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Treedepth



A strange width measure...

“Why should this be useful?”
—common first reaction to treedepth

A graph G has treedepth at most d if
• G is a subgraph the closure of a tree (forest) of height ≤ d
• G has a centered coloring with d colors
• G has a ranked coloring with d colors
• G is the subgraph of a trivially perfect graph with clique

size at most d
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Interesting tidbits about treedepth

• Treedepth is subgraph-closed
• tw(G) ≤ pw(G) ≤ td(G)− 1

• Maximum path length is 2td(G) − 1

⇒ a DFS is a treedepth-decomposition of depth ≤ 2td(G) − 1

• Minor-closed property (thus in fpt) and MSO-expressible
(thus in fpt, again)

• Graphs of bounded treedepth are WQO under the induced
subgraph relation (Even true if one allows a finite set of vertex
labels)
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Bounded expansion

For a graph G we denote by GO r the set of its r-shallow
minors.

Definition (Grad, Expansion)
For a graph G, the greatest reduced average density is defined
as

∇r(G) = max
H∈GO r

|E(H)|
|V (H)|

For a graph class G the expansion of G is defined as

∇r(G) = sup
G∈G
∇r(G)

A graph class G has bounded expansion if there exists a
function f such that ∇r(G) ≤ f(r) for all r ∈ N.
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∇r(G) = max
H∈GO r

|E(H)|
|V (H)|

Note that GO 0 ⊆ GO 1 ⊆ . . .

∇0(G) = 1.2 ∇t(G) = 1.25, t ≥ 1

∇1(G) = 1.25
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Graph classes with bounded
expansion

Class f(r)

Planar 3
H-minor-free O(|H| log |H|)
H-top-minor-free O(|H|2)
d-regular d(d− 1)r−1

Crossing number c O(
√
cr)

G(n, p/n) a.a.s with some g(r, p)



Alternative characterizations

A graph class C has bounded expansion if there exists a
function f such that for each G ∈ C and each r ∈ N

• ∇̃r(G) ≤ f(r) (Using top-shallow-minors)

• G admits an r-centered-coloring with ≤ f(r) colors
• G admits a r-treedepth-coloring with ≤ f(r) colors
• G has a linear ordering such that the number of

weakly-r-accessible vertices is ≤ f(r)

• For each orientation ~G0 of G with ∆−(~G0) ≤ f(0) there
exists a transitive fraternal augmentation

~G0 ⊆ ~G1 ⊆ ~G2 . . .

such that ∆−(~Gi) ≤ f(i)



Top-grad

Grads can also be defined via shallow topological minors:

∇̃r(G) = max
H∈GÕr

|E(H)|
|V (H)|

where GÕr denotes the set of all r-shallow top minors.

Grad and Topgrad are related as follows:

∇̃r(G) ≤ ∇r(G) ≤ 4(4∇̃r(G))(r+1)2



Top-grad

Grads can also be defined via shallow topological minors:

∇̃r(G) = max
H∈GÕr
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r-centered-coloring

Vertex-coloring of the graph G such that every connected
subgraph H ⊆ G
• either receives more than r colors
• at least one color appears exactly once in H

Graphs classes of bounded expansion are exactly those
classes whose members need only χr(G) < f(r) colors. In
particular

∇r(G) ≤ (2r + 1)

(
χ2r+2(G)

2r + 2

)
χr(G) ≤ poly(∇̃2r−2+1/2(G))

where the degree of the polynomial is roughly 22
r



r-centered-coloring

3-centered coloring of a grid



r-treedepth-coloring

Vertex-coloring of the graph G such that every subgraph
induced by i < r colors classes has treedepth at most i.

An r-centered coloring is also an r-treedepth-coloring!



r-treedepth-coloring



Transitive fraternal
augmentations

How to calculate r-centered coloring of a graph G whose
expansion is bounded by f?

• Create orientation ~G0 of G such that ∆−(~G0) ≤ f(0)

• For 1 ≤ i ≤ r
• Gi := Gi−1

• Add transitive edges to Gi

• Add fraternal edges to Gi such that the fraternal edges
alone are acyclic and the in-degree is minimized
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Transitive fraternal
augmentations

How to calculate r-centered coloring of a graph G whose
expansion is bounded by f?
• Create orientation ~G0 of G such that ∆−(~G0) ≤ f(0)

• For 1 ≤ i ≤ r
• Gi := Gi−1

• Add transitive edges to Gi

• Add fraternal edges to Gi such that the fraternal edges
alone are acyclic and the in-degree is minimized

One can show that ∆−(~Gi) ≤ f(i), i.e. the coloring number of
the graphs does not increase too much. A proper coloring of
~GO(r log r) yields an r-centered coloring for G.



Weak coloring number
Consider linear ordering of the vertices:

vu

u is weakly-r-accessible from v if u < v and there exists a
u-v-path of length at most r whose leftmost vertex is u.

Define Br(v) as the set of all weakly-r-accessible vertices.
Graph classes of bounded expansion are exactly those classes
whose members G satisfy

wcolr(G) = min
π∈S|G|

max
v∈G

Bπ
r (v) ≤ f(r)

In particular,

∇ r−1
2

(G) + 1 ≤ wcolr(G) ≤ poly(∇ r−1
2

(G))
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Weak coloring number
Br(v) is the set of all vertices left of v which can be reached
from v by a path of length r using nothing left of the target
vertex.

v



Alternative alternative
characterizations

“So many choices”
—Dr. Dre

A graph class C has bounded expansion if there exists a
function f such that for each G ∈ C and each r ∈ N

• χ(GO r) ≤ f(r)

• G admits a r-treewidth-coloring with ≤ f(r) colors

A graph class C has bounded expansion if
• there exists a constant c and a strongly topological,

monotone, degree bound graph parameter α such that
C ⊆ {G | α(G) ≤ c}

• ...



Algorithms



Dvořák’s Algorithm

• Constant-factor approximation for t-Dominating Set
• Constant c depends on t, expansion
• Outputs t-dominating set D and 2t+ 1-scattered set S ⊆ D

such that |D| ≤ c · |S|
• Since for any optimal DS D∗ it holds that

|S| ≤ |D∗| ≤ |D| ≤ c · |S|

the set |D| has quality ratio c



Input: A graph G

Calculate an ordering W of G with bounded wcolt ;
D ← ∅;
S′ ← ∅;
R← V (G);

while R 6= ∅ do
Let v ∈ R be the next vertex according to W ;
S′ ← S′ ∪ {v};
D ← D ∪ {v} ∪B2t+1(v);
Remove every vertex t-dominated by D from R;

Output S′, D;

From the algorithm it is apparent that |D| = O(|S′|) and that D
is a dominating set. But S′ is not necessarily 2t+ 1-scattered.
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Making it scattered

Construct 2t+ 1-scattered set S ⊆ S′ with S′ = O(S) as follows
• Create auxiliary graph H = (S′, E′) where xy ∈ E′ if
dG(x, y) ≤ 2t+ 1

• Claim: H is c′-degenerate (this we will prove)

⇒ Color with c′ + 1 colors and pick largest color class as S
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Prove that v has only a constant number of back-neighbours in
H using the original vertex ordering.
• uv ∈ E′, i.e. dG(u, v) ≤ 2t+ 1

vu



Prove that v has only a constant number of back-neighbours in
H using the original vertex ordering.
• uv ∈ E′, i.e. dG(u, v) ≤ 2t+ 1

• Takes leftmost vertex x on shortest path between u, v in G

vux



Prove that v has only a constant number of back-neighbours in
H using the original vertex ordering.
• uv ∈ E′, i.e. dG(u, v) ≤ 2t+ 1

• Takes leftmost vertex x on shortest path between u, v in G
• x ∈ B2t(v) and |B2t(v)| is a constant!

vux



Prove that v has only a constant number of back-neighbours in
H using the original vertex ordering.
• uv ∈ E′, i.e. dG(u, v) ≤ 2t+ 1

• Takes leftmost vertex x on shortest path between u, v in G
• x ∈ B2t(v) and |B2t(v)| is a constant!
⇒ Show that x cannot be “shared” with other back-neighbour

of v
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Prove that x cannot lie on any path of length 2t + 1 from v to
another vertex u′ < v.
• dG(x, v) > t, otherwise x would dominate v and thus v 6∈ S′

vux



Prove that x cannot lie on any path of length 2t + 1 from v to
another vertex u′ < v.
• dG(x, v) > t implies dG(x, u) ≤ t

vux
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Prove that x cannot lie on any path of length 2t + 1 from v to
another vertex u′ < v.
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Prove that x cannot lie on any path of length 2t + 1 from v to
another vertex u′ < v.
• dG(x, v) > t implies dG(x, u) ≤ t
• Same holds for u′

• Then x dominates both u and u′, therefore only one of
them can be in S′

vux u'



Truncated shortest paths

Observe that for vertices x, y with dG(x, y) = t, these vertices
have distance at most 2 in the t-th transitive fraternal
augmentation ~Gt.

We can easily track the distances these edges bridge!
Therefore we can answer distance-queries for vertex pairs at
distance ≤ t correctly in constant time by consulting an
annotated version of ~Gt. (We can also correctly conclude for all
other pairs that they are further than t apart)
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First Order Model checking, light

Theorem (Nešetřil, Ossana de Mendez)
Let C be a class of bounded expansion and p a fixed integer.
Let φ be first-order sentence. Then there exists a linear-time
algorithm to check ∃X : |X| ≤ p ∧G[X] |= φ

Idea: find low-treedepth coloring with p+ 1 colors, check every
combination of ≤ p using Courcelle’s theorem.

Uses: check whether a fixed graph H is a subgraph / induced
subgraph of another graph G in linear time.
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First Order Model checking,
hardcore

Theorem (Dvořák, Kral, Thomas ’10, Grohe, Kreutzer ’11)
Let C be a class of bounded expansion and φ a FO sentence.
For G ∈ C one can decide in linear time whether G |= φ.

• Independent Set, Clique, Dominating Set etc.
solvable in fpt time

• Many variants of local search can be expressed in FO
⇒ Improvement steps in fpt-time with linear dependence on

input size
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Kernelization
Continuation of previous meta-results on planar, bounded
genus, H-minor-free and H-topological minor-free graphs.
• First problem: natural parameters too strong for many

problems, e.g. a linear kernel for Feedback Vertex Set
would imply the same for general graphs which in turn
implies coNP ⊆ NP/poly (important trick: subdividing the
edges of a graph |G| times yields a graph with low grad!)

• Second problem: preserving the graph class during
reduction rules (protrusions replacement)

⇒ Treedepth-modulator (stronger than fvs, weaker than vc)
• Solves first problem: not closed under edge subdivision
• Solves second problem: WQO of bounded-treedepth

graphs means we can replace protrusions by one of their
subgraphs (We thus restrict ourselves to hereditary graph
classes)
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Proof sketch
Find approximate

treedepth-d-modulator

Reduce neighbourhood size

of   (     )-components

in
Reduce size of components

with same neighbours in  



Conclusion



Graphs of bounded expansion already have a rich theory that
seems suited to develop nice algorithms!
Open questions:

• Are there better algorithms for graphs of bounded
treedepth than the ones existing for bounded pathwidth?

• Can we get a good heuristic for treedepth?
• Are o(k)-centered-colorings useful for parameterized

problems? How much time do we really need to compute
them? Approximation?

• Can we get a polynomial kernel for Dominating Set?
(Something better than the one obtained through degeneracy!)

• Can the notion of “scattered set” be extended to problems
other than Dominating Set in a sensible fashion such
that Dvořák’s algorithm still works?

Thanks!
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