-centered coloring of a grid

r-treedepth-coloring

Vertex-coloring of the graph G such that every subgraph induced by i < r colors classes has treedepth at most i.

An *r*-centered coloring is also an *r*-treedepth-coloring!

r-treedepth-coloring

Transitive fraternal augmentations

How to calculate r-centered coloring of a graph G whose expansion is bounded by f?

Transitive fraternal augmentations

How to calculate r-centered coloring of a graph G whose expansion is bounded by f?

- Create orientation \vec{G}_0 of G such that $\Delta^-(\vec{G}_0) \le f(0)$
- For $1 \le i \le r$
 - $G_i := G_{i-1}$
 - Add transitive edges to G_i
 - Add *fraternal* edges to G_i such that the fraternal edges alone are acyclic and the in-degree is minimized

Transitive fraternal augmentations

How to calculate r-centered coloring of a graph G whose expansion is bounded by f?

- Create orientation \vec{G}_0 of G such that $\Delta^-(\vec{G}_0) \le f(0)$
- For $1 \le i \le r$
 - $G_i := G_{i-1}$
 - Add *transitive* edges to G_i
 - Add *fraternal* edges to *G_i* such that the fraternal edges alone are acyclic and the in-degree is minimized

One can show that $\Delta^{-}(\vec{G}_i) \leq f(i)$, i.e. the coloring number of the graphs does not increase too much. A proper coloring of $\vec{G}_{O(r \log r)}$ yields an *r*-centered coloring for *G*.

Weak coloring number

Consider linear ordering of the vertices:

u is *weakly-r-accessible* from *v* if u < v and there exists a u-*v*-path of length at most *r* whose leftmost vertex is *u*.
Weak coloring number

Consider linear ordering of the vertices:

u is *weakly-r-accessible* from *v* if u < v and there exists a *u-v*-path of length at most *r* whose leftmost vertex is *u*.

Define $B_r(v)$ as the set of all weakly-*r*-accessible vertices. Graph classes of bounded expansion are exactly those classes whose members *G* satisfy

$$wcol_r(G) = \min_{\pi \in S_{|G|}} \max_{v \in G} B_r^{\pi}(v) \le f(r)$$

Weak coloring number

Consider linear ordering of the vertices:

u is *weakly-r-accessible* from *v* if u < v and there exists a *u-v*-path of length at most *r* whose leftmost vertex is *u*.

Define $B_r(v)$ as the set of all weakly-*r*-accessible vertices. Graph classes of bounded expansion are exactly those classes whose members *G* satisfy

$$wcol_r(G) = \min_{\pi \in S_{|G|}} \max_{v \in G} B_r^{\pi}(v) \le f(r)$$

In particular,

$$\nabla_{\frac{r-1}{2}}(G) + 1 \le wcol_r(G) \le poly(\nabla_{\frac{r-1}{2}}(G))$$

Weak coloring number

 $B_r(v)$ is the set of all vertices left of v which can be reached from v by a path of length r using nothing left of the target vertex.


```
Alternative alternative
characterizations
```

```
-Dr. Dre
```

A graph class C has bounded expansion if there exists a function f such that for each $G \in C$ and each $r \in \mathbf{N}$

•
$$\chi(G \bigtriangledown r) \le f(r)$$

• G admits a r-treewidth-coloring with $\leq f(r)$ colors

A graph class $\ensuremath{\mathcal{C}}$ has bounded expansion if

 there exists a constant *c* and a *strongly topological*, monotone, degree bound graph parameter *α* such that C ⊆ {G | *α*(G) ≤ c}

• ...

Algorithms

Dvořák's Algorithm

- Constant-factor approximation for *t*-DOMINATING SET
- Constant c depends on t, expansion
- Outputs t-dominating set D and $2t+1\text{-scattered set }S\subseteq D$ such that $|D|\leq c\cdot |S|$
- Since for any optimal DS D* it holds that

$$|S| \le |D^*| \le |D| \le c \cdot |S|$$

the set |D| has quality ratio c

Input: A graph G

Calculate an ordering W of G with bounded $wcol_t$;

 $\begin{array}{l} D \leftarrow \emptyset;\\ S' \leftarrow \emptyset;\\ R \leftarrow V(G);\\ \end{array}$ while $R \neq \emptyset$ do
Let $v \in R$ be the next vertex according to W; $S' \leftarrow S' \cup \{v\};\\ D \leftarrow D \cup \{v\} \cup B_{2t+1}(v);\\ \end{array}$ Remove every vertex *t*-dominated by *D* from *R*;

Output S', D;

Input: A graph G

Calculate an ordering W of G with bounded $wcol_t$;

```
\begin{array}{l} D \leftarrow \emptyset;\\ S' \leftarrow \emptyset;\\ R \leftarrow V(G);\\ \end{array}
while R \neq \emptyset do
Let v \in R be the next vertex according to W;
S' \leftarrow S' \cup \{v\};\\ D \leftarrow D \cup \{v\} \cup B_{2t+1}(v);\\ \end{array}
Remove every vertex t-dominated by D from R;
```

Output S', D;

From the algorithm it is apparent that |D| = O(|S'|) and that D is a dominating set. But S' is not necessarily 2t + 1-scattered.

Making it scattered

Construct 2t + 1-scattered set $S \subseteq S'$ with S' = O(S) as follows

• Create auxiliary graph H = (S', E') where $xy \in E'$ if $d_G(x, y) \le 2t + 1$

Making it scattered

Construct 2t + 1-scattered set $S \subseteq S'$ with S' = O(S) as follows

- Create auxiliary graph H = (S', E') where $xy \in E'$ if $d_G(x, y) \le 2t + 1$
- Claim: *H* is *c*'-degenerate (this we will prove)

Making it scattered

Construct 2t + 1-scattered set $S \subseteq S'$ with S' = O(S) as follows

- Create auxiliary graph H = (S', E') where $xy \in E'$ if $d_G(x, y) \le 2t + 1$
- Claim: *H* is *c*'-degenerate (this we will prove)
- \Rightarrow Color with c' + 1 colors and pick largest color class as S

• $uv \in E'$, i.e. $d_G(u, v) \le 2t + 1$

- $uv \in E'$, i.e. $d_G(u, v) \le 2t + 1$
- Takes leftmost vertex x on shortest path between u, v in G

- $uv \in E'$, i.e. $d_G(u, v) \le 2t + 1$
- Takes leftmost vertex x on shortest path between u, v in G
- $x \in B_{2t}(v)$ and $|B_{2t}(v)|$ is a constant!

- $uv \in E'$, i.e. $d_G(u, v) \le 2t + 1$
- Takes leftmost vertex x on shortest path between u, v in G
- $x \in B_{2t}(v)$ and $|B_{2t}(v)|$ is a constant!
- \Rightarrow Show that x cannot be "shared" with other back-neighbour of v

• $d_G(x,v) > t$, otherwise x would dominate v and thus $v \notin S'$

• $d_G(x,v) > t$ implies $d_G(x,u) \le t$

• $d_G(x,v) > t$ implies $d_G(x,u) \le t$

- $d_G(x,v) > t$ implies $d_G(x,u) \le t$
- Same holds for u'

- $d_G(x,v) > t$ implies $d_G(x,u) \le t$
- Same holds for u'
- Then x dominates both u and $u^\prime,$ therefore only one of them can be in S^\prime

Truncated shortest paths

Observe that for vertices x, y with $d_G(x, y) = t$, these vertices have distance at most 2 in the *t*-th transitive fraternal augmentation \vec{G}_t .

Truncated shortest paths

Observe that for vertices x, y with $d_G(x, y) = t$, these vertices have distance at most 2 in the *t*-th transitive fraternal augmentation \vec{G}_t .

We can easily track the distances these edges bridge! Therefore we can answer distance-queries for vertex pairs at distance $\leq t$ correctly in constant time by consulting an annotated version of \vec{G}_t . (We can also correctly conclude for all other pairs that they are further than t apart)

First Order Model checking, light

Theorem (Nešetřil, Ossana de Mendez)

Let C be a class of bounded expansion and p a fixed integer. Let ϕ be first-order sentence. Then there exists a linear-time algorithm to check $\exists X : |X| \leq p \land G[X] \models \phi$

First Order Model checking, light

Theorem (Nešetřil, Ossana de Mendez)

Let C be a class of bounded expansion and p a fixed integer. Let ϕ be first-order sentence. Then there exists a linear-time algorithm to check $\exists X : |X| \leq p \land G[X] \models \phi$

Idea: find low-treedepth coloring with p + 1 colors, check every combination of $\leq p$ using Courcelle's theorem.

First Order Model checking, light

Theorem (Nešetřil, Ossana de Mendez)

Let C be a class of bounded expansion and p a fixed integer. Let ϕ be first-order sentence. Then there exists a linear-time algorithm to check $\exists X : |X| \leq p \land G[X] \models \phi$

Idea: find low-treedepth coloring with p + 1 colors, check every combination of $\leq p$ using Courcelle's theorem.

Uses: check whether a fixed graph H is a subgraph / induced subgraph of another graph G in linear time.

First Order Model checking, hardcore

Theorem (Dvořák, Kral, Thomas '10, Grohe, Kreutzer '11) Let C be a class of bounded expansion and ϕ a FO sentence. For $G \in C$ one can decide in linear time whether $G \models \phi$.

First Order Model checking, hardcore

Theorem (Dvořák, Kral, Thomas '10, Grohe, Kreutzer '11) Let C be a class of bounded expansion and ϕ a FO sentence. For $G \in C$ one can decide in linear time whether $G \models \phi$.

• INDEPENDENT SET, CLIQUE, DOMINATING SET etc. solvable in fpt time

First Order Model checking, hardcore

Theorem (Dvořák, Kral, Thomas '10, Grohe, Kreutzer '11) Let C be a class of bounded expansion and ϕ a FO sentence. For $G \in C$ one can decide in linear time whether $G \models \phi$.

- INDEPENDENT SET, CLIQUE, DOMINATING SET etc. solvable in fpt time
- Many variants of local search can be expressed in FO
- ⇒ Improvement steps in fpt-time with linear dependence on input size

Continuation of previous meta-results on planar, bounded genus, *H*-minor-free and *H*-topological minor-free graphs.

 First problem: natural parameters too strong for many problems, e.g. a linear kernel for FEEDBACK VERTEX SET would imply the same for general graphs which in turn implies coNP ⊆ NP/poly (important trick: subdividing the edges of a graph |G| times yields a graph with low grad!)

- First problem: natural parameters too strong for many problems, e.g. a linear kernel for FEEDBACK VERTEX SET would imply the same for general graphs which in turn implies coNP ⊆ NP/poly (important trick: subdividing the edges of a graph |G| times yields a graph with low grad!)
- Second problem: preserving the graph class during reduction rules (protrusions replacement)

- First problem: natural parameters too strong for many problems, e.g. a linear kernel for FEEDBACK VERTEX SET would imply the same for general graphs which in turn implies coNP ⊆ NP/poly (important trick: subdividing the edges of a graph |G| times yields a graph with low grad!)
- Second problem: preserving the graph class during reduction rules (protrusions replacement)
- \Rightarrow Treedepth-modulator (stronger than fvs, weaker than vc)

- First problem: natural parameters too strong for many problems, e.g. a linear kernel for FEEDBACK VERTEX SET would imply the same for general graphs which in turn implies coNP ⊆ NP/poly (important trick: subdividing the edges of a graph |G| times yields a graph with low grad!)
- Second problem: preserving the graph class during reduction rules (protrusions replacement)
- \Rightarrow Treedepth-modulator (stronger than fvs, weaker than vc)
 - Solves first problem: not closed under edge subdivision

- First problem: natural parameters too strong for many problems, e.g. a linear kernel for FEEDBACK VERTEX SET would imply the same for general graphs which in turn implies coNP ⊆ NP/poly (important trick: subdividing the edges of a graph |G| times yields a graph with low grad!)
- Second problem: preserving the graph class during reduction rules (protrusions replacement)
- \Rightarrow Treedepth-modulator (stronger than fvs, weaker than vc)
 - Solves first problem: not closed under edge subdivision
 - Solves second problem: WQO of bounded-treedepth graphs means we can replace protrusions by one of their subgraphs (We thus restrict ourselves to hereditary graph classes)

Proof sketch

Conclusion

Graphs of bounded expansion already have a rich theory that seems suited to develop nice algorithms! Open questions:
• Are there better algorithms for graphs of bounded treedepth than the ones existing for bounded pathwidth?

- Are there better algorithms for graphs of bounded treedepth than the ones existing for bounded pathwidth?
- Can we get a good heuristic for treedepth?

- Are there better algorithms for graphs of bounded treedepth than the ones existing for bounded pathwidth?
- Can we get a good heuristic for treedepth?
- Are o(k)-centered-colorings useful for parameterized problems? How much time do we really need to compute them? Approximation?

- Are there better algorithms for graphs of bounded treedepth than the ones existing for bounded pathwidth?
- Can we get a good heuristic for treedepth?
- Are o(k)-centered-colorings useful for parameterized problems? How much time do we really need to compute them? Approximation?
- Can we get a polynomial kernel for DOMINATING SET? (Something better than the one obtained through degeneracy!)

- Are there better algorithms for graphs of bounded treedepth than the ones existing for bounded pathwidth?
- Can we get a good heuristic for treedepth?
- Are o(k)-centered-colorings useful for parameterized problems? How much time do we really need to compute them? Approximation?
- Can we get a polynomial kernel for DOMINATING SET? (Something better than the one obtained through degeneracy!)
- Can the notion of "scattered set" be extended to problems other than DOMINATING SET in a sensible fashion such that Dvořák's algorithm still works?

- Are there better algorithms for graphs of bounded treedepth than the ones existing for bounded pathwidth?
- Can we get a good heuristic for treedepth?
- Are o(k)-centered-colorings useful for parameterized problems? How much time do we really need to compute them? Approximation?
- Can we get a polynomial kernel for DOMINATING SET? (Something better than the one obtained through degeneracy!)
- Can the notion of "scattered set" be extended to problems other than DOMINATING SET in a sensible fashion such that Dvořák's algorithm still works?

- Are there better algorithms for graphs of bounded treedepth than the ones existing for bounded pathwidth?
- Can we get a good heuristic for treedepth?
- Are o(k)-centered-colorings useful for parameterized problems? How much time do we really need to compute them? Approximation?
- Can we get a polynomial kernel for DOMINATING SET? (Something better than the one obtained through degeneracy!)
- Can the notion of "scattered set" be extended to problems other than DOMINATING SET in a sensible fashion such that Dvořák's algorithm still works?

Thanks!