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Fixed parameter tractability and
kernels



Parameterized complexity . . .

. . . deals with decision problems with two components (x,k),
where
• x is the input;
• k is the parameter.

Examples:
• VERTEX COVER: given (G,k), does G have a vertex cover

of size at most k?
• SUBGRAPH ISOMORPHISM: given (G,H), is H ⊆ G?
• LONGEST CYCLE: given (G, l), does G contain a cycle of

length at least l?



Fixed-parameter tractability
Running times are measured wrt both x and k.
• 2k · |x|O(1) vs. |x|O(k).
• Only polynomial dependency on |x|, but arbitrary for k.

Definition
A parameterized problem is fixed-parameter tractable (fpt) if
there is an algorithm with running time O(f(k) · |x|c), where f is
a function of k alone and c is a constant.
A closely related concept: problem kernels.
• in polynomial time strip away easy parts of the input to

expose the hard part—the kernel.
• More precise: let L ⊆ Σ∗ × N be a parameterized problem

(x,k)
poly time−−−−−→ (x ′,k ′)

such that |x ′|,k ′ 6 f(k).
and (x,k) ∈ L⇔ (x ′,k ′) ∈ L

• f is the kernel size, a kernel is polynomial if f ∈ O(nc)



Kernelization

• problem is fixed-parameter tractable iff it has a
kernelization algorithm

• kernel size usually exponential or worse.
• Goal: to obtain polynomial or even linear kernels.

Basic technique of kernelization:
Devise reduction rules that preserve equivalence of instances;
apply exhaustively, prove kernel size.



Sparse graph classes



Why sparse classes?

• Many hard problems become fpt on sparse classes of
graphs

• DOMINATING SET on bounded-genus graphs
• INDEPENDENT SET on planar graphs
• MSO-definable problems on bounded-treewidth graphs

• Meta-results showed that a large class of problems admit
linear kernels on certain sparse classes

• No polynomially sized kernels on general graphs for many
problems (under certain complexity-theoretic assumptions)

• In particular: “connectivity”-problems ( LONGEST PATH,
DISJOINT PATHS, CONNECTED VERTEX COVER, STEINER

TREE, . . . )



What kind of sparseness?

Only requesting a “linear number of edges” not particularly
useful.

We need graph classes that are uniformely∗ sparse.

Definition (d-degenerate)
A graph class C is d-degenerate if for every G ∈ C, every
subgraph of G contains a vertex of degree 6 d.



Definition (d-degenerate)
A graph class C is d-degenerate if for every G ∈ C, every
subgraph of G contains a vertex of degree 6 d.

Equivalent characterizations:
• G can be erased by succesive deletion of vertices of

degree 6 d

• There exists an ordering of the vertices of G such that
every vertex has at most d neighbours to its right

• The edges of G can be oriented such that every vertex has
out-degree at most d

Useful properties:
• |E(G)| 6 d|V(G)|, therefore average degree 6 2d
• χ(G) 6 d+ 1 and ω(G) 6 d+ 1
• At most 2d|V(G)| cliques
• Hereditary



Degeneracy is a good start, but is not strong enough for
general results: we can make any graph degenerate by
subdividing its edges a lot.

A lot of important problems are invariant under this operation.

FEEDBACK VERTEX SET, HAMILTONIAN PATH, TREEWIDTH,
MINIMUM DEGREE SPANNING TREE, MAXIMUM CUT

(under various parameterizations)

Additionally: DOMINATING SET has no polynomial kernel on
d-degenerate graphs

We need structurally∗ sparse classes.
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Minors

• Minor: take subgraph, contract vertex sets inducing
connected subgraphs (branch sets)

• Topological minor: take subgraph, contract vertex-disjoint
two-paths between nail vertices

• Characterize graph class by excluding a fixed graph as a
(top.) minor



Overview of meta-results

Linear kernels in structurally∗ sparse classes
• Framework for planar graphs

Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar
graphs

• Meta-result for graphs of bounded genus
Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
Kernelization

• Meta-result for graphs excluding a fixed graph as a minor
Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels

• Meta-results for graphs excluding a fixed graph as a
topological minor
Kim, Langer, Paul, R., Rossmanith, Sau, and Sikdar: Linear kernels and
single-exponential algorithms via protrusion decompositions



Trade-off: sparseness vs.
problem requirements
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More minors

• Shallow minor at depth r: branch-sets have diameter 6 r

• Shallow top. minor at depth r: paths have length 6 2r+ 1
• Class of all shallow (top.) minors at depth r of a graph G

denoted by GO r (G Õ r)



More minors

• Class of all r-depth (top.) minors GO r (G Õ r)
• GO 0 = G Õ 0 contains exactly the subgraphs of G
• {G} ⊆ GO 0 ⊆ GO 1 ⊆ . . . ⊆ GO ∞
• {G} ⊆ G Õ 0 ⊆ G Õ 1 ⊆ . . . ⊆ G Õ ∞
• G Õ i ⊆ GO i



More minors

• Class of all r-depth (top.) minors GO r (G Õ r)
• Natural extension to classes of graphs:

C O r =
⋃

G∈C

GO r

• C Õ r analogous



Grad, bounded expansion

Introduced by Ossana de Mendez and Nešetřil, encompasses
many sparse graph classes. (Most facts and notations taken from
Nešetřil, Ossana de Mendez, Wood: Characterisations and examples
of graph classes with bounded expansion)

Definition (Greatest reduced average density at depth r)

∇r(C) = sup
G∈C O r

|E(G)|

|V(G)|

• Define top-grad ∇̃r(C) analogously via Õ

• Set ∇r(G) := ∇r({G}) and ∇̃r(G) := ∇̃r({G})

• ∇0(C) 6 ∇1(C) 6 . . . 6 ∇∞(C) (same for ∇̃)



• C has bounded expansion iff ∇r(C) < f(r) for some
function f

• C excludes a fixed minor iff f is bounded by constant
• ∇i(C) = ∇0(C O i) (same for ∇̃)
• 2∇0(G) is precisely the degeneracy of G:

2∇0(G) = 2 sup
H∈G O 0

|E(G)|

|V(G)|
= max

H⊆G

2|E(G)|

|V(G)|

In the following we will look at graph classes C for which
∇1(C) < c for some constant c.



A useful lemma for graphs of
bounded ∇1



Lemma
Let G = (X, Y,E) be a bipartite graph. Let
S = {v ∈ Y | d(v) < 2∇1(G) + 1} be the small-degree vertices in
Y and L = Y \ S the large-degree vertices in Y. Then the
following bounds hold:
• |L| 6 2∇1(G) · |X|

• |{N(v) | v ∈ S}| 6 (22∇1(G) + 1)|X|

Important ingredients for proof:
• A d-degenerate graph has at most d|V | edges and at most

2d|V | cliques
• 2∇0(G) is exactly the degeneracy of a graph G
• ∇1(G) = ∇0(GO 1) < c (by assumption)

i.e. the shallow minors at depth 1 are degenerate



Lemma
Let G = (X, Y,E) be a bipartite graph. Let
S = {v ∈ Y | d(v) < 2∇1(G) + 1} be the small-degree vertices in
Y and L = Y \ S the large-degree vertices in Y. Then the
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How to apply

Definition (Twin vertices)
Vertices u, v in a bipartite graph are twins if N(u) = N(v). The
equivalence classes under the twin relation are called twin
classes.

1 Find bipartition that represents the size of the instance and
has bounded ∇1

2 Make sure one side is small (bounded by parameter)
⇒ By lemma: number of large-degree vertices L is small
⇒ By lemma: number of twin classes in S is small

3 Find reduction rule to bound the size of twin classes in S



(Toy) Examples

Dominating Set
Param. by Vertex Cover

(works also for connected variant)



(Toy) Examples

Longest Cycle
Param. by Vertex Cover



(Toy) Examples

...

Directed Feedback
Vertex Set

Param. by Vertex Cover

possible orientation-classes inside 

each twin class.

Preserve  vertices per orientation-

class, remove the rest.



A real example

Protrusion-decomposition of a graph G excluding some fixed
graph H as a topological minor.
• X is a treewidth-modulator
• Each bag in M witnesses a connected subgraph with many

neighbours in X
• Each Yi, 1 6 i 6 ` has only constantly many neighbours in
Y0 and has constant size



A real example

Lemma applied two times:
1 Bipartition X,W where each vertex in W represents a

small “witness subgraph”
⇒ Bounds size of Y0 in O(|X|)

2 Bipartition Y0,W where each vertex in W represents a
connected component of G− Y0
⇒ Bounds size of ` in O(|X|)

⇒ linear kernel for many problems on H-topological-minor-free
graphs



A quick critical reflection



Kernelization algorithm should be feasible in practice
• Linear time algorithm (sparsity should help)
• Ideally, algorithm is agnostic towards graph class

• Bound dependend on kernel size
• Running time dependend on kernel size
• Probabilistic kernel: success probability

• Care for constants: replace heavy weaponry of big results
by hand-crafted reduction rules



Conclusion



• Important frontier for kernels in sparse graphs are graphs
of bounded expansion

• Many tools already available:
• Low tree-depth coloring
• Weak k-colorings & co. (Dvořák)
• p-centered coloring
• quasi-wideness

• But: must be made applicable for kernelization
• Previous results not generalizable: subdivision-invariant

problems as hard as in general graphs



• Structurally∗ sparse graph classes enable linear kernels
even for otherwise hard problems using
treewidth-t-modulators

• Bounded ∇1 yields (somewhat trivial) kernels using vertex
covers = treewidth-zero modulator

• Tree-depth a better candidate?

Is there an interesting combination of some notion of
sparseness coupled with a parameter weaker than vertex cover
that still yields polynomial/linear kernels for a large class of
problems?

Thanks!



Appendix: Protrusion anatomy

Definition
X ⊆ V(G) is a t-protrusion if

1 |∂(X)| = |N(X) \ X| 6 t (small boundary)

2 tw(G[X]) 6 t (small treewidth)



Appendix: Protrusion reduction

We want to replace a large protrusion by a smaller gadget.
1 Requires that the problem has finite integer index
2 The gadgets can always be chosen such that the

parameter does not increase
3 This is the only reduction

Caveat: only constantly-sized protrusions can be replaced (if no
further restrictions are made), but in a large protrusion such a
structure is always present.
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