Kernels in sparse graph classes

Felix Reidl, Somnath Sikdar

Lehr- und Forschungsgebiet Theoretische Informatik

RWTHAACHEN

Working Seminar on Formal Models, Discrete Structures, and Algorithms 2012

Contents

Fixed parameter tractability and kernels

Sparse graph classes

A useful lemma

Conclusion

Fixed parameter tractability and kernels

Parameterized complexity ...

 \ldots deals with decision problems with two components $(\boldsymbol{x},\boldsymbol{k}),$ where

- x is the input;
- k is the parameter.
- Examples:
 - VERTEX COVER: given (G, k), does G have a vertex cover of size at most k?
 - SUBGRAPH ISOMORPHISM: given (G, H), is $H \subseteq G$?
 - LONGEST CYCLE: given (G, l), does G contain a cycle of length at least l?

Fixed-parameter tractability

Running times are measured wrt both x and k.

- $2^k \cdot |x|^{O(1)}$ vs. $|x|^{O(k)}$.
- Only polynomial dependency on |x|, but arbitrary for k.

Definition

A parameterized problem is fixed-parameter tractable (fpt) if there is an algorithm with running time $O(f(k) \cdot |x|^c)$, where f is a function of k alone and c is a constant.

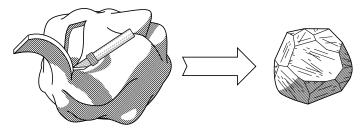
A closely related concept: problem kernels.

- in polynomial time strip away easy parts of the input to expose the hard part—the kernel.
- More precise: let $L \subseteq \Sigma^* \times \mathbb{N}$ be a parameterized problem

$$\begin{split} (x,k) & \xrightarrow{\text{poly time}} (x',k') \\ \text{such that } |x'|,k' \leqslant f(k). \\ & \text{and } (x,k) \in L \Leftrightarrow (x',k') \in L \end{split}$$

• f is the kernel size, a kernel is polynomial if $f \in O(n^c)$

Kernelization



- problem is fixed-parameter tractable iff it has a kernelization algorithm
- kernel size usually exponential or worse.
- Goal: to obtain polynomial or even linear kernels.

Basic technique of kernelization:

Devise reduction rules that preserve equivalence of instances; apply exhaustively, prove kernel size.

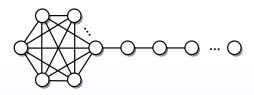
Sparse graph classes

Why sparse classes?

- Many hard problems become fpt on sparse classes of graphs
 - DOMINATING SET on bounded-genus graphs
 - INDEPENDENT SET on planar graphs
 - MSO-definable problems on bounded-treewidth graphs
- Meta-results showed that a large class of problems admit linear kernels on certain sparse classes
- No polynomially sized kernels on general graphs for many problems (under certain complexity-theoretic assumptions)
- In particular: "connectivity"-problems (LONGEST PATH, DISJOINT PATHS, CONNECTED VERTEX COVER, STEINER TREE, ...)

What kind of sparseness?

Only requesting a "linear number of edges" not particularly useful.



We need graph classes that are uniformely* sparse.

Definition (d-degenerate)

A graph class C is d-degenerate if for every $G \in C$, every subgraph of G contains a vertex of degree $\leq d$.

Definition (d-degenerate)

A graph class \mathfrak{C} is d-degenerate if for every $G \in \mathfrak{C}$, every subgraph of G contains a vertex of degree $\leqslant d$.

Equivalent characterizations:

- G can be erased by succesive deletion of vertices of degree $\leqslant d$
- There exists an ordering of the vertices of G such that every vertex has at most d neighbours to its right
- The edges of G can be oriented such that every vertex has out-degree at most d

Useful properties:

- $|E(G)| \leq d|V(G)|$, therefore average degree $\leq 2d$
- $\chi(G) \leqslant d + 1$ and $\omega(G) \leqslant d + 1$
- At most 2^d|V(G)| cliques
- Hereditary

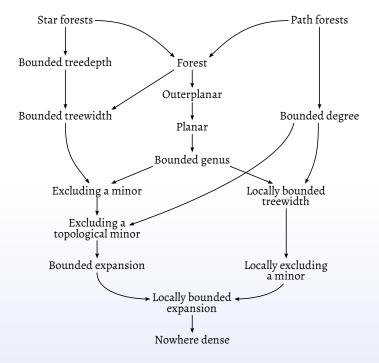
Degeneracy is a good start, but is not strong enough for general results: we can make any graph degenerate by subdividing its edges a lot.

A lot of important problems are invariant under this operation.

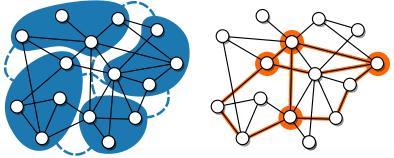
FEEDBACK VERTEX SET, HAMILTONIAN PATH, TREEWIDTH, MINIMUM DEGREE SPANNING TREE, MAXIMUM CUT (under various parameterizations)

Additionally: DOMINATING SET has no polynomial kernel on d-degenerate graphs

We need structurally* sparse classes.



Minors



- Minor: take subgraph, contract vertex sets inducing connected subgraphs (branch sets)
- Topological minor: take subgraph, contract vertex-disjoint two-paths between nail vertices
- Characterize graph class by excluding a fixed graph as a (top.) minor

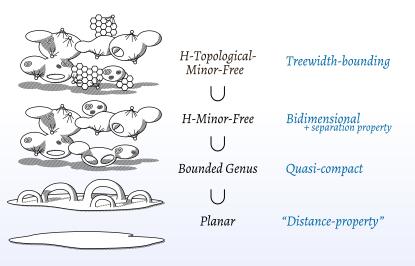
Overview of meta-results

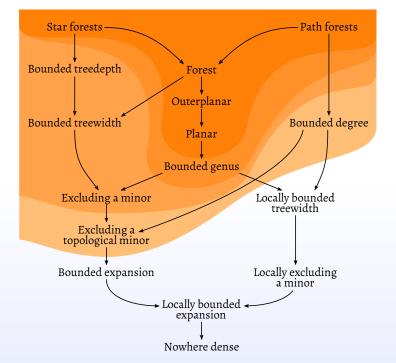
Linear kernels in structurally* sparse classes

- Framework for planar graphs Guo and Niedermeier: Linear problem kernels for NP-hard problems on planar graphs
- Meta-result for graphs of bounded genus
 Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta)
 Kernelization
- Meta-result for graphs excluding a fixed graph as a minor Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels
- Meta-results for graphs excluding a fixed graph as a topological minor

Kim, Langer, Paul, R., Rossmanith, Sau, and Sikdar: Linear kernels and single-exponential algorithms via protrusion decompositions

Trade-off: sparseness vs. problem requirements

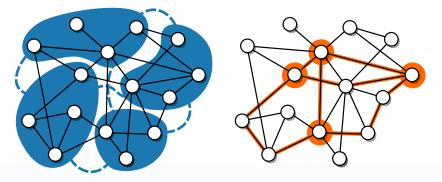




More minors

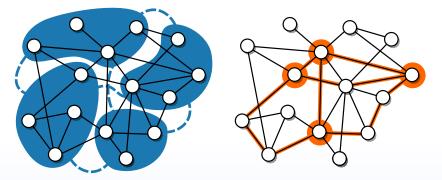
- Shallow minor at depth r: branch-sets have diameter $\leqslant r$
- Shallow top. minor at depth r: paths have length $\leqslant 2r+1$
- Class of all shallow (top.) minors at depth r of a graph G denoted by G ⊽ r (G ⊽ r)

More minors



- Class of all r-depth (top.) minors $G \triangledown r$ ($G \tilde{\triangledown} r$)
- $G \triangledown \mathbf{0} = G \tilde{\triangledown} \mathbf{0}$ contains exactly the subgraphs of G
- $\bullet \ \{G\} \subseteq G \ \forall \ \textbf{0} \subseteq G \ \forall \ \textbf{1} \subseteq \ldots \subseteq G \ \forall \ \infty$
- $\bullet \ \{G\} \subseteq G \ \tilde{\triangledown} \ 0 \subseteq G \ \tilde{\triangledown} \ 1 \subseteq \ldots \subseteq G \ \tilde{\triangledown} \ \infty$
- $G \ \tilde{\bigtriangledown} \ \mathfrak{i} \subseteq G \ \triangledown \ \mathfrak{i}$

More minors



- Class of all r-depth (top.) minors $G \bigtriangledown r$ ($G \lor r$)
- Natural extension to classes of graphs:

$$\mathfrak{C} \triangledown \mathfrak{r} = \bigcup_{G \in \mathfrak{C}} G \triangledown \mathfrak{r}$$

• $\mathcal{C} \, \tilde{\nabla} \, r$ analogous

Grad, bounded expansion

Introduced by Ossana de Mendez and Nešetřil, encompasses many sparse graph classes. (Most facts and notations taken from Nešetřil, Ossana de Mendez, Wood: Characterisations and examples of graph classes with bounded expansion)

Definition (Greatest reduced average density at depth r)

$$\nabla_{\mathbf{r}}(\mathfrak{C}) = \sup_{\mathbf{G} \in \mathfrak{C} \, \nabla \, \mathbf{r}} \frac{|\mathbf{E}(\mathbf{G})|}{|\mathbf{V}(\mathbf{G})|}$$

- Define top-grad $\tilde{\nabla}_r({\mathfrak C})$ analogously via $\tilde{\triangledown}$
- Set $\nabla_r(G) := \nabla_r(\{G\})$ and $\tilde{\nabla}_r(G) := \tilde{\nabla}_r(\{G\})$
- $\nabla_0(\mathcal{C}) \leqslant \nabla_1(\mathcal{C}) \leqslant \ldots \leqslant \nabla_\infty(\mathcal{C})$ (same for $\tilde{\nabla}$)

- ${\mathfrak C}$ has bounded expansion iff $\nabla_r({\mathfrak C}) < f(r)$ for some function f
- C excludes a fixed minor iff f is bounded by constant
- $\nabla_i(\mathfrak{C}) = \nabla_0(\mathfrak{C} \triangledown \mathfrak{i})$ (same for $\tilde{\nabla}$)
- 2∇₀(G) is precisely the degeneracy of G:

$$2\nabla_{\mathbf{0}}(G) = 2 \sup_{H \in G \ \forall \ \mathbf{0}} \frac{|E(G)|}{|V(G)|} = \max_{H \subseteq G} \frac{2|E(G)|}{|V(G)|}$$

In the following we will look at graph classes \mathcal{C} for which $\nabla_1(\mathcal{C}) < c$ for some constant c.

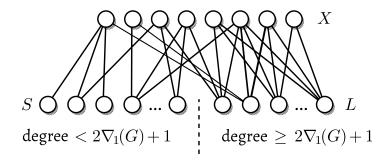
A useful lemma for graphs of bounded ∇_1

Lemma Let G = (X, Y, E) be a bipartite graph. Let $S = \{v \in Y \mid d(v) < 2\nabla_1(G) + 1\}$ be the small-degree vertices in Y and $L = Y \setminus S$ the large-degree vertices in Y. Then the following bounds hold:

- $|L| \leqslant 2\nabla_1(G) \cdot |X|$
- $\bullet \ |\{N(\nu) \mid \nu \in S\}| \leqslant (2^{2\nabla_1(\,G\,)}+1)|X|$

Important ingredients for proof:

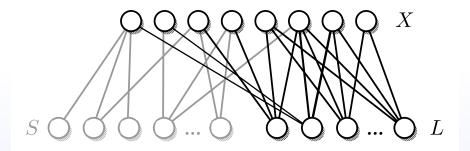
- A d-degenerate graph has at most d|V| edges and at most $2^d|V|$ cliques
- $2\nabla_0(G)$ is exactly the degeneracy of a graph G
- ∇₁(G) = ∇₀(G ∇ 1) < c (by assumption)
 i.e. the shallow minors at depth 1 are degenerate

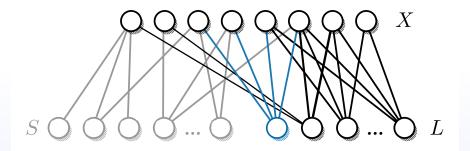


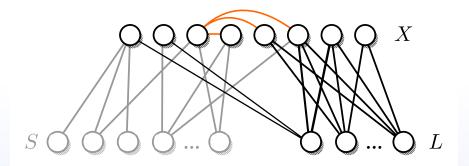
Lemma

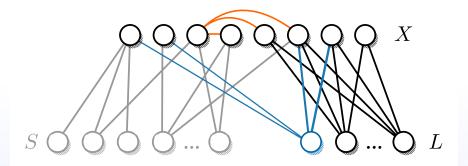
Let G = (X, Y, E) be a bipartite graph. Let $S = \{v \in Y \mid d(v) < 2\nabla_1(G) + 1\}$ be the small-degree vertices in Y and $L = Y \setminus S$ the large-degree vertices in Y. Then the following bounds hold:

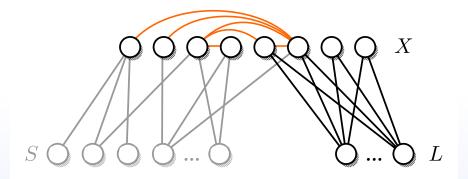
- $|L| \leq 2\nabla_1(G) \cdot |X|$
- $|\{N(\nu) \mid \nu \in S\}| \leqslant (2^{2\nabla_1(G)} + 1)|X|$

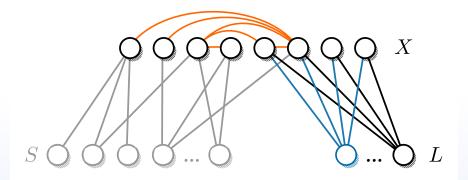


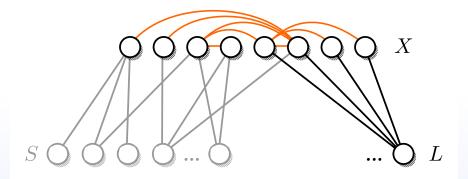


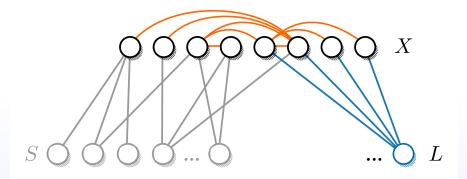


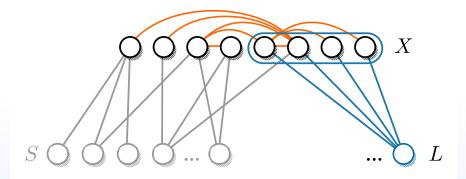


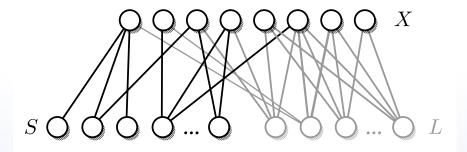


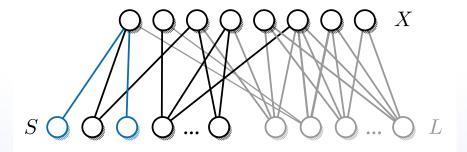


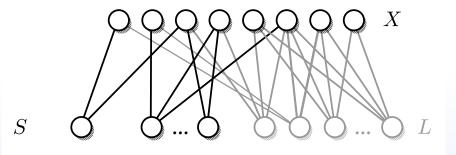


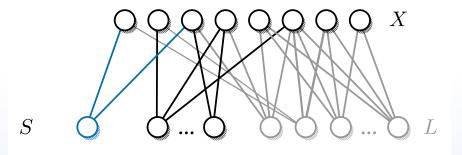


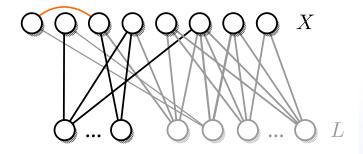


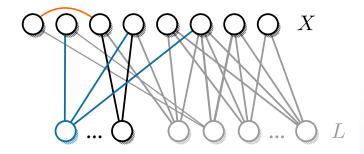


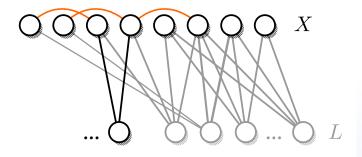


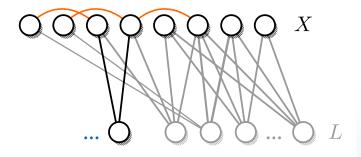


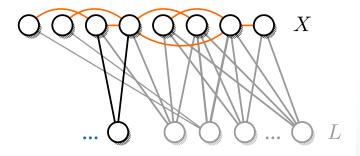


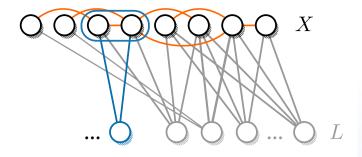












How to apply

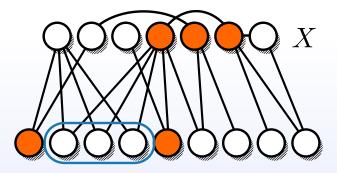
Definition (Twin vertices)

Vertices u, v in a bipartite graph are twins if N(u) = N(v). The equivalence classes under the twin relation are called twin classes.

- **()** Find bipartition that represents the size of the instance and has bounded ∇_1
- 2 Make sure one side is small (bounded by parameter)
 - \Rightarrow By lemma: number of large-degree vertices L is small
 - \Rightarrow By lemma: number of twin classes in S is small
- S Find reduction rule to bound the size of twin classes in S

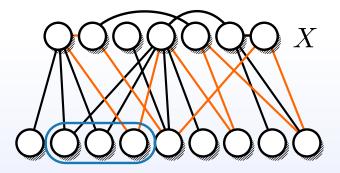
(Toy) Examples

DOMINATING SET PARAM. BY VERTEX COVER (works also for connected variant)



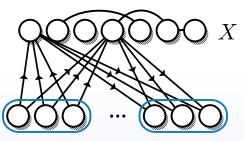
(Toy) Examples

LONGEST CYCLE Param. by Vertex Cover



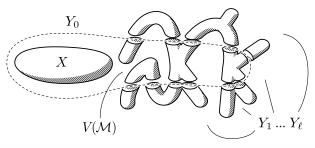
(Toy) Examples

DIRECTED FEEDBACK VERTEX SET Param. by Vertex Cover



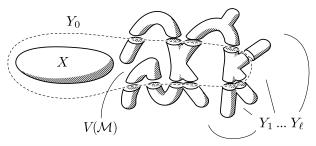
 $2^{2\nabla_1(G)}$ possible orientation-classes inside each twin class.

Preserve $2\binom{2\nabla_1(G)}{2}$ vertices per orientation-class, remove the rest.



Protrusion-decomposition of a graph G excluding some fixed graph H as a topological minor.

- X is a treewidth-modulator
- Each bag in ${\mathcal M}$ witnesses a connected subgraph with many neighbours in X
- Each $Y_i, 1 \leqslant i \leqslant \ell$ has only constantly many neighbours in Y_0 and has constant size



Lemma applied two times:

Bipartition X, W where each vertex in W represents a small "witness subgraph"

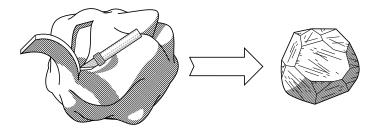
 \Rightarrow Bounds size of Y₀ in O(|X|)

2 Bipartition Y_0 , W where each vertex in W represents a connected component of $G - Y_0$

 \Rightarrow Bounds size of ℓ in O(|X|)

 \Rightarrow linear kernel for many problems on H-topological-minor-free graphs

A quick critical reflection



Kernelization algorithm should be feasible in practice

- Linear time algorithm (sparsity should help)
- Ideally, algorithm is agnostic towards graph class
 - Bound dependend on kernel size
 - Running time dependend on kernel size
 - Probabilistic kernel: success probability
- Care for constants: replace heavy weaponry of big results by hand-crafted reduction rules

Conclusion

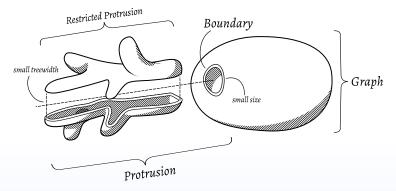
- Important frontier for kernels in sparse graphs are graphs of bounded expansion
- Many tools already available:
 - Low tree-depth coloring
 - Weak k-colorings & co. (Dvořák)
 - p-centered coloring
 - quasi-wideness
- But: must be made applicable for kernelization
- Previous results not generalizable: subdivision-invariant problems as hard as in general graphs

- Structurally* sparse graph classes enable linear kernels even for otherwise hard problems using treewidth-t-modulators
- Bounded ∇₁ yields (somewhat trivial) kernels using vertex covers = treewidth-zero modulator
- Tree-depth a better candidate?

Is there an interesting combination of some notion of sparseness coupled with a parameter weaker than vertex cover that still yields polynomial/linear kernels for a large class of problems?

Thanks!

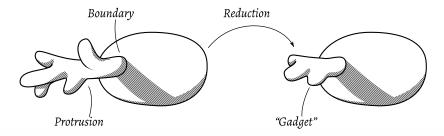
Appendix: Protrusion anatomy



Definition $X \subseteq V(G)$ is a t-protrusion if (1) $|\partial(X)| = |N(X) \setminus X| \le t$ (2) tw(G[X]) $\le t$

(small boundary) (small treewidth)

Appendix: Protrusion reduction



We want to replace a large protrusion by a smaller gadget.

- Requires that the problem has finite integer index
- The gadgets can always be chosen such that the parameter does not increase
- This is the only reduction

Caveat: only constantly-sized protrusions can be replaced (if no further restrictions are made), but in a large protrusion such a structure is always present.