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Treedepth




A strange width measure...

I “Why should this be useful?”
—common first reaction to treedepth

A graph G has treedepth at most d if
e (G is a subgraph the closure of a tree (forest) of height < d
e (G has a centered coloring with d colors
e G has a ranked coloring with d colors

e (G is the subgraph of a ftrivially perfect graph with clique
size at most d






Interesting tidbits about treedepth
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Interesting tidbits about treedepth

o Treedepth is subgraph-closed
o tw(G) <pw(G) <Wd(G) -1
« Maximum path length is 214(¢) — 1
— a DFS is a treedepth-decomposition of depth < 21d(&) _ 1
» Minor-closed property (thus in fpt) and MSO-expressible
(thus in fpt, again)
e Graphs of bounded treedepth are WQO under the induced

subgraph relation (Even true if one allows a finite set of vertex
labels)
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Bounded expansion

For a graph G we denote by G v r the set of its r-shallow
minors.

Definition (Grad, Expansion)

For a graph G, the greatest reduced average density is defined
as

_ |[E(H)|
VilG) = A ]

For a graph class G the expansion of G is defined as

Vr(G) = sup V.(G)

A graph class G has bounded expansion if there exists a
function f such that V,.(G) < f(r) forall r € N.
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Graph classes with bounded

expansion
Class f(r)
Planar 3
H-minor-free O(|H|log |H|)
H-top-minor-free  O(|H|?)
d-regular d(d— 1)1
Crossing number ¢ O(y/cr)

G(n,p/n)

a.a.s with some ¢(r, p)




Alternative characterizations

A graph class C has bounded expansion if there exists a
function f such that foreach G € C and eachr ¢ N

e V,.(G) < f(r) (Using top-shallow-minors)
e G admits an r-centered-coloring with < f(r) colors
e (G admits a r-treedepth-coloring with < f(r) colors

e (G has a linear ordering such that the number of
weakly-r-accessible vertices is < f(r)

« For each orientation G, of G with A= (Gy) < f(0) there
exists a transitive fraternal augmentation

@ogélgég...

such that A=(G;) < f(i)



Top-grad

Grads can also be defined via shallow topological minors:
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Top-grad

Grads can also be defined via shallow topological minors:

S _ |[E(H)|
Vi(G) = e 1)

where GVr denotes the set of all »-shallow top minors.

Grad and Topgrad are related as follows:

Vi(G) < V() < 4(4V,(G)) "+’



r-centered-coloring

Vertex-coloring of the graph G such that every connected
subgraph H C G

e either receives more than r colors
« at least one color appears exactly once in H

Graphs classes of bounded expansion are exactly those
classes whose members need only x,(G) < f(r) colors. In
particular

V. (G) < (2r +1) (X;’:ff))

Xr(G) < poly(Var-241/5(G))

where the degree of the polynomial is roughly 22"



r-centered-coloring
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r-treedepth-coloring

Vertex-coloring of the graph G such that every subgraph
induced by ¢ < r colors classes has treedepth at most i.

An r-centered coloring is also an r-treedepth-coloring!
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Transitive fraternal
augmentations

How to calculate r-centered coloring of a graph G whose
expansion is bounded by f?



Transitive fraternal
augmentations

How to calculate r-centered coloring of a graph G whose
expansion is bounded by f?
« Create orientation G of G such that A=(Gg) < f(0)
e Fori<i<r
o Gi:=Gi
o Add transitive edges to G;
e Add fraternal edges to G; such that the fraternal edges
alone are acyclic and the in-degree is minimized

4 Z
Transitive Fraternal



Transitive fraternal
augmentations

How to calculate r-centered coloring of a graph G whose
expansion is bounded by f?
« Create orientation G of G such that A=(Gg) < £(0)
e For1<i<r
o G =G
o Add transitive edges to G;

o Add fraternal edges to G; such that the fraternal edges
alone are acyclic and the in-degree is minimized

One can show that A~ (G;) < f(i), i.e. the coloring number of
the graphs does not increase too much. A proper coloring of
Go(r10gr) Yields an r-centered coloring for G.
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u-v-path of length at most » whose leftmost vertex is w.
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Weak coloring number

Consider linear ordering of the vertices:

u is weakly-r-accessible from v if u < v and there exists a
u-v-path of length at most » whose leftmost vertex is w.

Define B, (v) as the set of all weakly-r-accessible vertices.
Graph classes of bounded expansion are exactly those classes
whose members G satisfy

weol, (G) = ﬂrelléllél max BT (v) < f(r)

In particular,

Vi1 (G) + 1 < weolr(G) < poly(V i1 (G))



Weak coloring number

B, (v) is the set of all vertices left of v which can be reached
from v by a path of length r using nothing left of the target
vertex.

N"(v)




Alternative alternative
characterizations

I “So many choices”
—Dr. Dre

A graph class C has bounded expansion if there exists a
function f such that foreach G € C and eachr €¢ N

* x(Gvr) < f(r)
e (G admits a r-treewidth-coloring with < f(r) colors

A graph class C has bounded expansion if

« there exists a constant ¢ and a strongly topological,
monotone, degree bound graph parameter o such that
CC{G|a(G)<c}



Algorithms



Dvorak’s Algorithm

Constant-factor approximation for -DOMINATING SET
Constant ¢ depends on ¢, expansion

Outputs t-dominating set D and 2t + 1-scattered set S C D
such that |[D| < ¢-|S]

Since for any optimal DS D* it holds that
S| < [D*| < [D] < eS|

the set | D| has quality ratio ¢



Input: A graph G

Calculate an ordering W of G with bounded wcol; ;
D + 0;
S 0;
R+ V(G);
while R # () do
Let v € R be the next vertex according to W;
S+ S'U{v};
D+ DU {7}} U Bgt+1(v);
Remove every vertex t-dominated by D from R;

Output 5’, D;




Input: A graph G

Calculate an ordering W of G with bounded wcol; ;
D + 0;
S 0;
R+ V(G);
while R # () do
Let v € R be the next vertex according to W;
S+ S'U{v};
D+ DU {7}} U Bgt+1(v);
Remove every vertex t-dominated by D from R;

Output 5’, D;

From the algorithm it is apparent that |D| = O(|S’|) and that D
is a dominating set. But S’ is not necessarily 2¢ + 1-scattered.



Making it scattered

Construct 2t + 1-scattered set S C S’ with S" = O(S) as follows
» Create auxiliary graph H = (5’, E’) where zy € F’ if
da(z,y) <2t+1
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Making it scattered

Construct 2t + 1-scattered set S C S’ with S" = O(S) as follows
» Create auxiliary graph H = (5’, E’) where zy € F’ if
da(x,y) <2t+1
» Claim: H is ¢’-degenerate (this we will prove)
— Color with ¢/ + 1 colors and pick largest color class as S



Prove that v has only a constant number of back-neighbours in
H using the original vertex ordering.

e wv € E' e dg(u,v) <2t +1
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Prove that v has only a constant number of back-neighbours in
H using the original vertex ordering.

e wv € E' e dg(u,v) <2t +1
o Takes leftmost vertex 2 on shortest path between u, v in G

e z € By (v) and | By (v)| is a constant!

= Show that x cannot be “shared” with other back-neighbour
of v




Prove that x cannot lie on any path of length 2¢ + 1 from v to
another vertex v’ < v.

e dg(z,v) > t, otherwise x would dominate v and thus v ¢ S’
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Prove that x cannot lie on any path of length 2¢ + 1 from v to
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Prove that x cannot lie on any path of length 2¢ + 1 from v to
another vertex v’ < v.

o dg(z,v) > timplies dg(z,u) <t
e Same holds for «’

e Then x dominates both « and «’, therefore only one of
them can be in &’




Truncated shortest paths

Observe that for vertices =,y with dg(z,y) = t, these vertices
have distance at most 2 in the ¢-th transitive fraternal
augmentation Gj;.



Truncated shortest paths

Observe that for vertices x, y with dg(z,y) = t, these vertices
have distance at most 2 in the ¢-th transitive fraternal
augmentation Gj.

We can easily track the distances these edges bridge!
Therefore we can answer distance-queries for vertex pairs at
distance < t correctly in constant time by consulting an
annotated version of G,. (We can also correctly conclude for all
other pairs that they are further than ¢ apart)



First Order Model checking, light

Theorem (NeSetfil, Ossana de Mendez)

Let C be a class of bounded expansion and p a fixed integer.
Let ¢ be first-order sentence. Then there exists a linear-time
algorithm to check 3X : | X| < pAG[X] E ¢
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First Order Model checking, light

Theorem (NeSetfil, Ossana de Mendez)
Let C be a class of bounded expansion and p a fixed integer.
Let ¢ be first-order sentence. Then there exists a linear-time
algorithm to check 3X : | X| < pAG[X] E ¢

Idea: find low-treedepth coloring with p + 1 colors, check every
combination of < p using Courcelle’s theorem.

Uses: check whether a fixed graph H is a subgraph / induced
subgraph of another graph G in linear time.



First Order Model checking,
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Theorem (Dvorak, Kral, Thomas '10, Grohe, Kreutzer '11)

LetC be a class of bounded expansion and ¢ a FO sentence.
For G € C one can decide in linear time whether G |= ¢.
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First Order Model checking,
hardcore

Theorem (Dvorak, Kral, Thomas '10, Grohe, Kreutzer ’11)

LetC be a class of bounded expansion and ¢ a FO sentence.
For G € C one can decide in linear time whether G |= ¢.

e INDEPENDENT SET, CLIQUE, DOMINATING SET etc.
solvable in fpt time

» Many variants of local search can be expressed in FO

= Improvement steps in fpt-time with linear dependence on
input size



Kernelization

Continuation of previous meta-results on planar, bounded
genus, H-minor-free and H-topological minor-free graphs.

o First problem: natural parameters too strong for many
problems, e.g. a linear kernel for FEEDBACK VERTEX SET
would imply the same for general graphs which in turn
implies coNP C NP/poly (important trick: subdividing the
edges of a graph |G| times yields a graph with low grad!)
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Kernelization

Continuation of previous meta-results on planar, bounded
genus, H-minor-free and H-topological minor-free graphs.

» First problem: natural parameters too strong for many
problems, e.g. a linear kernel for FEEDBACK VERTEX SET
would imply the same for general graphs which in turn
implies coNP C NP/poly (important trick: subdividing the
edges of a graph |G| times yields a graph with low grad!)

» Second problem: preserving the graph class during
reduction rules (protrusions replacement)

= Treedepth-modulator (stronger than fvs, weaker than vc)
« Solves first problem: not closed under edge subdivision

» Solves second problem: WQO of bounded-treedepth
graphs means we can replace protrusions by one of their
subgraphs (We thus restrict ourselves to hereditary graph
classes)



Proof sketch

Find approximate
treedepth-d-modulator

Reduce neighbourhood size

of (G'—X)-components
in X

Reduce size of components
with same neighbours in Y{y
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Graphs of bounded expansion already have a rich theory that
seems suited to develop nice algorithms!
Open questions:

o Are there better algorithms for graphs of bounded
treedepth than the ones existing for bounded pathwidth?

» Can we get a good heuristic for treedepth?

» Are o(k)-centered-colorings useful for parameterized
problems? How much time do we really need to compute
them? Approximation?

e Can we get a polynomial kernel for DOMINATING SET?
(Something better than the one obtained through degeneracy!)

« Can the notion of “scattered set” be extended to problems
other than DOMINATING SET in a sensible fashion such
that Dvorék’s algorithm still works?

Thanks!
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