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Preface
The following contains results from the following papers, hence
the respective co-authors deserve credit:
• Structural sparsity of complex networks: Bounded expansion in random

models and real-world graphs.
Erik D. Demaine, FR, P. Rossmanith, F. Sánchez Villaamil, S. Sikdar,
and B. D. Sullivan.

• Hyperbolicity, degeneracy, and expansion of random intersectiongraphs.
M. Farrel, T. D. Goodrich, N. Lemons, FR, F. Sánchez Villaamil, and
B. D. Sullivan.

• Kernelization using structural parameters on sparse graph classes.
J. Gajarský, P. Hliněný, J. Obdržálek, S. Ordyniak, FR, P. Rossmanith,
F. Sánchez Villaamil, and S. Sikdar.

• Kernelization and sparseness: the case of dominating set.
P. G. Drange, M. S. Dregi, F. V. Fomin, S. Kreutzer, D. Lokshtanov,
M. Pilipczuk, M. Pilipczuk, FR, S. Saurabh, F. Sánchez Villaamil, and
S. Sikdar.

The whole story can (soon) be found in my thesis :)



My motivation
• We have huge amounts of network data from various fields

• Friendships, collaborations, face-to-face interaction,...
• Protein-protein interaction, food webs, brain networks,...
• Communication patterns, transportation, ...

• We have a lot of algorithmic questions regarding such
data, e.g., motif discovery, centrality of members,
propagation of information or diseases.

• We know—empirically—that these networks are sparse...
...and sparse graphs have good algorithmic properties!

The perfect playground for sparse graph theory!
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The Programme

1 Bridge the gap by identifying a notion of structural
sparseness that applies to complex networks.

2 Develop algorithmic tools for network related problems.
3 Show experimentally that the above is useful in practice.
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The Programme

1 Bridge the gap by identifying a notion of structural
sparseness that applies to complex networks.

• Many notions of sparseness (e.g. planar) too strict!
• How to prove sparseness for complex networks?

2 Develop algorithmic tools for network related problems.
• Unclear what problems are interesting.

3 Show experimentally that the above is useful in practice.
• Show that structural sparseness appears in the real world.
• Show that algorithms can compete with known approaches.



Complex Networks: Examples



Southern Women
Davis et al., 1930

18 women
14 events over 9 month



Yeast protein-protein interaction
2361 vertices
Average degree of ∼ 3



Western US power grid
4941 vertices
Average degree of ∼ 2.7



Call graph of a Java program
724 vertices
Average degree of ∼ 1.4



Neural network of C. elegans
297 vertices, average degree of ∼ 7.7



Network models





Erdős-Rényi
G(n, p): n-vertex graph in which every edge is present with
probability p. For sparse graphs, we want np = O(1).

• Well-understood
• Simple model
• Clustering ∼ p

• Degree distribution
too symmetric and
concentrated



Degree distributions

0 20 40 60 80 100 120 140
Degree

0

500

1000

1500

2000
Fr

eq
ue

nc
y

Ca-HepPh
Erdos-Renyi
Diseasome
Netscience
Codeminer

Power law d−γ Power law w/ cutoff d−γe−λd

Exponential e−λd Stretched exponential dβ−1e−λd
β

Gaussian exp(− (d−µ)2
2σ2 ) Log-normal d−1 exp(− (log d−µ)2

2σ2 )



Chung-Lu / Configuration model
Fix a degree-distribution. Create a degree sequence d1, . . . , dn
for n vertices. Now connect each pair of vertices u, v with
probability dudv/

∑
i di independently at random.

(Configuration model slightly different)

• Simple model

• Very flexible

• Clustering depends on
distribution
(can vanish)



Structural sparseness





Bounded expansion

A graph class has bounded expansion if the density of its
minors only depends on their depth.



Bounded expansion:
Robustness

Classes of bounded expansion are closed? under
• Taking shallow minors/immersions (in particular subgraphs)

• Adding a universal vertex
• Replacing each vertex by a small clique (lexicographic product)

Many other equivalent characterisations besides density of
shallow minors: shallow immersions, weakly linked colourings,
low treedepth colourings, neighbour complexity,...
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Bounded expansion:
Usefulness

Theorem (Dvořák, Král, and Thomas)
First-order model-checking is possible in linear time.

Theorem
DOMINATING SET and r-DOMINATING SET admit linear kernels.

Theorem (Nešetřil, Ossona de Mendez)
Compute short-distance oracle in linear time.

Theorem
Compute oracle for the size of r-neighbourhoods in linear time.

Theorem (Nešetřil, Ossona de Mendez)
Find out how often fixed graph H occurs as a
subgraph/homomorphism in linear time.



Bounded expansion:
Applicable!

Theorem
Let (Dn) be a sparse degree distribution sequence with
tail h(d). Both the configuration model and the Chung–Lu
model, with high probability,
• have bounded expansion for h(d) = Ω(d3+ε),
• are nowhere dense (with unbounded expansion)

for h(d) = Θ(d3+o(1)),
• and are somewhere dense for h(d) = O(d3−ε).



Empirical Sparseness



Closing the gap

In order to claim that our approach is useful in practice we
cannot just rely on theory.

• Graph classes vs. concrete instances
• The bounds given by our proves are enormous.
• Random graph models capture only some aspectes of

complex networks.
• We prove asymptotic bounds.

(although we show fast convergence)
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Distribution tails, aug-aug plots

From theory: if degree distribution has a supercubic tail-bound,
then Chung–Lu/Configuration model is structurally sparse.

1 Fit the degree distribution to plausible distributions and
then decide whether the tail has a supercubic bound.

2 Plot structural sparseness of the network against that of a
random graph? with the same degree distribution.

Crucial: we have sparseness measure for different depths.
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Conclusion
• We show that important models of complex networks have

bounded expansion.
• Besides the known algorithms (first-order model checking!)

we show that relevant problems can be solved faster by
using this fact.

• Our experiments demonstrate that many networks are
structurally sparse.
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