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A B S T R A C T

The field of complex networks has seen a steady growth in the last dec-
ade, fuelled by an ever-growing collection of relational data that our
life in the information age generates. While several structural com-
monalities of complex networks have been observed—e.g. low density,
heavily skewed degree-distributions, or the small world property—so
far no property has been discovered that is algorithmically exploitable
on a broad scale.

Concurrently, the theory of structurally sparse graphs has been re-
volutionised by Robertson and Seymour’s graph minors programme.
Many tools and techniques, developed as ‘by-products’ in the pro-
gramme, have had a tremendous impact on the research of paramet-
rised and approximation algorithms. They in particular enabled the
development of several algorithmic meta-theorems, that is, algorithms
that work for a large spectrum of problems on sparse inputs.

In this thesis, we work towards bringing the field of structural sparse
graphs and the field of complex networks closer together. We identify
two notions of structural sparseness based on the density of shallow
minors as keys for this endeavour: classes of bounded expansion and
nowhere dense classes as introduced by Nešetřil and Ossona de Men-
dez in their seminal work on a robust theory of sparseness. In the
following, we demonstrate that these sparse classes admit efficient al-
gorithms for a huge number of problems, some of which have applic-
ations in domain-specific areas of network science. We further prove
that several fundamental network models exhibit these properties and
demonstrate empirically that this also holds true for a selection of real-
world networks from various domains.

As a result, we can state that the theory of structurally sparse graphs
is applicable to complex networks and, as a corollary, so is the rich
algorithmic toolkit it provides. This connection offers researchers from
both the field of algorithmic graph theory and network science new
approaches, insights, and productive questions.
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Z U S A M M E N FA S S U N G

Durch die stetig wachsende Menge an relationalen Daten, die unser
tägliches Leben im Informationszeitalter erzeugt, hat sich das For-
schungsgebiet der komplexen Netzwerke im letzten Jahrzehnt enorm
entwickelt. Obwohl viele strukturelle Gemeinsamkeiten solcher Netz-
werke bekannt sind—etwa ihre geringe Dichte, die starke Rechtsschie-
fe ihrer Gradverteilung oder das small-world Phänomen—, kannte man
bisher noch keine Eigenschaft, die auf breiter Front algorithmisch nutz-
bar ist.

Parallel dazu hat das Graph-Minoren-Programm von Robertson und
Seymour die Theorie der strukturell dünnen Graphen revolutioniert.
Viele Werkzeuge und Techniken, die als ‚Nebenprodukt‘ im Rah-
men dieses Programms entwickelt wurden, hatten tiefgreifende Aus-
wirkungen auf die Erforschung von parametrisierten und approxim-
ativen Algorithmen. Insbesondere ergmöglichten sie die Entwicklung
mehrerer algorithmischer Metatheoreme, also Algorithmen, die ein gros-
ses Spektrum von Problemen auf strukturell dünnen Eingaben lösen.

Ziel dieser Arbeit ist es, das Forschungsgebiet der strukturell dün-
nen Graphen und das der komplexen Netzwerke näher zusammen-
zubringen. Zwei Varianten von struktureller Dünnheit, basierend auf
der Dichte von seichten Minoren (shallow minors), stellen sich dabei als
Schlüsselkonzepte heraus: die von Nešetřil und Ossona de Mendez
in ihrer wegweisende Arbeit zu einer robusten Definition des Dün-
nheitsbegriffs eingeführten Graphklassen mit beschränkter Expansion
(bounded expansion) und Klassen, die nirgends dicht (nowhere dense)
sind. Im Folgenden wird zum einen dargelegt, dass diese Klassen
strukturell dünner Graphen es erlauben, effiziente Algorithmen für
eine Vielzahl von Problemen zu entwerfen—darunter insbesondere
Probleme, die in Teilgebieten der Netzwerkforschung Anwendung fin-
den. Zum anderen wird bewiesen, dass fundamentale Netzwerkmo-
delle diese strukturellen Eigenschaften innehaben, und empirisch be-
legt, dass dieser Sachverhalt erfolgreich auf konkrete Netzwerke aus
verschiedensten Domänen übertragbar ist.

Somit ist die Theorie der strukturell dünnen Graphen—und damit
insbesondere die Vielzahl der von ihr bereitgestellten algorithmischen
Werkzeuge—tatsächlich auf komplexe Netzwerke anwendbar. Sowohl
die algorithmische Graphentheorie als auch die Netzwerkforschung
erhält aus diesem Brückenschlag neuartige Ansätze, Einsichten und
Fragestellungen.
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P R E FA C E

This thesis has several lines of origins that, told in chronological order,
would be rather chaotic. The result presented herein are strictly not
chronological for this exact reason.

My work began when I joined my Peter Rossmanith’s group in 2011.
Initially, my colleague, Somnath Sikdar, and I set out to find a kernel-
isation algorithm for Chordal Vertex Deletion—a notoriously dif-
ficult problem, even though it is fixed parameter tractable due to a
result by Dániel Marx [179]—by restricting ourselves to sparse graph
classes. We quickly found a solution for planar graphs of bounded de-
gree and tried to generalise it to larger graph classes. Inevitably, our
line of research crossed paths with the meta-kernelisation result by
Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, and Thilikos [23].
After a while, we realised that what we set out to do was already
solved by this result; but it introduced us to the idea of protrusion
replacement. We decided to broaden our scope: our ideas developed
for Chordal Vertex Deletion seemed to work well with the general-
purpose reduction rule provided by the meta-kernelisation framework.
After playing around with the Robertson-Seymour decomposition for
a bit, it became apparent that a subsequent paper by Fomin, Lok-
shtanov, Saurabh, and Thilikos [101] already provided linear kernels
for a large number of problems if the inputs are restricted to classes
excluding a minor. The natural attempt was to extend the result to
the next larger class we were aware of: classes excluding a topolo-
gical minor. We finally succeeded; both by finding the right property
that problems need to satisfy in order to be treatable, and by intro-
ducing the first variation of what is called the twin class lemma in this
thesis. Through a convoluted sequence of events, the original version
of that paper (co-authored with Alexander Langer and Peter Ross-
manith) only exists as a preprint: it was subsumed by our coopera-
tion with Eun Jung Kim, Igansi Sau, and Christophe Paul [156, 157]
which streamlined our techniques and introduced the concept of a pro-
trusion decomposition, an idea we previously used only implicitly. The
focal point of the events that lead up to our joint effort was the Dag-
stuhl Seminar ‘Data Reduction and Problem Kernels’, where Somnath
presented our results. During the subsequent discussions, Dimitrios
Thilikos mentioned bounded expansion classes—a concept I until that
day had never heard of. I tried to extend our result to these classes dur-
ing the seminar, but failed: the twin class lemma simply did not hold in
the generality we needed.

We tried to extend our results again in fall 2012 while visiting Fedor
Fomin at the University of Bergen. After some discussions with Daniel
Lokshtanov, Saket Saurabh, Michał Pilipczuk, Markus Dregi, and Pål
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Drange, we worked out that we cannot possibly obtain a better ker-
nel for Feedback Vertex Set in bounded expansion classes and de-
cided to focused on Dominating Set instead. It would be a problem
that haunted us for almost two years until we finally resolved it; and
the group of people involved had grown to include Marcin Pilipczuk,
Fernando Sánchez Villaamil, and Stefan Kreutzer. But we succeeded
and obtain linear kernels for bounded expansion classes and almost-
linear kernels for nowhere dense classes. The writing of this paper
was, in particular in correspondence with Michał, what made me fi-
nally appreciate working with nowhere dense classes. In our many
visits to Bergen, it was also Fedor and his group who introduced us
to Nešetřil and Ossona de Mendez’ book ‘Sparsity’ that helped shape
my further research.

In parallel, also at the end of 2012, Somnath and I travelled to Mas-
aryk University in Brno, following an invitation by Petr Hliněný. Our
failure in Bergen had made me think: The property of being treewidth
bounding, which we crucially used in our work on classes excluding a
topological minor, simply did not seem to work well with bounded
expansion classes. What if we exchanged treewidth by a different
type of width-measures? While preparing a talk on this issue, I re-
called that Petr had talked about a measure called treedepth in the
Dagstuhl seminar. I worked out that a parametrisation by the vertex
cover number would—rather easily—extend our meta-kernelisation
result to bounded expansion classes and we went to Brno with the
question of whether parametrising by a treedepth modulator might be
the correct way of moving forward. It turned out to work beauti-
fully [114, 115, 116], and along the way we and our co-authors Jakub
Gajarský, Petr Hliněný, Jan Obdržálek, Sebastian Ordyniak, Fernando
Sánchez Villaamil, and Peter Rossmanith found several interesting
ideas of how to improve the meta-kernelisation framework.

I presented this result at the Dagstuhl seminar ‘Bidimensional Struc-
tures: Algorithms, Combinatorics and Logic’ in spring 2013, where I
met Blair Sullivan and Erik Demaine. All three of us had, in some
form or another, pondered whether structural sparseness could be
applied to real-world networks. Blair was primarily working on hy-
perbolicity, Erik—as far as I know—was focused on classes in which
the bidimensionality framework was applicable. We put our heads to-
gether and formulated a rough plan of how to tackle the issue; talking
primarily about network models and how one would go about prov-
ing structural sparseness for them. I introduced the idea of aiming to
show bounded expansion, instead; knowing that Erdős-Rényi graphs
in the sparse regime have this property (as shown by Nešetřil, Ossona
de Mendez, and Wood [193]). Our first ideas—based on the struc-
tural sparseness of Erdős-Rényi graphs—turned out to be viable for
what we now call perturbations of bounded-degree graphs. With a lot
more work put in by us and our co-authors Somnath Sikdar, Fernando
Sánchez Villaamil, and Peter Rossmanith, we collected a seizable body
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of results concerning the structural sparseness of network models, al-
gorithms solving network-specific problems exploiting bounded ex-
pansion, and empirical results on p-centred colourings that suggested
that, at least in some cases, the framework of structural sparseness
seemed applicable in practice [65]. Some of the work has also been
done during the ICERM seminar ‘Towards Efficient Algorithms Ex-
ploiting Graph Structure’, which provided an amazing research en-
vironment. Due to its interstitial nature, the paper underwent many
iterations (for which I have to give Fernando as much credit as I take),
and we are still in the process of finding a good venue to publish it.

The above is the (short) history of how this thesis came into exist-
ence. Specifically, the development of the twin class lemma (Chapter 6)
and the characterisation of structural sparseness of the configuration
model and Chung–Lu random graphs (Chapter 15) are primarily my
work. This is true for many of the smaller results contained in this
thesis as well, in particular, I streamlined many parts of the meta-
kernelisation results in order to obtain a unified presentation. Our
result on the kernelisation of Dominating Set is based a lot on my
work, but the breakthrough was made by Marcin and Michał Pilip-
czuk together with Daniel Lokshtanov who extended it to what is
here called the charging lemma, a technique that paved the way for the
final kernel. In my presentation here of our joint work I have intro-
duced several improvements: the running time to compute the kernel
is now almost linear and its size depends only on measures related
to two-shallow minors (instead of four-shallow minors); a satisfying
improvement given the ‘depth-two’ nature of Dominating Set.

Finally, some of the work in this thesis is novel and has not been pub-
lished. Most of it consist of smaller results that fill small gaps left open
in the framework of structurally sparse graphs. These results enable
us to obtain tighter bounds, the above mentioned improvement for the
Dominating Set kernel is a consequence of it. A rather large piece
of novel work are dtf-augmentations, a variation of transitive-fraternal
augmentations introduced by Nešetřil and Ossona de Mendez [188],
which not only improves the augmentation framework but also pro-
vides the basis for an empirical evaluation of a network’s structural
density (Chapter 16). In order to apply these augmentations properly,
it was necessary to re-prove many known results.
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Part I

S T R U C T U R A L LY S PA R S E G R A P H S :
A R O B U S T N O T I O N

When you ask people, ‘What’s the opposite of fragile?,’ they tend
to say robust, resilient, adaptable, solid, strong. That’s not it.
The opposite of fragile is something that gains from disorder.

— Nassim Nicholas Taleb





1
I N T R O D U C T I O N

The theory of graphs is the fundamental study of relations in their
purest, non-trivial form: binary connections between abstract points.
And as so often in combinatorics, this simple assemblage of trivial ob-
jects results in a dazzlingly rich theory of seemingly endless depths.
We have far progressed beyond Euler’s musings about bridges and
Guthrie’s colourings of maps: graph theory encompasses cuts and sep-
arators, embeddings, decompositions, flows, matchings, random and
extremal graphs, well-quasi-orders, infinite graphs, graph limits, and
so much more. Squaring these facets with algorithmic questions res-
ults in a body of work that cannot be contained in a single area of
research any more.

Let us zoom into that part of the above patchwork that provides
the context for this thesis. First and foremost, we will consider sparse
graphs on the one side and efficient algorithms on the other. Both
terms need further clarification which we will gradually develop by
presenting the motivation for this thesis: the applicability of algorith-
mic frameworks to real-world problems. Big data et al.

The past two decades have propelled us head-first into the inform-
ation age: As Moore’s law and it’s cousins have predicted, in only a
fraction of our specie’s lifetime we have amassed, transmitted, and
processed more data than ever before. Computer science has trans-
formed along this exponential growth curve and brought forth several
frameworks and schools-of-thought to deal with the ‘data deluge’: Par-
allel computation, database theory, data mining, and big data analyt-
ics were all born out of necessity. One important aspect of dealing
with data in the petabyte-age (soon to be exa- or zetabyte) are algo-
rithmic matters, the efficient processing of large data sets. Because our
focus lies on graphs we need to explicate how they relate to big-data
challenges—and for that we have to consider another progeny of the
information age: network science. Network science

Not spear-headed by computer science but by physics and com-
plex system theory, network science is the research of large real-world
graphs. Data sets have been gathered from biology, social sciences, in-
frastructures, and various databases pertaining to movies, scientific
publications, and political affiliations—under the maxim: The domain
does not matter, all networks exhibit the same structure. And indeed,
several observations about real-world graphs seem to hold almost uni-
versally: these graphs are sparse, have a very small diameter, and
while they do contain a good deal of randomness they do not resemble
random graphs (in the sense of Erdős, Rényi, and Gilbert). However,
the silver-bullet approach pursued in the early days of network sci-
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4 1 introduction

ence has not, as hoped, brought forth a grand unifying theory; instead
there is a flurry of observations, models, and results that sometimes
contradict each other. Nonetheless, the gathered data and observations
have inspired a lot of researchers in the last fifteen years to dedicate
their time to networks. Consider the following plot showing the num-
ber of publications per year (not cumulative!) containing the keyword
‘complex network’ in the arxiv and dblp databases.
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’Complex networks’ on arxiv
’Complex networks’ on dblp
’Sparse graph(s)’ on dblp

The interest in complex networks is, to this day, still on a steep as-
cend; in computer science, physics, and other fields. But let us also
consider the third plot: the number of publications mentioning sparse
graphs. Even if we take into consideration the different scales and
publishing cultures of applied and theoretical fields, there is hardly
a ‘booming interest’ in sparse graphs. And that despite the fact that
the last decades have seen immense progress in that field: the work by
Robertson and Seymour has infused the algorithmic theory of sparse
graphs with a plethora of tools and techniques that have been em-
ployed to design a whole spectrum of efficient solutions—be it in the
form of approximation, exact, or parametrised algorithms. This differ-
ence is what motivated me to write this thesis: the gap between an
applied field that works exclusively with sparse graphs and a theory
that provides efficient algorithms for exactly these structures. Regard-
less of the tremendous interest in real-world sparse graphs, the gap
exists: the algorithmic theory of sparse graphs seems to be left out of
the loop. Rephrased as a provocative question: Why are our beautiful
algorithms not used to solve real-world problems?Theory and practice

The first, reflexive, answer is: Because our algorithms are purely
theoretical. And indeed, large polynomial dependencies, astronomical
hidden constants, or non-constructive tools often prevent algorithms
from being practical. That does, however, not mean that such tools
are necessary. From what I can observe, in that part of the algorithms
community I have the pleasure of interacting with, there was and is
always a subset of people who do care about such matters and who
successfully optimise away such blockades—in fact, this ‘race’ of in-
cremental improvements of an algorithm or theorem can be a strong
motivational factor. Moreover, mathematics being ‘pure theory’ has
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not stopped imaginary numbers from being applied in electrical en-
gineering, group theory in quantum mechanics or elliptic curves in
cryptography. And the algorithmic framework we use in this thesis,
parametrised complexity, has in its very core the idea of being funda-
mentally applicable. As one of the fathers of this field, Rod Downey,
put it [72]:

[ . . . ] parameterized complexity is a refined complexity analy-
sis, driven by the idea that in real life data is often given to
us naturally with an underlying structure which we might
profitably exploit.

The multivariate nature of the parametrised approach, in which we
do not measure complexity in only the input size n, but also in a
secondary parameter k which is the ultimate arbiter of tractability and
intractability, enables a refined analysis of hard problems. In doing so,
we can carve out niches of tractability, identifying situations in which
there is hope of finding a solution in reasonable time. Abstract problems

We modify our answer as to why algorithms exploiting sparseness
are not found in practice: if at least sometimes the algorithms are in-
deed applicable, it must be because the problems they solve are simply
too abstract. And of course: we usually deal with idealised problems,
simplified to a point where we can comfortably reason about them.
However, the problems posed in context of networks are often them-
selves idealised. The abstraction from any specific domain automatic-
ally demands it. One of the best examples is the so-called motif count-
ing problem (see Section 14.2): for a given small pattern graph H, we
want to count how often it appears in a large host-graph G. If we addi-
tionally allow the vertices of G to be labelled, we are already dealing
with a problem that has seen great popularity in computational bio-
logy. Not to mention that many algorithms on sparse graphs are not
only applicable to a single problem, but a whole class of problems—we
will mention several such results later on and prove some ourselves.
So not only should some of our algorithms be implementable and rel-
evant to network related questions, the broad algorithmic results avail-
able tell us that a huge class of problems are tractable in sparse classes.
To turn these algorithmic meta-results into practical algorithms is cer-
tainly difficult, but as my former colleague and co-author Alexander
Langer has proved with his work on Courcelle’s theorem, it is pos-
sible [169, 168, 167]. Sparseness vs. structurally

sparseThere is one more factor that could be responsible for the lack
of overlap between complex networks and the algorithmic theory of
sparse graphs: Maybe our assumptions about sparseness are too strict
to be applicable to real-world data. Indeed, we have until now glossed
over an important detail, namely, what we mean by sparse. Complex
networks are sparse in that they have a reasonably low average degree.
In contrast, the algorithmic theory of structurally sparse graphs deals
with stricter notions of sparseness: bounded degree, embeddability on



6 1 introduction

a surface, excluded substructures, etc. Complex networks show little
sign of such strict organisation, mainly due to their inherent random-
ness. We have identified the first real obstacle that might be respons-
ible for the divide between network science and graph theory.Applicability

With the above motivation we can sharpen the notion of applicabil-
ity and put it in a concrete context. The qualitative goal of this thesis
is the answer to a simple question:

“Can the algorithmic tools derived from the theory of
structurally sparse graphs be applied to real-world data?”

Let us deconstruct this question to arrive at a programmatic outline.

1. What notion of sparseness? We need to identify a notion of sparse-
ness that applies to real-world networks. Through the dichotomy
result by Ossona de Mendez and Nešetřil (Chapter 5) regarding
structurally sparse classes we can be certain that either such a no-
tion exists or we have to conclude that complex networks belong
to a structurally dense class.

2. Which algorithmic tools? Next, we need to demonstrate that the
identified notion of sparseness provides enough leverage to build
efficient algorithms. In particular, we are interesting in meta-the-
orems which cover a large range of problems in order to make
headway in the programme.

3. Applied how? Once we have collated an algorithmic toolkit, it is
left to demonstrate that it can be used to solve problems that are
interesting in the context of complex networks.

In particular the first point comes with its own set of problems: since
sparseness is a property of graph classes, we need a method to relate
it to real-world instances. Fortunately, network science has brought
forward a range of random network models for which the question is
well-defined. We further provide empirical evidence that the model we
will base our verdict on replicates the structural density of a selection
of real-world networks from various domains.Solving real problems

There is a step missing in the above programme that would, without
any doubt, demonstrate the applicability of structural sparse theory:
an implementation that, on a set of real-world data, solves a relev-
ant problem from a particular domain. I certainly set out to do so;
however, the other parts of the programme proved to demand consid-
erable time and effort. Solving real-world problems does not happen
by the simple application of a well-designed theoretical algorithm, it
needs to be engineered to optimise resource usage and to use heuristic
short-cuts where possible. Such engineering needs a lot of iterations to
succeed and hence demands a significant amount of time. Moreover,
identifying and solving a domain-relevant problem needs to happen
in cooperation with a domain expert—several publications in the net-
work science literature have fallen short of their promise to have any
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meaningful impact, usually due to the proposed methods simply be-
ing not applicable in the respective domain. For the above reason, such
proof-of-concept implementations have to be postponed. We do, how-
ever, demonstrate that certain algorithmic tools that are broad enough
to promise real-world utility can be designed and engineered to be
applicable; thus providing preparation for this ultimate step.

1.1 organisation and summary of results

This thesis is divided into five parts. In this part, we lay out its cent-
ral ideas and programme, paired with an introduction of the relevant
notation (Chapter 2). Beside a short introduction to parametrised com-
plexity in Section 2.7, we will prove a few basic tools in Section 2.10. Sparse class hierarchy

We then take a tour through the hierarchy of structurally sparse
graph classes and survey important algorithmic results along the way
(Chapter 3). The part ends with the topmost class in the hierarchy,
so-called nowhere dense graph classes and classes that have bounded
expansion (Chapters 4 and 5). Algorithmic toolkit

These classes will be the primary focus of the remainder of the thesis
and we devote the whole second part to them: in Chapter 6 we intro-
duce a variation of shallow minors that proved to be immensely useful.
In Chapter 7 we will use these concepts to re-prove the existence of
low treedepth colouring using a slightly different approach than in the
literature. Our tool of choice, so-called dtf-augmentations, is an applic-
able variation of the concept of transitive-fraternal augmentations. In
particular, we use dtf-augmentations for empirical results presented
in the fourth part. In Chapter 9 we present two entirely novel res-
ults: the twin class lemma, which is one of the centrepieces in our work
on preprocessing of sparse classes (contained in the third part), and
a characterisation of bounded expansion classes by a measure called
neighbourhood complexity. In Chapter 9 we survey several other known
characterisation of bounded expansion and nowhere dense classes for
completeness. Algorithms & preprocessing

The third part of the thesis contains algorithmic results obtained
by applying results from the second part. Besides some so-far unex-
plored applications of these tools to local search (Section 10.1), we
present a reformulation of Dvořák’s approximation algorithm for r-
Dominating Set using dtf-augmentations. This reformulation in par-
ticular enables us to show better bounds in our result on prepro-
cessing Dominating Set in Chapter 13. We furthermore present in
Section 10.4 a novel algorithm that, for bounded expansion classes,
computes for all vertices the size of their respective r-neighbourhood
in linear time—an algorithm that has potential applications in complex
networks as we explicate in the later Section 14.2.

Chapter 11 contains our novel results for classes excluding a topolo-
gical minor, bounded expansion and nowhere dense classes: we show
that the meta kernelisation framework, that demonstrates the existence
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of efficient preprocessing for hundreds of problems, can be extended
to these graph classes by applying a different interpretation to previ-
ous results. We complement these results in Chapter 13 by providing
an explicit linear kernel for Dominating Set on bounded expansion
classes and an almost-linear kernel in nowhere dense classes. This
result uses the above-mentioned twin class lemma (alongside an ex-
tension of it) and our reformulation of Dvořák’s algorithm; notably,
we do not (and cannot) rely on any of the techniques used in smaller
graph classes.Complex networks

In the fourth part we turn our attention to complex networks. After
a concise introduction of the topic, we argue that algorithms designed
using the toolkit derived from the theory of structurally sparse graphs
can be used to answer import network-related questions. To argue that
this is indeed possible, we show in Chapter 15 that important random
graph models used to simulate complex networks are—in certain para-
metric settings—structurally sparse with high probability. In fact, we
provide a full characterisation of when these random graph models
are structurally sparse and when not. This result will play a big role
in the subsequent empirical evaluation. Further, we consider the per-
turbation of classes and provide conditions under which such perturb-
ations of structurally sparse classes preserves the sparseness property.
The remainder of that chapter is devoted to other, more specialised
models used in network science.Empirical results

The theoretical results on network models strongly suggest that they
are structurally sparse. However, this might simply be an aspect where
models and real-world networks differ. We therefore devise a test to
assess the structural density of concrete instances and apply this test
to a corpus of real-world networks. It turns out that we can for most
networks confidently state that they are structurally sparse and we
could not find a single example where that is provably not the case
(for several networks the result is not statistically conclusive). We fur-
ther report on our experiment of applying low treedepth colourings to
the same network corpus and highlight some of the heuristical im-
provements we successfully applied to the colouring pipeline.
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P R E L I M I N A R I E S

So perhaps the best thing to do
is to stop writing Introductions and get on with the book.

— Alan A. Milne

2.1 basic definitions and notation ⋃F , ]
We denote sets by upper case letters and family of sets by calligraphic
letters. For a set family F , we use the shorthand

⋃F :=
⋃

X∈F X. For
two sets A, B we write A ] B for their union if A and B are disjoint
and we want to emphasize that fact. K(G), ', |•|, ‖•‖

Graphs in the following are simple and finite. For certain definitions,
it is useful to assume that vertices of graphs are taken from a count-
able infinite universe: in particular, this allows us to assign a natural
number with every vertex which we call the natural index of that ver-
tex. The set of vertices and edges of a graph G are denoted by V(G)

and E(G), respectively. The number of vertices and edges will be ab-
breviated by |G| := |V(G)| and ‖G‖ := |E(G)|. A bijection between
the vertex sets of two graphs G, G′ is called a graph isomorphism if it
preserves the edge relation. In the case that such a function exists, we
call the graphs G, G′ isomorphic and write G ' G′.

We denote by K(G) the set of connected components; in the case of
a digraph ~G we let K(~G) be the set of weakly connected components. Induced subgraph, induced edge

setA graph H is an induced subgraph of another graph G if a graph
isomorphic to H can be obtained from G by deleting vertices. We
write H ⊆i G for this relation. For a graph G and a vertex set W ⊆
V(G), we denote by G[W] the subgraph induced by the vertices W,
i.e. the graph obtained from G by removing all but the vertices con-
tained in W. Similarly, for any edge set E ⊆ E(G) we denote by
E[W] := E ∩ (W

2 ) those edges of E that have both endpoints in W.
A graph H is a subgraph of another graph G if a graph isomorphic

to H can be obtained from G by deleting vertices and edges. We
write H ⊆ G for this relation. Neighbourhood, closed –

For a vertex v ∈ G, we denote by NG(v) = {u : uv ∈ E(G)} the open
neighbourhood of v and by NG[v] = NG(v)∪{v} the closed neighbourhood
of v in G. We extended this notion to sets of vertices X ⊆ V(G) as
follows: NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X] \ X. We usually

omit the subscript G. The degree of a vertex v ∈ V(G) is the number
of its neighbours, i.e., deg(v) = |N(v)|. Colouring, proper colouring,

refinementA colouring of a graph G refers to a function c : V(G) → N. It is
proper if for every uv ∈ E(G), c(u) 6= c(v). By a slight abuse of nota-
tion, we set c(G) := c(V(G)). The cardinality of a colouring is |c(G)|.

9



10 2 preliminaries

Another colouring c′ is a refinement of c if for every pair x, y ∈ G it
holds that c(x) 6= c(y)→ c′(x) 6= c′(y).Complete graphs, tournament,

Kn, ω, #ω By Kn we denote the complete graph on n vertices, also called an n-
clique. The clique number ω(G) denotes the largest subgraph of G that is
complete. By #ω(G) we denote the number of complete subgraphs in G,
not counting single vertices (we do, however, count every edge in G
as a K2). With Ki,j we denote the complete bipartite graph with partite
sets of size i and j, respectively. A tournament is a simple directed
graph whose underlying graph is complete.Paths, P`

For a path P we denote its length, in accordance with the above
notation, by ‖P‖. We use the notation P` for a path of length `− 1, i.e.
a path with ` vertices. In particular, P1 = K1 and P2 = K2. For a path P,
we denote by P[i] the ith vertex on the path. Hence P[1] is the start and
P[|P|] the end of the path (we consider the empty graph not as a path).
For u, v ∈ P we denote by P[u, v] the sub-path connecting u and v
in P including u, v. By P(u, v) we mean P[u, v] \ {u, v}, i.e. the sub-
path between u and v excluding u, v. The notation P[u, v) and P(u, v]
is used to exclude one of the respective endpoints and including the
other. For paths P and P′ with P[|P|] = P′[1], that is, P ends with a
vertex that P′ starts with, we write PP′ to denote the path obtained
from concatenating them. If we particularly care about the endpoints
of a path, we will sometimes use the notation uPv to denote a path
with endpoints u and v.Rooted tree, parent, child, sibling

To avoid confusion, we will distinguish between vertices of general
graphs and vertices of trees by calling the later nodes. A rooted tree T is
a digraph whose underlying graph is a tree and in which every vertex
has in-degree exactly one except one vertex whose in-degree is zero.
The source of this digraph is the root of T and denoted by root(T).
Nodes with out-degree zero are called leaves and the set of leaves is
denoted by leaves(T). The arcs of T represent the parent relationship
between nodes: for xy ∈ T we say that x is the parent of y whereas y is
a child of x. Nodes with the same parent are called siblings. Hence the
children of a node x are exactly the set N+

T (x). Note that we deviate
from the usual orientation of a tree here: letting parent nodes have
arcs to their children (instead of from) will make sense in the context
of treedepth decompositions introduced below.Spider

A spider is a rooted tree in which every internal vertex except the
root has exactly degree two. Alternatively, a spider is a subdivision of
a star.Root path, ancestor, descendant,

depth, height The root path of a node x ∈ T is the unique x-root(T)-path in
the undirected graph underlying T and we denote it by rpathT(x).
The depth of x is depthT(x) = | rpathT(x)|. The height of a tree is
height(T) := maxx∈leaves(T) depthT(x). Hence a single vertex consti-
tutes a tree of height one. For nodes x, y with x ∈ rpathT(y) \ {y}
we say that x is an ancestor of y, conversely y is a descendant of x. In
particular, x is neither an ancestor nor a descendant of itself. The set



2.1 Basic definitions and notation 11

of ancestors and descendants of x is denoted by ancT(x), descT(x), re-
spectively. Rooted forest

A rooted forest F is a disjoint union of rooted trees. We define the
height of F as height(F) := maxT∈K(F) height(T). For x ∈ F extend
rpathF(x) := rpathT(x), depthF(x) := depthT(x), ancF(x) := ancT(x),
descF(x) := descT(x) where in all cases T ∈ K(F) is that tree in F
which contains x. Closure, clos(F)

The closure clos(F) of a forest F is the digraph with node set V(F)
and arc set {xy | y ∈ desc(x)}. Informally, it is the digraph obtained
from F by connecting every node to all its descendants. Rooted subtree, Tx

For a node x in a rooted tree T, the subtree of T rooted at x is defined
as Tx := T[x ∪ desc(x)], i.e. the subtree of T induced by the node
set S ∪ {x} with root x. Least common ancestor, – closure

Given two nodes x, y in a rooted tree T, their least common ancestor
(lca) is the unique shared ancestor of maximal depth. We denote this
vertex by lcaT(x, y) in the following. For a node set X ⊆ V(T), the lca
closure closlca

T (X) is defined as the minimal superset Y ⊇ X such that

x, y ∈ Y =⇒ lca(x, y) ∈ Y

holds. The following facts about the least common ancestor closure
can be considered folklore.

Lemma 1 (Lca closure). For every rooted tree T and node set X ⊆ V(T) the
set closlca(X) is unique and it holds that |closlca(X)| 6 2|X|. Furthermore,
every connected component of T \ closlca(X) is adjacent to at most two nodes
in closlca(X).

Proof. Given a set X we construct the closure of X iteratively. Set X0 =

X and construct the set Xi+1 from the set Xi as follows: a node y ∈ T \
Xi is a closure node at step i if V(Ty) ∩ Xi contains a pair of nodes z, z′

such that y = lca(z, z′). We construct Xi+1 from Xi by adding all clos-
ure nodes. We stop the process as soon as Xi+1 = Xi.

The procedure trivially terminates after at most |V(T)| steps. Let Y
be the set constructed by the above procedure. That Y is an lca closure
follows from the termination of the procedure, that it is unique and
minimal follows easily by induction: since for two nodes x, y ∈ X their
lca is uniquely determined in T, it must be contained in any lca closure
that contains x and y. The necessity of every single vertex in the set
and hence minimality follows inductively.

Consider a connected component of C ∈ K(T \ Y). Assume it has
at least three neighbours a, b, c ∈ Y where a is closest to root(T). But
then we have that lca(b, c) ∈ C and Y would not be an lca closure,
contradiction.

Finally, we can bound the size of the closure. Since every connected
components of T \Y has at most two neighbours in Y, we can replaced
it either by an edge (if it has exactly two neighbours) or remove it. The
result is a rooted tree T′ with node set Y where every internal node
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has at least two children (barring trivial cases like the empty tree or a
tree of size one). Note that leaves(T′) ⊆ X; thus it follows that

|Y| = |T′| 6 2 leaves(T′) 6 2|X|,

as claimed.
Graph class, – property, G�k

A graph class is a collection of graphs closed under isomorphism. We
denote graph classes by calligraphic upper case letters. The term graph
property is exchangeable with that of a graph class but will be used in
a slightly different context. For a graph class G, an integer k, a func-
tion f : G → N and any relation � on integers we define the sub-
classes G f�k := {G ∈ G | f (G) � k}. If f is not specified we assume f
to be the cardinality function | · |. A common use of this notation will
be the truncation G6k of a class G which contains all graphs of G with
at most k vertices.Modulator

For a graph property P and a graph G, a P-modulator of G is a vertex
set X ⊆ V(G) such that G \ X ∈ P . The problem of finding a minimal
modulator P will be called P-Deletion in the following.

Some common graph properties with the corresponding deletion
problem and the corresponding graph parameter are listed in the table
below.

Graph property P P-Deletion τP

Edgeless Vertex Cover vc

Cycle-free Feedback Vertex Set –

Bipartite Odd Cycle Transversal –

Treedepth 6 t Treedepth-t-Deletion td∆
t

Treewidth 6 t Treewidth-t-Deletion tw∆
t

Twins, true –, false –
A recurring theme in this thesis will be that of twin vertices. Two

vertices x, y are true twins in a graph G if N[x] = N[y] (which implies
that they share an edge) and false twins if only N(x) = N(y) holds.
We say that a graph is twin-free if no pair of vertices in it are false or
true twins. We extend this notion to vertex subsets: a set X ⊆ V(G) is
twin-free if no pair of vertices from X are false or true twins in G.Twin equivalence, – classes

It is easy to see that both twin relations form equivalence relations
over vertices and hence we can partition the vertices of a graph into
twin classes. Moreover, we can compute these classes in linear time
using partition refinement.

Given a partition S = {S1, S2, . . . , Sp} of some ground set U and a
pivot set X ⊆ U, the refinement of S by X is the partition

S|X := {S1 ∩ X, S1 \ X, S2 ∩ X, S2 \ X, . . .}

Proposition 1 (Habib, Paul, Viennot [134]). There exists a data structure
representing a partition S of a ground set U that, for a pivot set X ⊆ U, can
be in time O(|X|) modified to represent the partition S|X. The initialization
of the data structure with any ordered partition takes time O(|U|).
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Computing true twin classes of a graph G now can be achieved in
linear time as follows:

Initialise X ← {V(G)}
for v ∈ V(G) do
X ← X |N[v]

After the every vertex has been processed the partition X contains ex-
actly the true twin classes of G. By Proposition 1 it can be implemented
to run in time

O(|G|+ ∑v∈G |N[v]|) = O(|G|+ ‖G‖).

To compute the false twin classes we modify the algorithm in a very
subtle and satisfying manner: we simply refine by the open neighbour-
hood N(v) instead of the closed neighbourhood N[v].

We conclude this section by packaging the above observations in a
lemma which should be folklore but was surprisingly hard to find.

Lemma 2 (Computing twin classes). We can compute the true or false
twin classes of a graph and output the vertices grouped by those classes in
linear time.

Proof. We prove the correctness of the above algorithm here; the run-
ning time was already discussed. For an input graph G, consider the
partition X obtained from the trivial partition {V(G)} by refining it
with every open neighbourhood. We claim that X exactly contains
the false twin classes of G. To verify this, consider two distinct ver-
tices x, y ∈ G.

Case 1: N(x) 6= N(y). Let, wlog, z ∈ N(x) be a neighbour of x
(in the case that xy ∈ G we might have z ∈ {x, y}). Then x ∈ N(z)
while y 6∈ N(z). Since we refined the partition by N(z), the vertices x
and y are necessarily in different classes.

Case 2: N(x) = N(y). Assume towards a contradiction that x, y are
contained in different classes. Since in the initial (trivial) partition this
was not the case, there must have been a refinement with some pivot
neighbourhood N(z) that separated x and y. This is exactly the case
if x ∈ N(z) 6↔ y ∈ N(z). But then z is a neighbour of one of the two
and not the other, contradiction.

We conclude that X indeed contains the true twin classes of G. The
proof for false twin classes works analogously.

2.2 minors and shallow minors

Fix graphs H, G. We define the following embeddings of H in G that
give rise to natural relationships between graphs. Minor embedding, depth

A minor embedding is a function φ : V(H) → 2V(G) such that for
every v ∈ H the subgraph G[φ(v)] is connected and for every v 6= u ∈
H we have that
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1. φ(v) ∩ φ(u) = ∅ and

2. if uv ∈ H then there exists x ∈ φ(u), y ∈ φ(v) such that xy ∈ G.

We define the depth of the minor embedding φ as follows: for every
vertex set Vx = φ(x), x ∈ H choose a centre, i.e. a vertex vx such that

max
v∈φ(x)

distG(vx, v) = rad(G[φ(v)].

Now the depth of the embedding is defined as

1
2

max
xy∈H

distG(vx, vy).

This slightly complicated definition enables us to define minor em-
beddings whose depth is a half-integer and thus a more ‘fine-grained’
distinction.Minor, shallow –, 4m , 4r

m, O
If there exists a minor embedding φ for H in G we say that H is a

minor of G and write H 4m G. If there exists a minor embedding at
depth r we say that H is an r-shallow minor of G and write H 4r

mG. We
denote the set of all r-shallow minors of G by GO r.

As one would expect, taking a shallow minor of a shallow minor
results in a shallow minor of the original graph.

Proposition 2 ([192, Proposition 4.1]). For every graph G and half-integers
a, b it is true that

(GO a)O b ⊆ GO
(2a + 1)(2b + 1)− 1

2
.

Topological minor embedding,
depth A topological minor embedding is a pair of functions φV : V(H) → G,

φE : E(H) → 2V(H) where φV is injective and for every uv ∈ H we
have that

1. φE(uv) is a path in G with endpoints φV(u), φV(v) and

2. for every u′v′ ∈ H with u′v′ 6= uv the two paths φE(uv), φE(u′v′)
are internally vertex-disjoint.

We define the depth of the topological minor embedding φV , φE as the
half-integer (maxuv∈H |φE(uv)| − 1)/2.Topological minor, shallow –, 4t ,

4r
t , Õ If there exists a topological minor embedding φV , φE for H in G

we say that H is a topological minor of G and write H 4t G. If there
exists a minor embedding at depth r we say that H is an r-shallow
topological minor of G and write H 4r

t G. We denote the set of all r-
shallow topological minors of G by G Õ r.

Again, unsurprisingly, we have the following result for the repeated
construction of shallow minors.

Proposition 3 ([192, Proposition 4.2]). For every graph G and half-integers
a, b it is true that

(G Õ a) Õ b = G Õ
(2a + 1)(2b + 1)− 1

2
.
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2.3 algebraic operations on graphs

G1 · G2, G1 ∗ G2
We will make use of the following graph products. For graphs G1, G2,
the complete join G1 ∗ G2 is the graph obtained by first taking the dis-
joint union of G1, G2 and then connecting every vertex of G1 to every
vertex of G2. For example, G ∗ K2 is the graph obtained from G by
adding two universal vertices. We will also use the notation G ∗ u to
signify adding a single universal vertex u to G.

The lexicographic product G1 · G2 is the product graph with vertex
set V(G1)×V(G2) and edges

(u, x)(v, y) ∈ E(G1 · G2) ⇐⇒ uv ∈ G1 or (u = v and xy ∈ G2).

In case the graphs have edge-weights ω1, ω2 we use the convention
that

ω1,2((u, x)(v, y)) =

{
ω1(uv) if uv ∈ G1

ω2(xy) if u = v and xy ∈ G2

provides the edge-weights for the product G1 · G2. Labelling, t-labelling

A labelling b of a set W is a bijective function b : L→W for some L ⊆
N. We say that b is a t-labelling if the domain/codomain of b have
cardinality t. For convenience, we will often treat b as a partial function
over N instead of L with the convention that b(x) = ⊥ for x 6∈ L. Boundaried graph

Definition 1 (t-boundaried graph). A t-boundaried graph is a triple
◦G = (V, E, b) where (V, E) is a graph and b is a t-labelling of a subset
of V. The image of b is the boundary of ◦G and denoted by ∂◦G = img(b).
We denote by G = (V, E) the underlying graph of ◦G.

Boundaried class, ◦Gt
For a graph class G we define the t-boundaried class ◦Gt as those t-
boundaried graphs whose underlying graphs are members of G.
Boundaried graph allow us to
build up larger graphs from
smaller building blocks in well-
defined manner. The gluing op-
erator combines the boundar-
ied graphs ◦G1, ◦G2 according
to their labelling. The result-
ing graph has a boundary con-
sisting of unmatched labels.
The basic operation is gluing
which combines two boundar-
ied graphs into another bound-
aried graph.

Gluing, ⊕

Definition 2 (Gluing). Let ◦G1 = (V1, E1, b1) and ◦G2 = (V2, E2, b2)

be t1- and t2-boundaried graphs, respectively. We assume that V1 ∩
V2 = ∅ by an appropriate relabelling of ◦G2. Define φ = b1 ◦ b−1

2 .
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The gluing operation is denoted by ◦G3 = ◦G1 ⊕ ◦G2 where ◦G3 is a t3-
boundaried graph (V3, E3, b3) defined via

V3 := V1 ∪ (V2 \ ∂◦G2)

E3 := E1 ∪ E2[V2 \ ∂◦G2]

∪ {φ(x)φ(y) | xy ∈ E[∂◦G2] ∧ φ(x) 6= ⊥, φ(y) ∧⊥}

b3(`) 7→

b1(`) for ` ∈ dom(b1) \ dom(b2)

b2(`) for ` ∈ dom(b2) \ dom(b1)

In essence, the graph ◦G1 ⊕ ◦G2 is created by taking the disjoint union
of the two boundaried graphs and identifying those vertices v1 ∈
img(b1), v2 ∈ img(b2) where b−1

1 (v1) = b−1
2 (v2). Note that the opera-

tion does not commute1 in that ◦G1 ⊆ ◦G1 ⊕ ◦G2 but ◦G2 6⊆ ◦G1 ⊕ ◦G2.
However, we have that ◦G1 ⊕ ◦G2 is isomorphic to ◦G2 ⊕ ◦G1.

Our primary use for boundaried graphs will be replacement: We
want to remove a part of a graph and put another graph in its place.
To this end, we need the following definition of how to decompose a
graph into boundaried pieces.Induced boundaried graph,

excision, ◦G[•], 	
Definition 3 (Induced boundaried graph, excision). Let G be a graph
and W ⊆ V(G) a vertex set. Let b be a t-labelling of V where t = |∂GW|.
The induced boundaried graph ◦G[W] is defined as

◦G[W]b := (W, E[W], b).

The excision of W from G under b creates the t-boundaried graph

G	b W = (W, E[W], b)

where W = V − (W − ∂GW).

Note that in particular ◦G[W]b ⊕ (G 	b W) = G. For simplicity, we
also allow subgraphs of G to be operands with the understanding that
G	b G′ := G	b V(G′). Given these operation, we now can define the
replacement operation.Replacement, G[• → •]

Definition 4 (Replacement). Let G be a graph, W ⊆ V(G) with t =

|∂GW|. Let ◦H be a t-boundaried graph and b a t-labelling. The opera-
tion of replacing W with ◦H under b results in the graph

G[W 7→ ◦H]b = (G	b W)⊕ ◦H.

Note that G[W] ⊆ G[W 7→ ◦H]b by our definition of gluing.
Subdivision

One special replacement operation is that of a subdivision. Denote
by ◦P` the path with ` vertices and both endpoints as its boundary
(since the graph is symmetric we do not care about which endpoint
receives which label). For a graph G, an edge uv ∈ E(G) and an in-
teger ` > 0, saying that uv is subdivided ` times is defined as G[uv/`] :=
G[{uv} 7→ ◦P`+2]. The opposite operation—replacing a path by an
edge—is called dissolution. We also write G[E/`] to denote the graph
obtained from G by subdividing every edge ` times.

1 One can easily define the operation in a way such that it does commute. However,
this creates a lot of unpleasant special cases in the following applications.
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2.4 well-quasi orderings of graphs

The following is loosely based on the very nice work by Fellows, Her-
melin, and Rosamond [92]. LetJ be quasi-order on a class of graphs G,
i.e. it is a binary relation that is reflexive and transitive. For an infinite
sequence (Gi)i∈N of graphs in G, a pair Gi, Gj is increasing if Gi J Gj
and i < j. If every infinite sequence contains an increasing pair, then J
is a well-quasi order of G. In particular, G does not contain infinite anti-
chains. The following table contains known wqo of graphs.

Graph class Relation

All graphs 4m Minor relation [217]

All graphs 4i Immersion relation [218]

Bounded tw∆
1 4t Topological minor relation [92]

Bounded treedepth ⊆i Induced subgraph relation [192]
Ideal, forbidden set

An ideal I of a well-quasi-ordered class (G,J) is a subclass of G closed
under J. The interesting property of ideals is that they are character-
ised by a finite forbidden set: consider the set

forb(I) := {G ∈ G \ I | G′ 6J G for all G′ ∈ G \ I}.

Then forb(I) is finite since its members form an anti-chain in G. More-
over, for any graph G 6∈ I it holds that there exists a member H ∈
forb(I) such that HJ G. Hence, recognizing whether a graph is in I
reduces to checking whether any of the finitely many graphs of forb(I)
is not ‘contained’ in G. We discuss algorithmic aspects of well-quasi or-
ders in Chapter 3 and will make use of their properties in Chapter 11. Finite basis

For subsets that do not form ideals, we have a weaker property that
nonetheless proves very useful.

Definition 5 (Finite basis). Let (G,J) be a well-quasi ordered graph
class and let H ⊆ G. We define the basis of H as

basis(H) := {G ∈ H | ∀G′ J G, G′ 6= G : G′ 6∈ H}.

The basis of a subclass has the following nice properties.

Lemma 3. For a wqo graph class (G,J) and for every H ⊆ G it holds that

• basis(H) is unique and finite and

• for every G ∈ H there exists M ∈ basis(H) with MJ G.

Proof. Since min(H) forms an anti-chain, it must be finite by the wqo
property. That it is unique follows directly from the definition, we are
left to show the second property. Consider a graph G0 ∈ H. If G0 ∈
basis(H) we are done, otherwise there exists G1 J G with G1 ∈ H
and G1 6= G0. If G1 ∈ basis(H), the property holds, otherwise we
repeat this procedure with G1. The constructed sequence

G0I G1I G2I G3 . . .
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must necessarily be finite, otherwise it would constitute an infinite
descending chain and thus contradicting the wqo property.

For technical reasons we need to define a way to lift wqo relations to
boundaried graphs. In essence, we disregard the boundary and use
the ordering of the remainder.

Definition 6 (Boundary-preserving extension). Let J be a graph rela-
tion and t ∈N. We extend J to t-boundaried graphs via

◦G1J
◦G2 ⇐⇒ G1 \ ∂◦G1JG2 \ ∂◦G2 and G1[∂

◦G1] = G2[∂
◦G2].

Lemma 4. Let G be wqo by J. Then for every t ∈ N, the t-boundaried
graphs Gt over G are wqo by the boundary-preserving extension of J.

Proof. Since there only finitely many graphs on t vertices, and hence
only finitely many variants of boundaries, it suffices to prove the state-
ment for a subclass G ′t whose members have exactly the same bound-
ary. Assume the contrary, i.e. there exists an infinite sequence (◦Gi)i∈N

in G ′t without an increasing pair. Derive the sequence (Hi)i∈N = (Gi \
∂◦Gi)i∈N from that sequence and note that it contains graphs of G,
hence it must contain an increasing pair Hi J Hj, i < j. But then, by
the definition of the boundary-preserving extension ofJ, we have that

Hi J Hj ⇐⇒ Gi \ ∂◦Gi J Gj \ ∂◦Gj

⇐⇒ ◦Gi J
◦Gj

contradicting our assumption that the first sequence did not contain
an increasing pair.

2.5 width measures

Width measures have a strong connection to both sparse graph theory
and efficient algorithms. The notion of treewidth, for example, was
popularised by the graph minors programme (see Chapter 3) and fam-
ously, by Courcelle’s Theorem [51] and the preceding body of work,
enables us to design linear-time fpt algorithm for a large collection of
problems.

Definition 7 (Tree decomposition). A tree decomposition T of a graph
G is a pair (T, χ), where T is a tree and χ is a function that assigns
each tree node t a set χ(t) ⊆ V of vertices such that the following
conditions hold:

1. For every vertex u ∈ V, there is a node t ∈ T such that u ∈ χ(t).

2. For every edge {u, v} ∈ E(G), there is a node t ∈ T such that
u, v ∈ χ(t).

3. For every vertex v ∈ V(G), the set of nodes {t ∈ T | v ∈ χ(t)}
induces a subtree in T.
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Bags, treewidth

We call T the underlying tree of the decomposition. The sets χ(t) are
called bags of the decomposition T and χ(t) is the bag associated with
the node t. The width of a tree decomposition (T, χ) is the size of a
largest bag minus one. A tree decomposition of minimum width is
called optimal. The treewidth of a graph G, denoted by tw(G), is the
width of an optimal tree decomposition of G.

It is often convenient to restrict the structure of tree decompositions
further. In particular, we will usually work with rooted tree decomposi-
tions by letting T be a rooted tree. A nice tree decompositions is a tree Nice tree decomposition

decompositions (T, χ) with the following characteristics:

• T is a ternary rooted tree.

• For x ∈ leaves(T) it holds that |χ(x)| = 1

• For x ∈ T with N+(x) = {y}, then either |χ(x) \ χ(y)| = 1 and
we call χ(x) an introduce bag, or |χ(y) \ χ(x)| = 1 and we call it a
forget bag.

• For x ∈ T with N+(x) = {y1, y2} we have that χ(x) = χ(y1) =

χ(y2) and we call χ(x) a join bag.

It is folklore that any tree decomposition can be turned into a nice tree
decomposition in time linear in the size of the decomposition. Path decomposition, nice –,

pathwidthA path decomposition is a tree decomposition whose underlying tree
is a path. The concept of niceness translates directly with the additional
condition that the root of the path is one of its endpoints. The pathwidth
of a graph G, denoted by pw(G), is the width of an optimal path
decomposition of G. Treedepth, – decomposition, nice

– decompositionWe will encounter a more restricting width measure, the treedepth
of a graph, at many points in this thesis: the measure is intricately
connected with the theory of structurally sparse graph classes.

Definition 8 (Treedepth decomposition). A treedepth decomposition F
of a graph G is a pair (F, ν), where F is a rooted forest and ν is an
injective function ν : V(G) → V(F) subject to the condition that for
each uv ∈ G, either ν(u) ∈ descF(ν(v)) or ν(v) ∈ descF(ν(u)).

A treedepth decomposition (F, ν) of G is nice if V(F) = V(G), ν is
the identity function and we have that for every node x ∈ F, the
graph G[Fx] is connected. Underlying tree, Trémaux –

We call F the underlying forest/tree of the decomposition. The width or
depth of the decomposition is the height of F. A treedepth decompos-
ition of minimum width is called optimal. The treedepth of a graph G,
denoted by td(G), is the height of a optimal treedepth decomposition
of G. We often will use a forest with the same vertex set as G as a
decomposition, then ν is understood to be the identity and will not
be mentioned explicitly. Rooted trees with additional edges that obey
the ancestor-relationship emerge in depth-first traversal of graphs and
are also called Trémaux trees. A treedepth-decomposition of a graph
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and a Trémaux tree of bounded height differ in that the edges of the
Trémaux tree are part of the graph whereas the edges of the treedepth-
decomposition might not be.

Optimal treedepth de-
compositions for K4, C8
and the house graph.
Thick edges occur in the
graph and the tree, thin
edges only in the graph
and dashed edges only
in the tree.

Two important types of graphs classes that have unbounded treedepth
are the class of complete graphs Kn and the class of paths Pn. A com-
plete graph Kn has treedepth n, the underlying tree of the decompos-
ition simply being a path of length n. For a path of length 2` the ca-
nonical (and optimal) decomposition is a binary tree of height `. Since
treedepth is a property closed under taking subgraphs, the presence
of either a long path or a large clique in a graph will result in a high
treedepth for the whole graph. The following well-known proposition
will prove quite useful in the following.Approximating treedepth

Proposition 4. For every graph G a treedepth decomposition of width 2td(G)

can be computed in time O(|G|+ ‖G‖).
Proof. We compute a Trémaux tree T (or forest if G is disconnected)
by a dfs traversal from an arbitrary vertex of G in the claimed running
time. Since any edge of G is either a tree-, forward- or backwards-
edge in T and these edges obey the ancestor relationship, the tree T is
indeed a treedepth decomposition of G. To see that the height of T is
bounded, recall that a path of length 2t has treedepth t. Therefore, the
graph G cannot contain a path of length > 2td(G)—it follows that the
height of T is bounded, as claimed.

For the last part of this section, let us compare the three width meas-
ures presented. By definition the pathwidth of a graph is at least the
treewidth of a graph since every path decomposition is a tree decom-
position. The relation between pathwidth and treedepth is similar:
any treedepth decomposition (F, ν) of a graph G can easily be con-
verted into a path decomposition of similar width. To that end, con-
sider any dfs-traversal of T and restrict the given ordering of V(F) to
the set leaves(F). Let us denote this order of the leaves by x1, . . . , x`.
Then (P`, χ) with χ(i) 7→ rpathF(xi) is a path decomposition of G and
it follows by construction that

width((P`, χ)) = max
x∈leaves(F)

| rpathF(x)| − 1 = width((F, ν))− 1.

In conclusion, for any graph G we have the following relation between
the three introduced width measures:

tw(G) 6 pw(G) 6 td(G)− 1.
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For any width-measure wm that satisfies tw(G) 6 wm(G) +O(1) for
all graphs we will say that wm upper-bounds tw. Further width-measures

We will mention some further width-measures in passing and will
not define them here. In their graph-minors programme, Robertson
and Seymour defined the branchwidth as a measure closely related to
treewidth [214]. In fact, they showed that the branchwidth bw of a
graph has the following linear relationship with treewidth:

bw(G)− 1 6 tw(G) 6
3
2

bw(G)− 1.

Branchwidth has, however, some beneficial algorithmic properties on
planar graphs. It can be computed in polynomial time [225, 131] and
even approximated within a constant factor in almost-linear time [132].

The cliquewidth of graph cw was introduced as a hypergraph-gram-
mar by Courcelle [52] and provides a ‘dense’ variation of treewidth.
It is motivated by the fact that the model checking problem for MSO1

is decidable in polynomial time on cliques, a fact not captured by
Courcelle’s theorem for treewidth. Clique-width provides a measure
that in particular reflects the tractability of MSO1 model-checking [53].
While a clique-decomposition of a graph has very nice algorithmic
properties, finding such a decomposition seems to be very difficult. It
is known that cliquewidth is NP-hard to compute [93], but it is not
even known whether it admits polynomial-time algorithms for every
fixed cliquewidth.

As a consequence, Oum and Seymour provided an approximation
for cliquewidth by introducing a width-measure called rankwidth. The
rankwidth of graph rw(G) is related to the cliquewidth by

rw(G) 6 cw(G) 6 2rw(G)+1 − 1.

2.6 graph measures and limits over classes

The notions of nowhere dense and somewhere dense (defined later in
Chapter 5) concern the asymptotic density of graph classes. We need
to introduce the following conventions and notations in order to de-
scribe the results concisely. The definitions here largely follow those by
Nešetřil and Ossona de Mendez [192], but are somewhat simplified. Graph measure, supremum

A graph measure is any function f mapping graphs to R+ that is in-
variant under isomorphism, i.e. for G ' G′ we have that f (G) = f (G′).
A parametrised graph measure is a family of graph measures ( fr)r∈N. We
define the supremum of a graph measure f on a graph class G as

f (G) := sup
G∈G

f (G).

lim supG∈G , ω(G)
This in particular allows notation like ω(G) to denote the clique num-
ber of a class. To describe the asymptotic behaviour of graph measures
we introduce the following limit:

lim sup
G∈G

f (G) := lim sup
n→∞

f (G>n).
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For a graph relation J we will often use the convenient notationlim supHJG∈G

lim sup
HJG∈G

f (H) := lim sup
G∈G

sup
HJG

f (H).

Two parametrised graph measures f , g are polynomially related if there
exists a function α such that for every graph G and every integer r it
holds that

fr(G)−α(r) 6 gr(G) 6 fr(G)α(r).

Note that this is exactly the case if log fr(G) = Θ(log gr(G)).

2.7 fixed-parameter tractability and kernelisation

We roughly follow the formalism of Flum and Grohe [97]. For a finite
alphabet Σ, a language or decision problem is a subset L ⊆ Σ∗. If L en-
codes graphs (possibly among other things) we call it a graph problem.

Definition 9 (Parametrisation, parametrised problem). For a finite al-
phabet Σ, a parametrisation of Σ∗ is a mapping κ : Σ∗ → N that is
computable in polynomial time. A parametrised problem is a pair (L, κ)

where L ⊆ Σ∗ is a language.

A selection of important parametrised problems can be found in the
appendix and in the following section.Fpt, – algorithm

Definition 10 (Fpt-algorithm). Let Σ be a finite alphabet and κ a para-
metrisation of Σ. An algorithm A is an fpt-algorithm with respect to κ

if there exists a computable function f and a polynomial p such that
the running time of A on every input x ∈ Σ∗ is at most

f (κ(x)) · p(|x|).
Single-exponential,

subexponential, uniformly,
non-uniform

If p is linear, we call A a linear fpt-algorithm. If f (k) = 2O(k), we call it
a single-exponential fpt-algorithm. If f (k) = 2o(n), we call it a subexpo-
nential fpt-algorithm. There is further a slight distinction to be made
of whether there exists a single algorithm that decides a parametrised
language or whether we allow one algorithm for every k. In the former
case, we call the algorithm uniform and in the latter case non-uniform.

Definition 11 (Fixed-parameter tractable, FPT). A parametrised prob-
lem (L, κ) is fixed parameter tractable if there exists an fpt-algorithm
which decides L with respect to κ. The class of all fixed-parameter
tractable problems is denoted by FPT.

Hardness with respect to fpt algorithms is provided by a hierarchy
of complexity classes W[1] ⊆ W[2] ⊆ . . . where FPT ⊆ W[1] with the
assumption that FPT 6= W[1]; and a suitable notion of fpt-reductions.
Examples for W[1]-complete problems are Independent Set and Max-
imum Clique, the canonical example for W[2]-completeness is Dom-
inating Set. We therefore expect none of these problems to admit
fpt-algorithms. For details, we refer to the books by Downey and Fel-
lows [74] and Flum and Grohe [97].Kernel
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Definition 12 (Kernel). Let (L, κ) be a parametrised problem. A poly-
nomial-time computable function K : Σ∗ → Σ∗ is a kernel for (L, κ) if
there exists a function h such that for all inputs x ∈ Σ∗ it holds that

x ∈ L ⇐⇒ K(x) ∈ L and |K(x)| 6 h(κ(x)).

The function h is the size of the kernel.

We say that a kernel is linear if h(k) = Θ(k) and almost linear if h(k) =
O(k1+ε) for every ε > 0 or, equivalently, h(k) = O(k1+o(1)). Quadratic
and cubic kernels are defined analogously. It is folklore by now that
a parametrised problem is in FPT if and only if it admits a kernel.
However, of particular interest are kernels of polynomial size. By re- Kernelisation lower bounds

lating the kernelisation machinery to the concept of distillations in
classical complexity theory, Bodlaender, Downey, Fellows, and Her-
melin showed that a large set of problems do not admit polynomial
kernels unless NP ⊂ coNP/poly [22]. The canonical problem affected
by this machinery is k-Path. This framework has subsequently been
extended by Drucker [77] to include, among other problems, Tree-
width and Pathwidth. It has been further streamlined by Bodlaender,
Jansen, and Kratsch [25]. A totally different technique by Dell and van
Melkebeek [242] yields, under similar complexity-theoretic assump-
tion, that problems like Vertex Cover and Feedback Vertex Set do
not admit linear kernels2.

Most kernelisation routines work by exhaustively applying a set of
reduction rules in polynomial time that successively reduce the size of
the input. The meta-kernelisation framework presented and extended
in Chapter 11 is no exception; only here the reduction rule is replaced
by techniques developed in the context of reduction algorithms for
graphs of bounded treewidth.

2.8 domination problems

We will encounter domination problems at several points in this thesis.
The classical Dominating Set problem is a good litmus test for how
well structural sparseness can improve tractability, at least in the para-
metrised setting—since Dominating Set is NP-hard even on planar
graphs of maximum degree three ([GT2] in Garey and Johnson [120]),
we do not see improvement from the classical perspective. Further-
more, this problem is log-APX-complete, hence it cannot be approxim-
ated to within a factor better than O(log n).

In the parametrised setting, Dominating Set is one of the canonical
W[2]-complete problems under its natural parametrisation. We there-
fore assume that it does not admit an fpt-algorithm and in particular
no kernelisation. We will outline in Chapter 13 how in the sparse set-
tings even polynomial kernelisation is possible and add new results
in even larger classes of sparse graphs. Dominating set, r- –, relative

domination, ds
2 This result applies to the encoding size. Kernels with a linear number of vertices are

known for Vertex Cover.
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A dominating set of a graph G is a vertex subset D ⊆ V(G) such
that N[D] = V(G), i.e. every vertex is either in D or has a neighbour
in D. The domination number ds(G) is the size of a minimum dom-
ination set of G. Given a vertex set Z, a set D is a Z-dominator in G
if N[D] ⊃ Z. The relative domination number ds(G, Z) for a set Z is the
size of a minimal Z-dominator. For an integer r, an r-dominating set is
a vertex subset D ⊆ V(G) such that Nr[D] = V(G).

Input: A graph G and an integer k.

Problem: Does G have a dominating set of size at most k?

Dominating Set parametrised by k

A natural extension of domination is to let vertices dominate not only
their neighbourhood but all vertices within some distance r. The fol-
lowing problem is also known as (k, r)-Centre if we parametrise by
both r and k.

Input: A graph G and an integer k.

Problem: Does G have an r-dominating set, i.e. a set D ⊆ V(G)

such that V(G) = Nr[D], of size at most k?

r-Dominating Set parametrised by k

Instead of minimising the number of vertices to dominate the whole
graph, we can also instead ask how many vertices we are able to dom-
inate given a fixed budget:

Input: A graph G and integers t, k.

Problem: Does G have a set of size at most k that dominates
at least t vertices?

Partial Dominating Set parametrised by t

2.9 propositional logic over graphs

Several results in this thesis rely on results from model theory, there-
fore we provide the basic notation and vocabulary here. For a complete
introduction into model theory we refer to the book by Ebbinghaus
and Flum [82].Propositional logic

In propositional logic we can join atomic propositions, whose indi-
vidual truth-value is later given by an assignment, recursively by the
usual boolean operations (conjunction, disjunction and negation) into
propositional formulas. An assignment that is evaluated true by proposi-
tional formula φ is a model of φ.First-order logic

By adding variables and the quantifiers ∃, ∀ to propositional logic we
arrive at first-order logic. We consider only formulas over graphs here,
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seen as logical structures. That is: a graph G is a structure with uni-
verse V(G) and a single binary relation E(G) (we also allow a finite
number of unary relations in order to have labelled vertices).

The syntax of a first-order formula in the language of graphs con-
sists of the atoms adj(x, y) and x = y. A first-order formula is an atom
or recursively constructed from formulas joined through boolean op-
erators or by addition of a quantification over a variable that occurs in
it. A variable that is not bound by a quantifier is a free variable. First-order definable, model

checkingWe write G |= φ to express that the formula φ holds in G. A graph
property Π that can be expressed in this fashion, i.e. there exists a
formula φ such that

G ∈ Π ⇐⇒ G |= φ

is called first-order definable. The model checking problem is, given a
graph G and a first-order formula φ as input, to decide whether G |= φ.
This problem is, in general, PSPACE-complete since it already contains
QBF Satisfiability as a degenerate sub-case (and testing a first-order
formula with polynomial space is straightforward by brute-force). In
Chapter 3 we will see that structural sparseness considerably improves
the tractability of the model checking problem, up to even the most
general notion of structural sparseness. Monadic second-order logic

By augmenting first-order formulas with quantification over sets of
vertices and sets of edges we arrive at the monadic second-order logic
(MSO) of graphs. There exist two variations: the logic MSO1 models
graphs as before as structures with universe V(G), hence set quanti-
fication is only admissible for vertex-sets. The logic MSO2 (sometimes
guarded MSO or GMSO) models graphs as structures whose universe
is the union of vertices and edges, but introduces two types of quanti-
fications; either over edge-sets or over vertex-sets. Quantification over
‘mixed’ sets are not possible.

Courcelle’s Theorem classically states that model checking of MSO2

is possible in linear time on graphs of bounded treewidth, or, in the
language of parametrised complexity, there is a linear fpt algorithm
for MSO2 parametrised by the treewidth of the input graph3. Kreutzer
and Tazari showed that this result is tight: for graph classes with even
very moderately growing treewidth, the MSO2 model-checking prob-
lem is not even possible in polynomial time if the size of the formula
is considered a constant [165]. Extended MSO

In order to model decision or optimisation problems, it is often ne-
cessary that we minimise or maximise a certain set. Take the problem
of deciding whether a vertex cover of size k exists, or the problem
of finding a minimum dominating set. These problems are not ex-
pressible in MSO since we are lacking any means of talking about set
sizes (except constant-sized ones). However, MSO is clearly powerful
enough to describe how a feasible solution to these problems looks

3 Technically, this formulation also needs the classical result by Bodlaender that a tree-
decomposition can be computed in linear fpt-time.
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like. Furthermore, we know that these problems admit hand-crafted
dynamic programming routines to solve them—something is still miss-
ing in Courcelle’s Theorem. Arnborg, Lagergren, and Seese [13] exten-
ded Courcelle’s formalism by introducing extended MSO or EMSO: be-
sides the formula, we also provide an evaluation which maps free vari-
ables of the formula into the domain of integers or reals. In particular,
evaluations can be optimised against a target functions. A simple vari-
ant of this formalism are formulas of the form min X φ(X), where φ is
an MSO2 formula with free variable X. If φ expresses that X is a vertex
cover in the input graph, then by the result of Arnborg et al. we can
determine the size of a minimal vertex cover in linear time on graphs
of bounded treewidth.

2.10 graph surgery toolkit

In Chapter 7 we will work on embeddings of shallow minors, trying
to ‘salvage’ a large portion of the minors’ edges in order to recover a
dense-enough subgraph. I suspect the next lemma is known in some
form, but I was unable to find it in the literature.

Lemma 5 (High-density transversal). Let G be a loopless multi-graph on
2n vertices partitioned into n sets V1, V2, . . . Vn each containing two inde-
pendent vertices. There exists a set X of size n that intersects every Vi in
exactly one vertex such that ‖G[X]‖ > ‖G‖/4.

Proof. Choose a vertex-colouring into colours black B and white W
that split every Vi, 1 6 i 6 n. Denote by wi := Vi ∩W the white vertex
and by bi := Vi ∩ B the black vertex of Vi.

If ‖G[B]‖ > ‖G‖/4 or ‖G[W]‖ > ‖G‖/4 we are done. Otherwise,
we have that |E(W, B)| > ‖G‖ − ‖G‖/2.

Claim. There exists a partite set Vi such that

‖G[W \ {wi} ∪ {bi}‖ > ‖G[W]‖.

For a vertex v ∈ G, let degW(v) := |E({v}, W)| denote the number
of edges v has to white vertices (the count includes potential double
edges). Consider the potential φ defined for the partite sets as

φ(Vi) := degW(bi)− degW(wi).

Note that any partite set with positive potential satisfies the claim:
exchanging wi for bi will increase the number of monochromatic white
edges. Summing up the potential over all partite sets, we see that

n

∑
i=1

φ(Vi) =
n

∑
i=1

degW(bi)−
n

∑
i=1

degW(wi)

= |E(W, B)| − 2‖G[W]‖
> ‖G‖ − ‖G‖/2− ‖G‖/2 = 0
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Thus the total sum of the potential is strictly positive, hence there
exists at least one Vi with φ(Vi) > 0. By the above observation, this
proves the claim.

The lemma now follows by the following iterative procedure: if
either sets B, W already induce a subgraph with at least ‖G‖/c edges
we return the respective set. Otherwise, by the above claim, we can
find a partite set Vi = (bi, wi) such that the set W ′ := W \ {wi} ∪ {bi}
contains more edges than W previously. We iterate the procedure with
the colouring W ′, B′ := V \W ′. Since the number of edges in the white
set steadily increases, this procedure must terminate after a finite num-
ber of steps by finding a suitable set X.

A direct consequence, and one of the applications in the following, is
that we can turn a directed graph into a bipartite graph in which every
vertex is either a source or a sink.

Corollary 1. Let ~G be a digraph. Then there exists a subgraph ~G′ of ~G in
which every node is either a source or a sink and

‖~G′‖ > ‖~G‖/4.

Proof. Construct an auxiliary-graph H by replacing every vertex v ∈ ~G
with two vertices v−, v+. For every arc uv ∈ ~G we add the arc u+v−

to H. Applying Lemma 5 with the partition {{v−, v+}}v∈V(G) to H
then tells us which vertices of G can be turned into sources and which
into sinks while still retaining at least a quarter of the arcs.

And of course we can lift the lemma to larger partitions.

Corollary 2. Let c be an integer and G be a graph on cn vertices partitioned
into n sets V1, V2, . . . Vn each containing 6 c independent vertices. There
exists a set X of size n that intersects every Vi in exactly one vertex such that
‖G[X]‖ > ‖G‖/4c2.

Proof. By a simple padding-argument we can assume that all partite
sets have exactly size c. Now the case for c = 2 is handled by Lemma 5
and the case c = 1 is trivial. For c > 2, we partition each set Vi into
sets Bi, Wi such that |Bi| = |Wi| if |Vi| is even and |Bi| = |Wi| + 1
otherwise. Create the auxiliary multi-graph H defined via

V(H) := {B1, B2, . . . Bn, W1, W2, . . . , Wn}
|EH(X, Y)| = |EG(X, Y)| for X, Y ∈ V(H).

Now we apply Lemma 5 and obtain a set X such that ‖H[X′]‖ >
‖H‖/4 and for 1 6 i 6 n, the set X exactly one of {Wi, Bi}. We repeat
the argument for G[

⋃
X] using the partition X (if c is odd we need to

add a single padding vertex to every black partite set in X in order
to ensure a size of dc/2e). We iterate this procedure until c 6 1; the
number of iterations necessary is blog cc+ 1. Since every application
of Lemma 5 yields a quarter of the edges of the input multi-graph, we
end up with a total fraction of 4blog cc+1 6 4c2 edges, as claimed.
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Spiders and trees
The following innocuous looking (and easy to prove) lemma lies at
the heart of the very important equivalence of minors and topological
minors in case of shallow embeddings. We will see this application
later in Chapter 4.

Lemma 6 (Large spiders in shallow trees). Let T be a rooted tree of height
at least two. Then there exists a spider S ⊆ T of height at least two such that

(leaves(S) ∩ leaves(T)) > leaves(T)1/(h−1).

Proof. We prove the statement by induction over the height h. It is
trivial for h = 2, since then T is already a spider. Assume that the
statement holds for h− 1 and that T has height h. Let r = root(T) be
the root of T. If deg(r) > leaves(T)1/(h−1) we are done: we turn T into
a spider by choosing one leaf per subtree Tx, x ∈ N+(r) and removing
everything but the paths from the root to these leaves.

Otherwise, we have that deg(r) < leaves(T)1/(h−1). Therefore there
exists a subtree Tx for some child x ∈ N+(r) such that

leaves(Tx) > leaves(T)/ leaves(T)1/(h−1) = leaves(T)
h−2
h−1 .

Applying the induction hypothesis, we obtain a spider S ⊆ Tx with

min
S∈K(F)

(leaves(S)∩ leaves(Tx)) > leaves(Tx)
1/(h−2) > leaves(T)1/(h−1),

as claimed. Since the base case has height two, the resulting spider has
height at least two.
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I like sparseness. There’s something about that minimalist feel
that can make something have an immediate impact and make it unique.

I’ll probably always work with that formula; I just don’t know how.
— Britt Daniel, singer of Spoon.

Sparseness is a phenomenon seen in all types of applications: from the
discretisation of partial differential equations to electrical networks,
sparse structures arise wherever we look. A great deal of examples
will be mentioned in Chapter 14 where we consider complex networks
which are simply (labelled) graphs obtained from real-world objects.
In this chapter we introduce common notions of structural sparseness,
beginning with the most basic concept of degeneracy and working up
towards the full sparse-class dichotomy by Nešetřil and Ossona de
Mendez. On the way we encounter graphs embeddable in surfaces
and classes defined by forbidden substructures, alongside important
algorithmic results, most of which take the form of algorithmic meta-
theorems, that is, they concern a large body of problems that can be for-
mulated in a certain logic or simply share certain fundamental charac-
teristics. The interplay of structural graph theory and the development
of efficient algorithms—mostly in the framework of approximation
and parametrised algorithms—is the fundamental message: wherever
we obtain strong decomposition theorems for sparse classes, great al-
gorithmic opportunities arise.

The corollary and hypothesis is: structural sparseness is the key to
efficient algorithms for real-world data. Even if efficient algorithms are
available in general classes, the additional assumption of sparseness
can only improve such algorithms—be it in a reduction of running
time, space complexity or solution quality. We will see in the fourth
part of this thesis (Chapter 15 in particular) that the more well-studied
notions of structural sparseness are too strong to be applied to com-
plex networks. Only the most general concepts, bounded expansion and
nowhere dense classes, will be adequate to describe them.

The remainder of this chapter is roughly organised around the hier-
archy of sparse classes depicted in Figure 1. We already encountered
low-treewidth graphs in Section 2.5 and some of their algorithmic
properties in Section 2.9. Classes of bounded degree will primarily be
contained in discussions about classes excluding a topological minor.
Before ascending the hierarchy, however, we need to discuss the basic
notion of degeneracy that plays a fundamental role in many results on
structural sparseness.

29
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Figure 1: Hierarchy of sparse graph classes. Adapted from a figure in [80].



3.1 Degeneracy 31

3.1 degeneracy

If a unified definition structural sparseness is the goal of our endeav-
our, then degeneracy is the low bar with which we have to measure: no
sensible notion of sparseness does not imply degeneracy1. And while
this notion is still far away from a complete theory of sparse classes,
it lays at the heart of several important generalisation which will lead
us there. Informally, a graph is degenerate if its density is bounded
and the densities of all its subgraphs are bounded. In that reading,
degeneracy is just hereditary sparseness. d-degenerate

Proposition 1. Given a graph G and a natural number d, the following
statements are equivalent:

1. Every subgraph of G has a vertex of degree at most d,

2. G has colouring number col(G) = d + 1,

3. G has an acyclic orientation ~G such that ∆−(~G) = d, and

4. G has a linear ordering π such that |N<
π (v)| 6 d for every vertex

v ∈ V(G).

The minimum number d for which any of these statements hold true
for a graph is called its degeneracy. For such graphs, an acyclic ori-
entation of maximum indegree d or an ordering π with small ‘left-
neighbourhoods’ can be computed efficiently: we iteratively remove
the vertex of smallest degree to obtain the ordering, the orientation
can be obtained by turning all edges into arcs pointing towards the
larger vertices in the ordering. With a smart data-structure to track the
degrees of the remaining vertices, this is possible in linear time [181].

Graph classes of bounded degeneracy already provide one import-
ant feature: every member of such a class only contains degenerate
subgraphs. However, they can still host dense substructures other than
subgraphs. Take, for example, the class {K`[E/2]}`∈N consisting of all
one-subdivisions of complete graphs. All members of this class are
two-degenerate, but hardly sparse in a structural sense.

However, since most of the graph classes we are about to consider
are degenerate, we will spend some time on the basic properties of
degenerate graphs. A widely applied fact is that a d-degenerate graph
contains only a linear number of complete subgraphs. The following
result and proofs can be considered folklore.

Proposition 5. Let G be d-degenerate. Then #ω(G) 6 2d · (|G| − d + 1).

Proof. Let π be a linear ordering such that |N<
π (v)| 6 d for every

vertex v ∈ V(G). Let n = |G| be the number of vertices. We count the
number of complete subgraphs by charging them to their respective
last vertex in the ordering π.

1 We will have to revise that statement slightly once we reach nowhere dense-classes
and say instead: no sensible notion of sparseness does not imply O(no(1))-degeneracy.
This is, however, less catchy.
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The first d vertices of the ordering π can induce at most 2d complete
subgraphs. For every vertex v with π(v) > d, we observe that the
number of complete subgraphs whose last vertex in the ordering π

is v are bounded by 2|N
<
π (v)| 6 2d. In total we count at most

2d + 2d(n− d) = 2d · (n− n + 1)

complete subgraphs in G.

Let us quickly prove a similar bound in terms of the degeneracy and
the clique number. While it looks inferior to the above bound, it will
be useful for graph classes where the clique number is much smaller
than the degeneracy.

Lemma 7. Let G be d-degenerate. Then #ω(G) 6 ω(G)(ed)ω(G)|G|.

Proof. Let again π be a linear ordering such that |N<
π (v)| 6 d for every

vertex v ∈ V(G). Let ω := ω(G) in the following. We use a similar
charging argument as before: a vertex v ∈ V(G) is the last vertex in
the ordering of at most

ω−1

∑
k=1

(
d
k

)
6

ω−1

∑
k=1

dkek

kk 6 (ω− 1)(ed)ω−1

complete subgraphs. The claimed bound follows.

A further useful property of degenerate graphs is that their composi-
tion is again degenerate.

Lemma 8. Let G1, G2 be d1- and d2-degenerate graphs on the same set of ver-
tices V. Then the graph G = (V, E(G1) ∪ E(G2)) is 2(d1 + d2)-degenerate.

Proof. Since the number of edges in G is at most (d1 + d2)|V| there
must exist a vertex v of degree at most 2(d1 + d2). We can now induct-
ively apply the argument to G \ {v} which obviously is again a graph
obtained by combining a d1- and a d2-degenerate graph. We conclude
that G is 2(d1 + d2)-degenerate.

The above can easily be extended to more than two graphs, in that
case the resulting degeneracy is twice the sum of the degeneracies of
the input graphs.

We saw above that degenerate graphs can be defined via acyclic ori-
entations of low in-degree and that this characterisation easily proves
that graphs with low degeneracy have a low colouring number. The
following relaxation to—not necessarily acyclic—orientations of low
indegree will prove useful. It is considered folklore and indeed it
seems impossible to track down the first time it was proved.

Lemma 9. The underlying graph of a digraph ~G is 2∆−(~G)-degenerate.
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Proof. Since G contains at most ∆−(~G)|G| edges, it contains a vertex v
of degree at most 2∆−(~G). Removing this vertex from ~G cannot in-
crease the maximum indegree, therefore we can apply the same argu-
ment to the graph ~G \ {v} and hence prove inductively that G is in
fact 2∆−(~G)-degenerate.

The following basic observation will crop up in many of the following
proofs, hence we put it down here as a convenient shorthand.

Lemma 10. Let G = (X, Y, E) be a d-degenerate bipartite graph. Then the
number of vertices in Y with degree at least d is at most d|X|.

Proof. Let Y′ ⊆ Y be the set of vertices with degree at least d. Let
further X′ = N(Y′) and G′ = G[X′ ∪ Y′]. Since every vertex in Y′ has
degree larger than d, there exists a vertex of degree at most d in X′. We
count the number of vertices in Y′ by choosing such a vertex x ∈ X′

with degG′ 6 d, removing it from X′ and removing NG′(x) from Y′.
Notice that the degree of every vertex in Y′ \ NG′(x) still has degree
larger than d into the set X′ \ {x}. Hence repeating this operation
until X′ is empty gives us that |Y′| 6 d|X|, as claimed.

k-core
A related notion to degeneracy is that of cores. A k-core of a graph G is
the maximal subgraph of G with minimal degree at least k. It can be
computed in linear time by repeatedly removing the vertex of smallest
degree until that vertex has degree at least k or the graph is empty
(the linear running time is achieved by keeping track of the vertices’
degrees in an array and updating it during deletion). We will need the
following folklore result about cores later.

Lemma 11. Let G be a graph. Then G contains a ‖G‖/2|G|-core with at
least

√
‖G‖ vertices and at least ‖G‖/2 edges.

Proof. We obtain the core by iteratively removing vertices of degree
less than ‖G‖/2|G|. Denote the number of vertices deleted in this
fashion by p. The number of edges we have removed is then in total
at most p‖G‖/2|G| < ‖G‖/2. It follows that the core still contains at
least ‖G‖/2 edges, and accordingly at least

√
‖G‖ vertices.

We should consider degeneracy as the ‘low bar’ of structural sparse-
ness: any sparse class should be degenerate. And sometimes degen-
eracy already improves the tractability of problems. Shai and Gutner
demonstrated that Dominating Set can be solved in linear fpt-time [6]
on degenerate graphs. Philip, Raman, and Sikdar showed that Dom-
inating Set also admits a kernel of size O(k(d+1)2

) in d-degenerate
graphs [204]. On the other hand, Cygan, Marcin and Michał Pilipczuk,
and Wojtaszczyk, showed that Connected Dominating Set (among
other problems with connectivity constraint) does not admit a poly-
nomial kernel in degenerate graphs [55] unless NP is contained in
coNP/poly. Furthermore, Golovach, and Villanger [126] earlier proved
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that Partial Dominating Set and (k, r)-Centre are W[1]- and W[2]-
hard, respectively. In order to obtain broad algorithmic results, we
need to go beyond this ‘low bar’ of sparseness.

3.2 embeddable graphs

Graphs embedded in the plane have been a topic since the very in-
fancy of graph theory—it might have been different had the bridges
of Königsberg crossed each other. There is something fundamentally
alluring to plane graphs, maybe fed by our innate propensity towards
order. It is not surprising, then, that a rich body of work on the algo-
rithmic properties of planar graphs exist. Let us begin with the famous
separator theorem for planar graphs by Lipton and Tarjan.

Theorem 1 (Lipton and Tarjan [174]). Every planar graph with n vertices
has a 2⁄3-separator of size O(

√
n).

Recall that a 2⁄3-separator divides a graph into two pieces, none of
which are larger than 2n/3. Lipton and Tarjan later demonstrated
that the separator theorem can be used to design a PTAS for Inde-
pendent Set [175] and Vertex Cover [43]. Baker applied a different
technique [15] that can also be used to design PTAS for Dominating
Set, a problem that seems to be impervious to the separator approach.
Among other problems, she also showed that Vertex Cover, Inde-
pendent Set, and Subgraph Isomorphism admit polynomial time ap-
proximation schemes in planar graphs.Baker’s technique

Her technique works as follows: we divide a planar graph into layers
by running a bfs starting at some arbitrary vertex. Depending on the
approximation quality, we choose a number r and assign each layer
a number (d mod r), where d is the layer’s depth in the bfs tree. By
‘sacrificing’ a group of layers with the same number i (in the case of
Independent Set, for example, we would decide that our solution
should not contain vertices from these layers), we can decompose the
graph into disjoint parts each of treewidth at most O(r) and solve the
problem in these independent subinstance optimally. For the ‘correct’
choice of the number i (for which we can simply try all values) this
yields a solution whose quality is 1 + O(1/r).

Eppstein generalised Baker’s approach beyond planar graphs [84] by
showing that the same trick—with some modifications—is possible in
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every class of graphs that has the diameter-treewidth property, or equi-
valently locally bounded treewidth. Locally bounded treewidth

A class G has locally bounded treewidth if there exists a function f such
that for every r ∈N and every graph G ∈ G and every vertex v ∈ G it
holds that

tw
(
G
[
Nr[v]

])
6 f (r).

In particular, planar graphs and bounded-genus graphs have locally
bounded treewidth and therefore admit PTAS for many problems.
Another major algorithmic breakthrough that in particular applies to
classes with locally bounded treewidth was achieved by Frick and
Grohe. Starting from a result by Seese [222] for classes of bounded
degree, they proved the following: FO model-checking

Theorem 2 (Frick and Grohe [112]). Let G be a graph class with locally
bounded treewidth and φ a first-order definable property. There exists a linear-
time algorithm that decides whether a given graph G ∈ G has property φ.

We note that the result by Frick and Grohe is actually more general
but it in particular applies to graphs with locally bounded treewidth.
The property they and before them Seese exploit is that first-order
definable properties are inherently local by Gaifman’s Theorem [113].
Avoiding a detailed excursion, it suffices to say that every first-order
definable property φ holds in a graph G if and only if we can find
a 2r-scattered set S whose members all satisfy a local first-order for-
mula φr, which is only evaluated around the r-neighbourhood of each
vertex v ∈ S. Note that the quantities r and |S| only depend on φ.
Roughly speaking, testing the property φ then can be done by evalu-
ating φr for every vertex and then finding a suitable 2r-scattered set.
In the context of bounded-degree classes, the local formulas can be
simply evaluated by brute force. In classes with locally bounded tree-
width one can instead make use of Courcelle’s theorem.

The implication for parametrised complexity on sparse graphs can-
not be overstated: problems like Vertex Cover, Dominating Set, r-
Dominating Set, Subgraph Isomorphism and in particular k-Path,
and Edge Dominating Set are all first-order definable (by a family
of formulas, one for each parameter k) and can therefore be solved
in linear fpt-time. As is often the case with such meta-theorems, the
dependence on the parameter is a tower of exponentials.

We will postpone the discussion of another big result in paramet-
rised complexity to Chapter 11: the meta-kernelisation theorem [23]
that showed for large range of problems that they admit linear kernels
in planar and bounded genus graphs. Further results

Beside these algorithmic meta-theorems, there exists a large num-
ber of results for parametrised problems in the context of embeddable
graphs. Alber, Fernau, and Niedermeier demonstrated that planar-
ity can be utilised to obtain subexponential fpt-algorithm for Ver-
tex Cover, Independent Set and Dominating Set [4]. Marcin and
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Michał Pilipczuk, Sankowksi and Erik Jan van Leeuwen show that
Steiner Tree and Steiner Forest parametrised by the size of the
tree/forest and Multiway Cut admit polynomial kernels when the
input is a planar graph [206]. The same authors also demonstrated a
subexponential time fpt-algorithm for Steiner Tree [205]. However,
many more results are applicable to larger classes of graphs which we
will discuss in the next section. We should remember, however, that
many insights were first had in the context of graphs that have the
pleasing property of being drawable without crossing edges.

3.3 excluded (topological) minors

Defining a structure by stating what should not occur in it often pro-
vides a succinct description of a rich and complicated object. Take
graphs excluding the claw (the graph K1,3) as an example: this seem-
ingly minor restriction on what subgraphs can occur give rise to a deep
and complicated theory with major algorithmic implications (see, e.g.,
the survey by Faudree, Flandrin, and Ryjáček [90] and the structural
characterisation by Chudnovsky and Seymour [45]).

In the context of sparse graphs, Kuratowski’s theorem (as formu-
lated by Wagner) is certainly the most iconic instance of such a charac-
terisation: a graph is planar if and only if it does not contain a minor
isomorphic to either K5 or K3,3. Such characterisation by forbidden
structures are extremely useful, since every graph without the prop-
erty in question contains a certificate that proves it.The minor WQO

By the Robertson-Seymour theorem (formerly Wagner’s conjecture),
finite graphs are well-quasi-ordered under the minor relation. This
in particular implies that graph properties that are minor-closed are
always characterised by a finite obstruction set: if a graph contains one
of the obstructions as a minor, it does not have the property. Now if
degeneracy is simply hereditary sparseness, why not consider minor-
closed sparseness? It certainly nullifies of our above counterexample:
a subdivided Kn is not sparse in a minor-closed sense, since we can
simply undo the subdivision by taking a minor. Indeed, there is a rich
body of work on planar, apex-minor-free2, minor-free and topological-
minor-free graphs.

Before we go into the algorithmic consequences of the Robertson-
Seymour result and its extensions, let us consider some more digest-
ible properties of graph classes that exclude a fixed graphs as a minor.
The first important two results shows that graph classes excluding
some fixed graphs as a minor are degenerate.

Theorem 3 (Mader [177]). If G has average degree at least 2t−2, then G
contains Kt as a minor.

The degeneracy of classes excluding a minor then follows from the
simple observation that such classes are hereditary. For excluded to-

2 An apex graph is a planar graph with a universal vertex added to it.
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pological minors, the same was later shown by Lomlós and Szemerédi
and improved by Bollobás and Thomason.

Theorem 4 (Bollobás & Thomason [32], Komlós & Szemerédi [161]).
There is a constant ρ 6 10 such that, for r > 2, every graph with average
degree at least ρr2 contains Kr as a topological minor.

Again, graph classes defined by an excluded topological minor are
hereditary, so it follows that they are in particular degenerate and
contain at most 2ρr2 · n complete subgraphs. The grid theorem

The first structural property of graphs excluding a minor is one of
the many ‘by-products’ of the work by Robertson and Seymour that
had far-reaching consequences in both graph theory and theoretical
computer science. It is known as the grid-minor theorem:

Theorem 5 (Grid-minor theorem [213]). There exists a function f such
that every graph with treewidth larger than f (k) contains a k× k-grid as a
minor.

In the original proof the function f was non-elementary, a different
proof by Robertson, Seymour and Thomas [219] lowered it to 2O(k5).
They conjecture that the bound should actually be polynomial, and
after several improvements [152, 170], finally Chekuri and Chuzhoy
claimed a polynomial bound [42].

One of the direct implications of this theorem is that graphs exclud-
ing a fixed planar graph have bounded treewidth: this follows from
the simple fact that every planar graph is contained as a minor in a
large enough planar grid. The grid minor theorem can be strengthened
if we restrict ourselves to sparse classes. Robertson, Seymour, and
Thomas observed that in planar graphs, one can use f (k) = 6k − 5.
Demaine and Hajiaghayi lifted this result to graphs excluding a fixed
graph H as a minor: the corresponding function f is linear and de-
pends only on the excluded graph H [63]. Bidimensionality

The (sparse) grid minor theorem has lead to a fruitful line of re-
search called bidimensionality. The key insight is that many problems
have necessarily large solutions in grids; and that this still holds true
if the grid is only present as a minor. Take the Feedback Vertex Set
problem: a 4k× 4k grid contains k disjoint cycles of length 4, therefore
we need to remove at least k vertices to turn it into a forest. This still
holds true if the grid is actually a minor embedded in a bigger graph,
therefore we have the following Win/Win-scenario: either the tree-
width of our input graph is bounded, or it contains a large grid and we
can conclude that our solution will be too large. This framework only
makes sense in the parametrised setting and is particularly powerful
in graph classes with a linear grid theorem: then the bound on the
treewidth is actually O(

√
k) and one obtains fpt- algorithms whose de-

pendence on k is a subexponential function 2O(
√

k). Note that depend-
ing on whether we work in planar graphs, graphs of bounded genus,
graphs excluding a minor or an apex-minor, the notion of a ‘grid’-
graph needs to be adapted (for example, in a plane graphs we can
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obtain a triangulated grid that respects the embedding of the graph).
For bounded-genus graphs, Demaine, Fomin, Hajiaghayi, and Thilikos
show the existence of subexponential parametrised algorithms for Ver-
tex Cover, Feedback Vertex Set, Dominating Set, Edge Dominat-
ing Set, and more [61]. For Vertex Cover, Dominating Set, and Set
Cover they even prove such algorithms exist for graphs excluding a
fixed minor. Fomin, Lokshtanov, Raman, and Saurabh used bidimen-
sionality to obtain EPTAS for r-Dominating Set, Connected Dom-
inating Set and Connected Vertex Cover on classes excluding an
apex-minor and Maximum Leaf Spanning Tree, Vertex H-Packing
(among many other problems) on classes excluding a minor [100]. For
more results and details on the techniques we refer to the surveys
by Demaine and Hajiaghayi [62] and Dorn, Fomin, and Thilikos [70].
We will shortly revisit bidimensionality in the context of kernelisation
algorithms later in Chapter 11.Width measure

Before we move on, we should note that while treewidth was dis-
covered earlier by Halin [136], the graph minor programme popular-
ised it. Not only has this width measure inspired a whole range of
algorithmic results (a 1985 survey by Arnborg [12] lists dozens of res-
ults and applications) culminating in what is now known as Cour-
celle’s Theorem [51]—namely that all MSO-expressible problems can
be solved in linear ftp-time on graphs of bounded treewidth. It has
also inspired a whole range of graph width measures, including clique-
width, rankwidth [201], shrubdepth [118], booleanwidth [39] modu-
larwidth [117] matchingwidth [243] treedepth, and treelength [71], all
with their own, rich body of work.Robertson-Seymour

decomposition Finally, we come to the decomposition theorem by Robertson and
Seymour. In essence, it states that graphs excluding a fixed minor have
a tree decomposition whose bags are either of constant size or have a
relatively tractable structure related to embeddings in a surface of low
genus. We need a few technical definitions to state it, though we will
gloss over several details for the sake of brevity. A very approachable
write-up can be found in Diestel’s book [67].

Given a tree decomposition (Vt)t∈T, the torso of the decomposition
are the graphs obtained from G[Vt], t ∈ T by turning all sets Vt ∩ Vs,
s ∈ NT(t) into cliques—we think of these sets as the ‘gluing’ points
between the bags of the decomposition.k-nearly embeddable

A graph G is k-nearly embeddable in surface S if we can remove up
to k vertices from G and decompose it into at most k graphs H0 ∪ H1 ∪
. . . ∪ Hk such that

• H0 can be embedded into S,

• H1, . . . , Hk are pairwise disjoint and intersect H0 in exactly one
face of the embedding, and

• the graphs H1, . . . , Hk each have a path decomposition of width k
that contains the vertices of the face the graph intersects with, and
these vertices appear in the same order as on the face.
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The third point is very vaguely formulated here: for our purposes
here, we imagine that G will be embedded in S with the exception
of a few vertices and a few parts that can be ‘crammed’ into path
decompositions that attach nicely to the rest of the embedding.

Theorem 6 (Robertson and Seymour [216]). For every h > 5 there exist
a k ∈N such that every graph that excludes Kh as a minor has a tree decom-
position whose torsos are k-nearly embeddable in a surface in which Kh is not
embeddable.

We can replace the last part by ‘a surface whose genus only depends
on h’ to make the statement easier to digest. The power of the decom-
position lies in the fact that it can be used to lift results on graphs of
bounded genus up to graphs excluding a minor. For example, Baker’s
approach to design PTAS [15] can be modified using the decomposi-
tion theorem to work for graphs excluding a minor [127, 235]. Again,
this ‘by-product’ of the programme deeply affected the evolution and
understanding of algorithms. Its original purpose was, of course, the
big result that took twenty-one years and twenty papers to prove:

Theorem 7 (Graph minor theorem [217]). Graphs are well-quasi ordered
by the minor relation.

Minor testing
The really far-reaching impact in the theory of computation, however,
was created by the constructive minor test based on the decomposi-
tion [215]: for a fixed graph H, we can test whether it is contained in
a graph G in time f (H)|G|3. In the early days of parametrised com-
plexity, this theorem was the key algorithmic tool for Downey and
Fellows to design fpt algorithms (see, e.g., their early overview pa-
per [73]). Take, for example, the Vertex Cover problem. It is easy to
verify that the class of graphs with a vertex cover of size at most k
is minor-closed. Since graphs are wqo by the minor relation, there-
fore this class has a finite obstruction set whose size is some function
of k. Hence, we can test in f ′(H)|G|3 time whether a given instance of
Vertex Cover belongs to the class. Historically, we can draw a straight
line from the graph minor theorem to parametrised complexity, a field
that has matured into a solid segment of theoretical computer science
and provides efficient algorithms for hard problems! A better proof
that the theory of sparse graphs goes hand in hand with the theory of
efficient computation could not exist. Topological wqo?
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Returning back to the sparse class hierarchy, the immediate ques-
tion is: are graphs also wqo by the topological minor order? As it
turns out, there is a rather concise counterexample: take the class of all
cycles with each edge duplicated. Clearly none of these graphs is a sub-
graph of another and any vertex dissolution will create a single edge
without a parallel counterpart. Therefore they are pairwise incompar-
able in the topological minor relation, which proves that graphs are
not wqo under it (Ding is often cited for the first construction of an
anti-chain [68]). Note that if we insist on having simple graphs, taking
the above class and subdividing every edge once does the trick.Topological Bidimensionality?

The other big algorithmic tool, the grid minor theorem, also does
not extend to classes excluding a topological minor. In fact, already
classes of bounded degree pose an obstacle: a counterexample are d-
regular expander graphs, who have treewidth Ω(n) and in particular
do not admit sublinear balanced separators. As a consequence, the
relationship between the treewidth and the size of a grid-minor is
(at least) quadratic; hence bidimensionality theory cannot be used to
obtain subexponential fpt algorithms3.

Nonetheless, there exists a decomposition theorem for graphs ex-
cluding a topological minor which made it possible to extend several
algorithmic results known for classes excluding a minor.Grohe-Marx decomposition

Theorem 8 (Grohe and Marx [130]). For every fixed graph H, every graph
excluding H as a topological minor has a tree decomposition where every torso

• either has bounded degree except for a bounded number of vertices, or

• is k-almost embeddable in a surface of bounded genus.

Such a decomposition can be computed in time f (H)|H|O(1) for some recurs-
ive function f .

Grohe and Marx demonstrate the applicability of the decomposition
by showing that it can be used to design fpt-algorithms and to test iso-
morphism in time n f (H). Both the Robertson-Seymour and the Grohe-
Marx decomposition have also been applied in the field of kernelisa-
tion: Fomin, Lokshtanov, Saurabh, and Thilikos showed that Domin-
ating Set and Connected Dominating Set admit linear kernels for

3 Many thanks to Michał Pilipczuk for this explanation, which can also be found in the
recently published book on parametrised algorithms [54].
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graphs excluding a minor [102] and graphs excluding a topological
minor [103]. Low treewidth colouring

A decomposition of a very different flavour for classes excluding a
fixed minor—conjectured by Thomas—was proved by Devos et al.

Theorem 9 (Low-treewidth 2-colouring [66]). For every graph H there
exist integers k such that every graph excluding H as a minor has a vertex-
partition into two parts that each induce a graph of treewidth at most k.

Their paper contains some stronger but more technical results and also
include an edge-partition variant. We further should mention a similar
result by Demaine, Hajiaghayi, and Kawarabayashi for so-called odd-
minor free graphs [64]. The aforementioned decompositions into two
graphs of constant treewidth have, as far as I know, not been exploited
algorithmically, save for the possibility of approximating the chromatic
number of such graphs within a factor of two. But a variation of this
idea will form mayor part of the algorithmic toolkit presented in the
next part. FO model-checking

Given that the first-order properties can be checked in linear fpt-time
on graphs of bounded genus, it is natural to ask whether we can obtain
a similar results for excluded-minor classes. Flum and Grohe provided
a linear-time algorithm for classes excluding a minor [96] which was
subsequently generalised by Dawar, Grohe, and Kreutzer to classes loc-
ally excluding a minor [58] (as one might suspect, these classes exclude
a minor Hr in the r-neighbourhood of every vertex, for every r ∈ N).
Moreover, for an important fragment of first-order definable problems;
Dawar, Grohe, Kreutzer, and Schweikardt showed that they admit an
EPTAS in classes excluding a fixed minor [59]

Let us wrap up this short excursion in graph classes characterised
by forbidden substructures. There exist a long list of further notions of
substructures like immersions, contractions, and induced minors that
encouraged interesting and fruitful research, both in terms of graph
theory and algorithms. There has also been interest in ‘dense’ coun-
terparts like vertex minors and pivot minors [200] as well as odd mi-
nors [64] whose algorithmic application is just now being explored.
Our conclusion for this section is that the theory of sparse graphs has
an immense impact on the theory of algorithms, in particular in the
parametrised framework. This pattern continues with the graph class
we are about to introduce next and that will be the main focus of this
thesis.





4
B O U N D E D E X PA N S I O N C L A S S E S

We finally arrive at the centrepiece and focus of this thesis: the grad
of graphs and graph classes of bounded expansion. As we can see in
the hierarchy in Figure 1, graph classes of bounded expansion contain
both classes with bounded degree and classes excluding a (topological)
minor. The key ingredient to define these classes are shallow minors
(see Section 2.2) and an appropriate ‘forbidden structure’ definition.

Definition 13 (Topological grad). For a graph G and an integer r, the
topological greatest reduced average density (grad) at depth r is defined as

∇̃r(G) = max
H∈G Õ r

‖H‖
|H|

For a graph class G we define ∇̃r(G) = supG∈G ∇̃r(G).

In particular we have that 2∇̃0(G) is exactly the degeneracy of G. Bounded expansion, ∇•
Now a graph class G has bounded expansion if and only if there ex-

ists a function f such that ∇̃r(G) < f (r). Note that instead of forbid-
ding concrete graphs to occur as substructure, we instead forbid all
graphs whose density is above f (r). There is an analogous measure,
the grad ∇r defined over shallow minors:

∇r(G) = max
H∈GO r

‖H‖
|H| .

In particular, the two measures coincide at depth zero, i.e. we have
that ∇0(G) = ∇̃0(G). As a convention we will prefer the symbol ∇0

in this case. We saw earlier that graph classes defined over excluded Polynomial equivalence of ∇•
and ∇̃•minors are quite different from those defined over excluded topological

minors. A surprising feature of bounded expansion classes is that the
flavour of minor does not matter.

Proposition 6 (Nešetřil and Ossona de Mendez [192]).
For every graph G and half-integer r it is true that

∇̃r(G) 6 ∇r(G) 6 4(4∇̃r(G))(r+1)2

Hence the topological grad of a graph class is bounded if and only if its
grad is bounded. As we will see later, we can modify the definition of
shallow minors even further and again obtain an alternative definition
of bounded expansion. This property is one of the extremely robust
features that make the theory of shallow minors so exciting. Let us
improve the above bound for the case of 1⁄2-shallow minors, it will
come in handy later on and gives a good idea how Proposition 6 can
be proved.
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Lemma 12. For every graph G we have

∇̃1/2(G) 6 ∇1/2(G) 6 (2∇̃1/2(G) + 1)2.

Proof. The first inequality is trivial and we only have to show the
second one. Consider a 1⁄2-shallow minor H of G with∇0(H) = ∇1/2(G),
an appropriate shallow embedding φV of H into G. Let S1, . . . , S|H| be
the branch sets of H (that is, the sets {φV(u)}u∈H) and let M be the
subgraph of G induced by these sets. Note that, by minimality, the
subgraphs M[Si] are stars for 1 6 i 6 |H|.

Let W := V(H) and S := V(M) \ V(H). Every edge in H is either
due to an edge with both endpoints in W or due to an edge with ex-
actly one endpoint in W. Partition the edges of H into ‘direct’ edges ED

(those that are due to a W-W-edge in M) and ‘indirect’ edges EI (those
that are due to a W-S-edge in M).

If |ED| > ∇0(H)−1/2‖H‖ we are done: the subgraph M[W] ⊆ G
already has density

‖M[W]‖
|W| =

|ED|
|W| >

∇0(H)−1/2‖H‖
|H| = ∇0(H)

1/2 = ∇1/2(G)
1/2.

Otherwise, assume that |EI | > (1−∇0(H)−1/2)‖H‖. We partition the
vertices W into two sets Wl , Wh as follows: Wh contains those vertices
who have at least ∇0(H)1/2 neighbours in M \ (ED ∪ EI) and Wl all oth-
ers. We construct a 1⁄2-shallow topological minor of M by contracting
all neighbours of vertices in Wh into (arbitrary) edges. Note that by the
minimality of M this cannot create double edges. The density of the
resulting minor is at least

1
2
· ∇0(H)1/2|Wh|+ (∇0(H)−∇0(H)1−1/2)|Wl |

|Wh|+∇0(H)1/2|Wl |

This fraction takes its extreme values in the cases where |Wh| = |W|
and |Wl | = |W|. In these two cases we obtain the densities

1
2
∇0(H)

1/2 and
1
2
∇0(H)

1/2 − 1
2

,

respectively. It follows that

1
2
∇1/2(G)

1/2 − 1
2
6 ∇̃1/2(G) ⇐⇒ ∇1/2(G) 6 (2∇̃1/2(G) + 1)2,

as claimed.
Algebraic robustness

The invariance of the bounded expansion property under different no-
tions of shallow minors is no the only feature that makes it ‘robust’.
Another feature is that we can modify the members of the class with
certain operations such that the resulting class again has bounded ex-
pansion. Let us start with a very simple operation: adding a universal
vertex, that is, a vertex connected to every other vertex of the graph.
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Lemma 13. For any graph G it holds that

∇̃r(G) 6 ∇̃r(G ∗ u) 6 ∇̃r(G) + 1.

Proof. Observe that a topological minor of G can always be extended
by the universal vertex u to obtain a topological minor of G ∗ u. In the
other direction, any topological minor of G ∗ u that uses u (as either
nail or a subdivision vertex) can be turned into a topological minor
of G by removing u. In both cases, the embedding of the minor does
not change and hence its depths does not increase. Let H, H′ be two
such minors that only differ in that H′ has the additional nail u. Then

‖H‖
|H| 6

‖H′‖
|H′| 6

‖H ∗ u‖
|H|+ 1

6
‖H‖+ |H|
|H|+ 1

6
‖H‖
|H| + 1,

from which the claim follows.

It follows directly that classes of bounded expansion are closed un-
der the addition of a constant number of universal vertices. A second,
more surprising, feature is that they are also closed under lexico-
graphic products with constant-sized graphs.

Proposition 7 (Nešetřil and Ossona de Mendez [192]).
For every graph G, integer p > 2 and half-integer r it is true that

∇̃r(G · Kp) 6 max{2r(p−1)+1, p2} · ∇̃r(G) + p− 1

This stability under lexicographic products is of major help in many of
the following proofs and even has direct practical relevance for model
of complex networks (see Section 15.2).

In conclusion, the density of shallow minors provides are robust
definition for sparse classes. However, to obtain a complete theory
of sparse classes, we would like to partition all classes into ‘dense’
and ‘sparse’: a dichotomy of structural sparseness. As indicated by the
hierarchy in Figure 1, bounded expansion classes are not the largest
possible structurally sparse class.

Before we consider larger classes, let us return to algorithmic applic-
ations. Some results will be discussed later in Chapter 10, among them
a constant-factor approximation for r-Dominating Set by Dvořák and
several smaller results following from work by Nešetřil and Ossona
de Mendez. A result that needs to mentioned right here is the continu-
ation of the first-order model checking programme: Dvořák, Král and
Thomas showed that again, a linear fpt- time algorithm is possible [81].
They exploit a property of bounded expansion classes that will be re-
visited in detail in Chapter 7, the so-called low-treewidth colourings.
The result even extends to the next larger class, the graphs of locally
bounded expansion. Locally bounded expansion

As we saw in the previous sections, an easy way to obtain a lar-
ger class from a forbidden-structure characterisation is to ‘localise’
the definition: instead of graph classes that exclude a fixed minor,
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we define classes in which every vertex’ `-neighbourhood induces a
graph that excludes some minor H`, and obtain graph classes that loc-
ally exclude a minor. The same can be done for classes of bounded
expansion: classes with locally bounded expansion have a bivariate
function f (`, r) depending on the locality parameter ` and the minor-
depth r. Now, there are graph classes that have globally unbounded
but locally bounded expansion—hence we have not yet arrived at a
dichotomy of sparseness, which will be the topic of the next chapter.



5
N O W H E R E D E N S E C L A S S E S

Let us retrace the development of the structural sparseness dichotomy
that makes the framework of shallow minors so alluring. It starts out
with the following result, independently proved by Dvořák and Jiang.

Theorem 10 (Dvořák [78], Jian [148]). Let ` ∈ N and ε > 0. There exists
integers n`,ε and cε such that every graph G with n > n`,ε vertices and at
least n1+ε edges contains a cε-subdivision of K`.

In short: dense shallow clique-minors are unavoidable if the density of
a class grows as a superlinear polynomial of n. Using this fact, Nešetřil
and Ossona de Mendez proved the following dichotomy result:

Proposition 8 (Nešetřil and Ossona de Mendez [191]).
Let G be an infinite graph class. Then the limit1

lim sup
H4r

tG∈G

log ‖H‖
log |H|

is either 6 1 for all r ∈ N or it is 2 for some r0 ∈ N. In the former
case, the class G is nowhere dense. Otherwise, it is somewhere dense and
ω(G Õ r0) = ∞.

Proof. The limit obviously lies in the interval [0, 2]. If there exists a
number m0 such that ‖G‖ 6 m0 for all G ∈ G, then the limit is 0.
Otherwise we have already that for any m0, there exists a graph G ∈ G
such that some 0-shallow topological minor—i.e. a subgraph—H of G
satisfies ‖H‖ > m0. We can assume that H does not contain isolated
vertices, therefore ‖H‖ > |H| and it follows that log ‖H‖/ log |H| > 1.
Accordingly, we see that the limit cannot take any value in (0, 1).

Now assume that for some r ∈ N and some 0 < ε < 1 the limit
takes on a value > 1 + ε: hence there is an infinite sequence of graphs
H1, H2, . . . satisfying limi→∞ log ‖Hi‖/ log |Hi| > 1 + ε.

By Lemma 11, each such graph Hi contains a ‖Hi‖/2|Hi|-core H′i
with at least ‖Hi‖/2 edges and a least

√
‖Hi‖ vertices. This gives rise

to the infinite (since logi→∞ |H′i |1/2 = ∞) sequence H′f (1), H′f (2), . . .
of graphs, where f is an appropriate selection function to ensure
that |H′f (i)| < |H

′
f (i+1)|, which has the property that

lim
i→∞

log ‖H′f (i)‖
log |H′f (i)|

> lim
i→∞

log ‖Hi‖
2 log |Hi|1/2 > lim

i→∞

log ‖Hi‖
log |Hi|

> 1 + ε

1 We evaluated the fraction log ‖H‖/ log |H| symbolically in that we define it to be 0 in
case ‖H‖ = 0.
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Since the sequence {|H′f (i)|} f (i)∈N increases monotonically, there exists
some i0 ∈N such that for f (i) > i0 it holds that

log ‖H′f (i)‖
log |H′f (i)|

> 1 +
ε

2
⇔ ‖H′f (i)‖ > |H

′
f (i)|

1+ε/2

Now Theorem 10 implies that for every `, there exists i`,ε/2 and cε/2
such that for f (i) > i`,ε/2 we have that K` 4

cε/2
t H′f (i), i.e. H′f (i) contains

a 6 cε/2-subdivision of K` as a subgraph. Since H′f (i) ⊆ Hi 4r
t Gg(i)

for some sequence {g(i)}i∈N, we have that K` is a (cε/2 + 1)(r + 1)-
shallow minor of Gg(i). In other words: the class G contains arbitrar-
ily large complete subgraphs as r0-shallow topological minors, where
r0 = (cε/2 + 1)(r + 1), and hence the above limit is two.

ω•, ω̃•
We arrived at the hilltop of our ascend through the sparse hierarchy.
From up here we have the complete overview: every graph class can be
categorised as structurally sparse or dense using the above limit. For
a more intuitive definition of how nowhere dense classes look like, we
return to shallow minors. To that end, let us introduce a parametrised
version of the clique number of a graph. We define

ω̃r(G) = ω(G Õ r) and ωr(G) = ω(GO r).

Definition 14 (cf. [192]). A graph class G is nowhere dense if and only
if for every integer r it holds that ω̃r(G) < ∞.

It follows immediately that graphs classes of bounded expansion are
nowhere dense: we have the simple relation ω̃r(G) 6 ∇̃r(G)2. The con-
verse is not true, it is in particular possible for nowhere dense classes
to have a superlinear density. Nonetheless we can transfer most of
the results for classes of bounded expansion to nowhere dense classes.
The rule of thumb is that if a quantity is guaranteed to be a constant
in a class of bounded expansion, it is asymptotically (for algorithmic
purposes) of the order no(1).

Let us consider a small example to demonstrate the typical line of
reasoning. For a nowhere dense class G, Proposition 8 implies that

lim sup
H⊆G∈G

log ‖H‖/ log |H| 6 1

which means that for every ε > 0, there exists Nε such that

log ‖H‖/ log |H| 6 1 + ε for H ⊆ G ∈ G>Nε .

This is of course equivalent to ‖H‖ 6 |H|1+ε and means that the de-
generacy of a nowhere dense class is asymptotically bounded by O(nε)

for every ε, or simply O(no(1)). To see the algorithmic implications
of such a bound, consider the algorithm to compute a degeneracy-
ordering of a graph: as described in the very beginning of this chapter,
this algorithm takes time O(dn) where d is the degeneracy of the in-
put graph. By the previous observation, this algorithm will work in
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almost linear time for nowhere dense classes: for any ε > 0, for large
enough inputs, it will take time O(n1+ε). Note that by manipulating
the ε, we can hide any polynomial dependence on d. For an algorithm
with running time O(dcn), for some constant c, we chose ε′ = ε/c and
choose our graphs large enough such that the degeneracy drops be-
low nε′ . Then the running time of the hypothetical algorithm turns out
to be (asymptotically)

O(dcn) = O(nε′cn) = O(n1+ε).
FO model-checking

Now, we finally pose the question: is first-order model checking still
possible using the most general notion of structurally sparseness? The
result was claimed by Dawar and Kreutzer [164] and independently by
Dvořák, Král, and Thomas. The former set of authors retracted their
claim after finding a flaw in their proof, the latter published the weaker
statement for graphs of bounded expansion and locally bounded ex-
pansion [81]. Finally in 2013, Grohe, Kreutzer, and Siebertz succeeded
in proving that first-order properties can be checked in almost linear
fpt-time in nowhere dense classes [129]. And it turns out that nowhere
dense classes are the limit for efficient first-order model checking:

Theorem 11 (Dawar and Kreutzer [164]). If G is a monotone graph class
and effectively2 somewhere dense, then the first-order model checking problem
for G is not in FPT unless FPT = AW[∗].

This even extends to the fragment of Σ1-formulas, i.e. first-order for-
mulas of the form ∃x1 . . . ∃xpφ(x1, . . . , xp) where φ is quantifier-free:

Theorem 12 (Dvořák, Král, Thomas [81]). If G is a monotone graph class
and somewhere dense, then the Σ1-model checking problem for G is not in
FPT unless FPT = W[1].

We should also note that Dawar and Kreutzer showed earlier that r-
Dominating Set is in FPT for nowhere dense classes [60], a result now
subsumed by the above first-order meta-theorem. Locally nowhere dense

As a final consideration, note that the ‘localisation-trick’ from earlier
does not result in a new class: if a graph class is locally nowhere dense,
it is also simply nowhere dense. This is easy to see if one considers an
r-shallow clique minor: its embedding has a diameter of Θ(r), there-
fore any graph that locally does not contain such a structure also
excludes it globally. We have indeed reached the peak of structural
sparseness.

2 A class is effectively somewhere dense if for every graph H and integer r, one can
compute in polynomial time a member GH of the class that contains an r-subdivision
of H.
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M O R E O N S H A L L O W M I N O R S

The fundamental proofs presented by Nešetřil and Ossona de Men-
dez [192] about bounded-expansion classes often alternate between
shallow minors and their topological cousins. While every such altern-
ation introduces a worst-case estimate and as such should be used
sparingly, the benefit of ‘switching gears’ is often a proof that is much
easier to comprehend.

Recognising the strength of having a variety of ‘minor-flavours’, we
introduce in this chapter the notions of weighted and stable minors.
Weighted minors simply inherit some edge-weights of the host-graph
and will be very useful in Chapter 7, where such weighting will nat-
urally crop up in yet another characterisation of bounded expansion
classes. Stable minors simply have the same depth in their branch sets
(in the minor variant) or have the same path-lengths (in the topolo-
gical variant). Fernando Sánchez and I found that this simple restric-
tion can be immensely helpful to reduce the complexity of proofs and,
additionally, the loss in ‘precision’ is not too bad (cf. our paper with
Farrel, Goodrich, Lemons, and Sullivan [89]).

Before we come to these new notions, let us formulate some helpful
ideas that permeate all the following proofs. Some vocabulary here is
new, but most of the following statements are known.

Definition 15 (∇̃r-critical). A graph G is ∇̃r-critical if for every proper
subgraph G′ ( G it holds that ∇̃r(G′) < ∇̃r(G)

Critical graphs impose a maximality condition on their density that
can be exploited nicely. In particular, we have that ∇0-critical graph
have a lower bound on their minimal degree.

Lemma 14. Let G be a ∇0-critical graph. Then δ(G) > ∇0(G) = d(G)/2.

Proof. Consider v ∈ G. Since G is ∇̃0-critical, we have that

‖G‖
|G| >

‖G‖ − d(v)
|G| − 1

⇔ d(v) >
‖G‖
|G| .

Further, note that being ∇0-critical implies that ‖G‖/|G| = ∇0(G).

Pairing the density-maximality condition with a model-minimality
condition, we obtain the following statement.

Lemma 15. Let G be ∇̃r-critical and let M ∈ G Õ r be a minor with the min-
imal number of vertices that satisfies ∇̃0(M) = ∇̃r(G). Then the following
statements hold:

1. G itself is a model of M.
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2. M is ∇̃0-critical.

3. |M| 6 |G| 6 (1 + 2r∇̃r(G))|M|.

Proof. The first statement follows easily: let H ⊆ G be a model of M.
Since ∇̃r(H) = ∇̃0(M) = ∇̃r(G) and since G is ∇̃r-critical, it follows
that H = G. For the second statement, assume there exists a proper
subgraph M′ ⊂ M such that ∇̃0(M′) = ∇̃0(M). But then M′ ∈ G Õ r
and obviously |V(M′)| < |M|, contradicting our choice of M. The
third statement follows from the first. Since G is a model of M, its size
is bounded by the number of nails and subdivision vertices:

|G| 6 |M|+ 2r‖M‖ = (1 + 2r∇̃0(M))|M| = (1 + 2r∇̃r(G))|M|.

The other bound is trivial.

Lemma 14 and Lemma 15 imply the following Corollary that bounds
the minimal degree of ∇̃r-critical graphs.

Corollary 3. Let G be a ∇̃r-critical graph. Then the graph G contains at
least |G|/(1 + 2r∇̃r(G)) vertices of degree at least ∇̃r(G).

Sometimes switching from topological to regular shallow minors in-
volves mixing operators like ∇• and Õ and we want to ‘normalise’
these operators to the same minor-flavour. The following theorem is
one of the tools necessary for such operations.

Theorem 13 (Nešetřil and Ossona de Mendez [192, Theorem 4.2]).
For every graph G, integer r and half-integer s it holds that

∇̃s(G Õ r) 6 ∇̃s(GO r) 6 2r+23(r+1)(r+2)∇̃s(G Õ r)(r+1)2

and for half-integers r

∇̃s(G Õ r) 6 ∇̃s(GO r) 6 2r+23(r+1)(r+2)∇̃s(G Õ r)(dre+1)2
.

We saw already in Section 2.2 through Propositions 2 and 3 that the
repeated operation of taking shallow (topological) minors results in
graphs that are themselves shallow (topological) minors. The follow-
ing lemma is a direct consequence of these observations and helps us
to reduce expression that involve both a density-operator like ∇̃• and
a minor-operator like Õ.

Lemma 16 (Nešetřil and Ossona de Mendez [192, Prop. 4.1 and 4.2]).
Let a, b be half-integers and let

c :=
(2a + 1)(2b + 1)− 1

2
.

Then for every graph G it holds that

∇b(GO a) 6 ∇c(G) and ∇̃b(G Õ a) = ∇̃c(G).
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For similar situations in nowhere-dense classes, we will need the fol-
lowing lemma.

Lemma 17 (Nešetřil and Ossona de Mendez [192, Proposition 5.2]).
Let a be a half-integer. Then for every graph G it holds that

ω(G Õ a) 6 ω(GO a) 6 2ω(G Õ(3a + 1))bac+1.

The above results are extremely helpful: we can change mid-proof
between shallow minors and their topological variant and will still
be able to collect all our terms in the end and express everything in
one measure. In what follows we will introduce more shallow minor
flavours and prove similar bounds to enrich the minor-related part of
the toolkit.

6.1 stable minors

Let us begin by defining a new minor flavour here which we dubbed
stable. Again, in the usual settings of excluded-minor, that is, without
the bound on the minor’s depth, such stable minors would be very dif-
ferent beasts than their non-stable counterpart. By parametrising the
minors by their depth and reducing them to their density, however, we
again obtain polynomial equivalences with the previously established
measures ∇• and ∇̃•. Stable topological embedding

A stable topological embedding is a topological embedding φE, φV of
a minor H in a graph G if the following two criteria are met: the
paths φE(uv), uv ∈ H are induced paths in G and have all the same
length. If such an embedding of H exists with depth 2r + 1, we say
that H is an r-stable topological minor of G and write H 4̇r

t G. Note that
we drop the ‘shallow’ here since the nomenclature is already verbose
enough. In concordance with the established notation, we define G ˙̃O r
to be the set of r-stable topological minors of G and define a related
parametrised graph measure

˙̃∇r(G) := max
H∈G ˙̃O r

‖H‖
|H|

which we extend to classes via ˙̃∇r(G) = supG∈G
˙̃∇r(G), as usual.

Let us first relate this density measure to the topological measure ∇̃•.
The following proof is quite easy and relies on the observations that a)
we can easily enforce the paths of a shallow minor-embedding to be
induced and b) we can simply restrict ourselves to those paths whose
length appears most frequently.

Lemma 18. For every graph G and half-integer r it is true that

˙̃∇r(G) 6 ∇̃r(G) 6 (2r + 1) ˙̃∇r(G).

Proof. The first inequality is trivially true since every r-stable topolo-
gical minor is in particular r-shallow. To see that the second inequality
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holds, fix a half-integer r and let H 4r
t G be such that ∇0(H) = ∇̃r(G)

with the topological minor embedding φV , φE as a witness. Note that
we can easily assume that φE(uv), uv ∈ H is an induced path; other-
wise we simply short-circuit it and adapt φE accordingly.

Now consider the edge-labelling λ of the minor H defined simply
via λ(uv) := ‖φE(uv)‖ for uv ∈ H. We partition the edges of H into
E(H) = E1 ] . . . ] E2r+1 where E` := {e ∈ E(H) | λ(e) = `}. Then for
some 1 6 ` 6 2r + 1 it must hold that |E`| > ‖H‖/(2r+1) and H[E`]

is a stable topological minor of G of the claimed density.

A very similar trick can be applied to embedding of shallow minors
and we formalise it by introducing r-stable minors here.Stable minor embedding

A stable minor embedding of a graph H in a graph G is a pair of func-
tions φV : V(H) → 2V(G) and φC : V(H) → V(G) and integers r1, r2

where φV is a minor embedding of H and additionally

• φC(u) ∈ φV(u), and

• if uv ∈ H then there exists x ∈ φV(u), y ∈ φV(v) such that xy ∈ G
and further distG(φC(u), x) = r1 and distG(φC(v), y) = r2 (or vice-
versa).

The depth of a stable minor embedding is r = max{r1, r2}. If an em-
bedding of depth r exists we say that H is an r-stable minor of G and
we write H 4̇r

mG. Again, we define G Ȯ r to be the set of r-stable topo-
logical minors of G and obtain the corresponding density measure

∇̇r(G) := max
H∈G Ȯ r

‖H‖
|H| .

The extension to classes works as usual by taking the class-supremum.
Stable minors are structurally a bit more complex and the following

annotated version of their model will be useful. Recall that a Trémaux
tree is a rooted spanning tree of a graph such that all non-tree edges
obey the ancestor-relationship induced by the tree.

Definition 16 (Extended model). Let H be an r-stable minor of G with
embedding φV . The extended model of H in G is a collection of trees
T = {Tv}v∈H of height at most r+ 1 and a mapping φE : E(H)→ E(G)

such that

• for all v ∈ H we have that Tv ⊆ G[φV(v)] and Tv is a Trémaux-tree
around root(Tv) in G,

• for every leaf x of Tv, v ∈ H, there exists an edge v• ∈ H such
that φE(v•) is incident to x, and

• for uv ∈ H the edge φE(uv) connects V(Tu) and V(Tv) in G.

This definition is very similar to what is called a retract [192]: the idea
is to have a bare-bone skeletal model that still gives rise to the minor H.
Note the in the case of stable minors, an edge φE(uv) connects level r1

in Tu with level r2 in Tv (being a bit sloppy, we treat the edges of H
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as arcs in this case) and we assume that the centres φC(H) are exactly
the roots of the trees T .

Lemma 19. For every graph G and half-integer r it is true that

∇̇r(G) 6 ∇r(G) 6 (r + 1)2∇̇r(G).

Proof. Again the first inequality is trivial. For the other direction, as-
sume H is an r-shallow minor of G with ∇0(H) = ∇r(G). Let T , φE be
H’s extended model. Let λ : φE(E(H)) → [r + 1]2 be a mapping that
labels every edge xy = φE(uv) with the depths of x and y in their
respective trees of T , i.e.

λ(xy) = (depthTu
(x), depthTu

(y)).

Partition the edges φE(E(H)) into sets E(1,1), . . . , E(r+1,r+1) by their la-
bels so that E(r1,r2) = {xy ∈ φE(E(H)) | λ(xy) = (r1, r2)}.

By a simple averaging argument, we have that for some label (r1, r2)

it holds that |E(r1,r2)| > (r + 1)2‖H‖. Retaining only these edges in
the model gives rise to a minor H′ ⊆ H that is an r-stable minor
of G (defining φC to map v ∈ H to root(Tv) completes the embedding
alongside φV and r1, r2).

We can relate the parametrised graph measures ˙̃∇• and ∇̇• in the same
fashion as Proposition 6.

Lemma 20. For every graph G and half-integer r it is true that

˙̃∇r(G) 6 ∇̇r(G) 6 (2r + 1)2(r+1)2+1 ˙̃∇r(G)(r+1)2
.

Proof. The first inequality follows easily: the model of any r-stable to-
pological minor H of G uses paths of exactly the same lengths in its
embedding, let us denote this length by ` 6 2r + 1. Now we partition
the vertices of these paths into two (almost) equal halves and associ-
ated them with the closest nails to form branch-sets around the nails.
Clearly, every edge between the branch sets connects vertices that are
at depth b`/2c and d`/2e, respectively; it follows that H has a r-stable
embedding and is in particular an r-stable minor of G.

For the second inequality, assume that H is an r-stable minor of G
with ∇0(H) = ∇̇r(G). Let φV , φC, r1, r2 be the stable embedding of H
in G and let T , φE be the corresponding extended model of H. We will
work on the extended model itself and keep track of the density of its
quotient to argue that we can recover a topological r-stable minor with
sufficiently high density.

Let ~H be the orientation of H constructed by the following rule:
if uv ∈ H such that φE(uv) points from a depth r1-vertex in Tu to a
depth r2-vertex in Tv, then orient the edges uv to point from u to v;
otherwise orient it from v to u. Applying Corollary 1, we obtain a
subgraph ~H′ of ~H where every vertex is either a source or a sink and
where ‖~H′‖ > ‖~H‖/4. In particular, note that the graph ~H′ is bipartite.
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We assume that δ(H′) > 2∇0(H′), otherwise we remove the vertex of
minimal degree until this property is satisfied (this operation can only
increase the density of H′).

Let T + := {v ∈ ~H′ | deg−(v) = 0} be those trees of T correspond-
ing to sources in ~H′ and T − := T \ T + those corresponding to sinks.
Let further E′ = φE(E(H′)) be those edges of G that connect vertices of
T + to vertices of T − and participate in the formation of the minor H′.

We prune the trees in both sets by iteratively removing leaves that
are not incident to an edge in E′. As a result, all trees in T + have
height exactly r1 and all trees in T − height r2 (assuming that H had
no vertex of degree zero, the orientation ~H will not have such a vertex
either and we will not have a tree of height zero after pruning).

We will in the remainder assume that T − is larger than T +, other-
wise the following operations need to be applied in the reverse order.
Let us modify every tree Tv ∈ T + to create a new set S+ and a new set
of edges E′′ (which initially is set to E′) by proceeding as follows: let T̂v

be the tree derived from Tv by adding to every leaf x ∈ leaves(Tv) the
vertices

{y ∈ Tu ∈ T − | φE(vu) = xy}

as children. That is, the node x has in T̂v exactly as many children
as arcs going to r2-level vertices of trees in T −. Using Lemma 6, we
construct a spider Ŝv ⊆ T̂v such that

(leaves(Ŝv) ∩ leaves(T̂v)) > leaves(T̂v)
1/r1 .

Note that Lemma 6 guarantees us that Ŝv height at least two. We there-
fore can safely let Sv = Ŝv \ (T̂v \ Tv) be the spider where we removed
the previously added leaves. We add Sv to the new collection S+ and
continue until every tree of T + has been processed.

We constructed the spiders in a way that encoded not only which
leaves of a tree Tv ∈ T + to retain, but also which outgoing edges from
that leaf should be kept (hence the extra level of leaves). We keep track
of this choice by defining the edge set E′′ ⊆ E′ as

E′′ := {xy ∈ E′ | x ∈ Tv and xy ∈ Ŝv},

i.e. we keep exactly those edges of E′ that are still present in the (ex-
tended) spiders. Note that the degree of as spider in S+ is precisely
the number of edges from E′′ it is incident to. We therefore have that

leaves(Sv) = (leaves(Sv) ∩ leaves(Tv)) > degH′(v)
1/r1 .

We again prune the trees in T − by iteratively removing leaves not
incident to E′′′ and further remove every tree that is incident to less
than δ(H′)1/r1 edges of E′′′.

Repeating the same construction on the other side for T −, we obtain
a set of spiders S− and edge set E′′′ ⊆ E′′ such that
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• for every pair of spiders S1 ∈ S+, S2 ∈ S− there exists at most
one edge xy ∈ E′′′ connecting them, and

• every leaf x ∈ S ∈ S+ ∪ S− has exactly one edge in E′′′ incident
to it and every non-leaf has no such edge.

We further have for every tree Tu ∈ T − that

leaves(Ŝv) > leaves(T̂u)
1/r2 > δ(H′)1/(r1r2),

since the number of edges of E′′ incident to a tree Tu is exactly the
number of leaves of T̂u. Note that the spiders S+ ∪ S− in conjunction
with the edges E′′′ can be turned into a graph H? by contracting paths
of length at most r1 + r2 − 1 and with at least

‖H?‖ > |S−|δ(H′)1/(r1r2) > |S−|
(∇0(H)

2

)1/(r1r2)

many edges. By our assumption that |T −| > |T +| and hence |S−| >
|S+| we can rearrange the above inequality and see that

∇0(H?) >
‖H?‖
|H?| >

‖H?‖
|H| >

‖H?‖
2|S−| >

1
2

(∇0(H)

2

)1/(r1r2)
.

Since H? is a ( r1+r2
2 − 1)-shallow topological minor of G, we conclude

(invoking Lemma 18 to obtain a stable topological minor) that

∇̇r(G) 6 2r1r2+1∇̃r(G)r1r2 6 (r1 + r2 − 1)2r1r2+1 ˙̃∇r(G)r1r2 .

Since r1 + r2 = 2r + 2 and the term r1r2 is maximised when r1 and r2

are both equal to r + 1 (which can be easily seen by expressing both
values as fractions of r + 1 and then considering the function x(1− x)),
we finally obtain

∇̇r(G) 6 (2r + 1)2(r+1)2+1 ˙̃∇r(G)(r+1)2
.

In the case that r is a half-integer, note that the term r1r2 is maximal
when it takes the form

br + 1c · dr + 1e = (r + 1− 1/2)(r + 1 + 1/2) = (r + 1)2 − 1/4,

and hence the above inequality to half-integers r as well.

The notion of stable minors works as well if we consider the ‘denser’
measure ω. We mention the following simple results for completeness,
they will not be needed in the following. In this setting, we need to
replace the simple averaging-argument by Ramsey theory, where the
following formulation of the classic Ramsey Theorem already suffices.

Theorem 14 (Finite Ramsey Theorem). For integers s, t there exists an
integer r(s, t) such that any two-colouring of the edges of Kr(s,t) contains
either a monochromatic Ks or a monochromatic Kt.
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A well-known upper bound is that

r(s, t) 6
(

s + t− 2
t− 1

)
,

which follows from the easily proved recurrence

r(s, t) 6 r(s− 1, t) + r(s, t− 1).

The currently best known bound was proved by Thomason [237]: he
showed that there exists a constant c such that

r(s + 1, t + 1) 6 ec
√

log s−t log s2s
(

s + t
s

)
.

A common special case occurs when s = t, the numbers r(s) := r(s, s)
are called the diagonal Ramsey numbers. Thomason obtained in the
above mentioned paper the bound

r(s + 1, s + 1) 6 sc/
√

log k−1/2

(
2s
s

)
for the diagonal case. In the context of this thesis we will be satisfied
knowing that r(s) = O(2s/

√
s). The diagonal two-colour case can be

easily extended to multiple colours.

Lemma 21. For integers s, p there exists an integer rp(s) such that any
p-colouring of the edges of Krp(s) contain some monochromatic subgraph Ks.

Proof. We use induction over p, the case for p = 2 being described by
Theorem 14. Hence, consider some p > 2 and assume the statement
holds true for p− 1.

We claim that rp(s) 6 rp−1(r2(s)). Consider a complete graph on
rp−1(r2(s)) vertices and let c be an edge-colouring of this graph with p
colours. Let c′ be a colouring derived from c by unifying two arbit-
rary colours. Since c′ colours the edges with only p − 1 colours, by
the induction hypothesis, there exists a monochromatic Krp−1(s) as a
subgraph. If this subgraph is monochromatic under c we are done
since s 6 r2(s). Otherwise, Kr2(s) receives exactly two colours by c (the
two colours we merged) and by our induction hypothesis therefore
contains a monochromatic Ks as a subgraph.

The proof of Lemma 21 also provides us with a recurrence and thus
a simple bound on rp: it can be upper-bounded by a tower of two of
height p − 1. After this small tangent, let us return to the matter at
hand.

Lemma 22. For every graph G and half-integer r it is true that

ω(G Ȯ r) 6 ω(GO r) 6 r(r+1)2

(
ω(G Ȯ r)

)
,

where rp(•) denotes the diagonal Ramsey number with p colours.
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Proof. Again the first inequality is trivial. For the other direction, as-
sume Kh is an r-shallow minor of G where h = ω(G Ȯ r). Let T , φE be
Kh’s extended model in G and let further λ : φE(E(H)) → [r + 1]2 be
a mapping that labels every edge xy = φE(uv) with the depths of x
and y in their respective trees of T , i.e.

λ(xy) = (depthTu
(x), depthTu

(y)).

Partition the edges φE(E(Kh)) into sets E(1,1), . . . , E(r+1,r+1) by their
labels so that E(r1,r2) = {xy ∈ φE(E(Kh)) | λ(xy) = (r1, r2)}.

Now by Ramsey’s theorem (cf. Lemma 21) we have that Kh coloured
with the above edge-partition contains a monochromatic complete sub-
graph of size at least r−1

(r+1)2(h) and the claim follows.

The same idea can be applied to the topological operator ˙̃O. We omit
the proof here since it follows easily by replacing the averaging in the
proof of Lemma 18.

Lemma 23. For every graph G and half-integer r it is true that

ω(G ˙̃O r) 6 ω(G Õ r) 6 r(2r+1)
(
ω(G ˙̃O r)

)
,

where rp(•) denotes the diagonal Ramsey number with p colours.

6.2 weighted topological minors

Given a graph with edge weights, we can restrict shallow minors not
only by their depth, but by their weighted depth. We will need such
weighted topological minors primarily in the next Chapter in order to
obtain better bounds than available by unweighted minors. Weighted topological embedding,

– minorA topological embedding φE, φV of a graph H in a weighted graph
(G, ω) is γ-weighted if for every uv ∈ H it is true that

∑
e∈E(φE(uv))

ω(e) 6 γ.

Accordingly, we define the γ-weighted r-shallow minor relation as
H 4t

γ
r G and the corresponding parametrised density measure

∇̃γ
r (G) = max

H4t
γ
r G

‖H‖
|H| .

The above definition is compatible with the notion of stable topolo-
gical minors: note that we only insist that the length of the paths used
in the embedding have the same length, not necessarily their weight
(such a variation would probably be useful in some cases, but for our
application this definition is better suited). Accordingly, we define ˙̃∇γ

r
over the r-stable, γ-weighted minors as usual.

The following is pretty much the proof of Proposition 4.6 in [192]:
we demonstrate that it is easily adapted to preserve weighted minors
(a fact we need later). The bounds are slightly worse in favour of mak-
ing the proof more lightweight.
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Lemma 24 (Stability under blow-ups). For every graph G, half-integer r
and integer s it is true that

˙̃∇γ
r (G · Ks) 6 (4(r + 1)(s− 1) + 1)s2 · ˙̃∇γ

r (G)

Proof. Let H be a topological minor of G with an r-stable and γ-
weighted embedding φE, φv in G · Ks such that ∇0(H) = ˙̃∇γ

r (·Ks).
Assume H is ∇0-critical, otherwise we continue with a suitable sub-
graph of H. We assume without loss of generality that the embedding
has depth exactly r.

For a vertex v ∈ G, let v1, . . . , vs denote its copies in G · Ks and
let ≡s denote the copy-relation over V(G · Ks). Let us define the sets
Vi := {vi}v∈G for convenience. Our goal will be to construct an r-
shallow minor H′ in G · Ks whose embedding intersects every equi-
valence class at most once—such a minor will obviously also be a
minor of G. Since H is a stable topological minor, every edge uv ∈ H
is embedded as an induced path φE(uv). It follows that φE(uv) tra-
verses every equivalence class under ≡s at most once, otherwise it
would contain a chord.

First, let us make sure that no two nails of the minor are mapped to
the same copy-class. We invoke Corollary 2 on the graph H and the
partition defined by the equivalence relation

u ≡H
s v ⇐⇒ φV(u) ≡s φV(v).

As a result, we obtain an induced subgraph H′ ⊆i H whose ver-
tices are pairwise not equivalent under ≡H

s (therefore their images
under φV are not equivalent under ≡s) and whose density is at least

∇0(H′) > ∇0(H)/4s2.

Due to the symmetric nature of G · Ks we can now assume that φV

maps the vertices of H′ into the set V1.
Note that for r = 0, i.e. H is a subgraph of G· Ks, we are done since

then H′ ⊆ (G · Ks)[V1] ' G. We assume in the following that r > 1/2.
Let us define the conflict-graph ~Gconf with vertex set E(H′) and an
arc e1e2 if the paths φE(e1) and φE(e2) traverse a common copy-class
{v1, . . . , vs} ⊆ G· Ks and the vertex used by φE(e1) has a higher index
than the vertex used by φE(e2). Since the embedding of H′ has depth r,
every embedding of an edge of H′ traverses at most 2r + 2 classes.
Using our assumption that φV embeds only into V1, we conclude that

∆−(~Gconf) 6 (2r + 2)(s− 1)

which implies that Gconf is 4(r + 1)(s − 1)-degenerate (cf. Lemma 9).
By a simple colouring argument, the conflict graph therefore contains
an independent set of size at least

|Gconf|
(4(r + 1)(s− 1) + 1)

=
‖H′‖

(4(r + 1)(s− 1) + 1)
.
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Retaining only the edges of H′ corresponding to such an independent
set leaves us with a graph H′′ ⊆ H′ whose edges are pairwise conflict-
free. Accordingly, we can modify the embedding φE to exclusively map
into V1. Finally, H′′ is embedded into (G· Ks)[V1] ' G and hence it is
a topological minor of G.

Since all the above operations where deletions of vertices and edges
of H and the modification of φV and φE only exchanged vertices in-
side copy-classes, we conclude that H′′ is an r-stable and γ-weighted
topological minor of G. The density of H′′ is at least

‖H′′‖
|H′′| >

∇0(H′)
(4(r + 1)(s− 1) + 1)

>
∇0(H)

(4(r + 1)(s− 1) + 1)s2 ,

from which the claimed bound follows directly.





7
A U G M E N TAT I O N S & D E C O M P O S I T I O N B Y
C O L O U R I N G

There is no indication that a Robertson-Seymour style decomposition
for graphs of bounded expansion exists and I personally feel pessim-
istic about the prospect of finding one. The parametrisation of minors
by their depths introduces a bias in the forbidden-structure charac-
terisation that put less restrictions on the global scale of the graph
and tightens towards the local scale. A powerful global decomposi-
tion would need stark restrictions on the global scale (at least, that
is my intuition) which seems irreconcilable with bounded expansion
and nowhere dense classes.

All is not lost, however: Nešetřil and Ossona de Mendez provided a
decomposition theorem that works locally and—unsurprisingly—it is
parametrised by something like a depth-parameter. We devote this sec-
tion to provide an alternative proof for the following theorem, tighten-
ing some bounds and developing a machinery which, as demonstrated
later, has practical applications. We will in particular be able to apply
the stable minors introduced in the previous chapter.

Theorem 15 (Nešetřil, Ossona de Mendez [189, 187]). Let G be a graph
class of bounded expansion. There exists a function f such that for every
integer r, every graph in G can be coloured with at most f (r) colours such
that every set of vertices on at most k < r − 1 colours induces a graph of
treedepth at most k.

p-centred colouring, χp
As we will see, some result (in particular algorithmic ones) are quite
easy to obtain using the above low-treedepth colourings but seem ab-
solutely unprovable using minors. These type of colourings general-
ises the star-colouring number introduced by Fertin, Raspaud, and
Reed [94]. In that context, they are usually called p-centred colour-
ing with the following equivalent definition: a vertex-colouring c of
a graph G is p-centred if every connected subgraph H ⊆ G either re-
ceives at least p colours by c or there exists (at least) one colour in c(H)

that appears exactly once in H. In the latter case, we call the vertex car-
rying this colour the centre of the subgraph. We denote by χp(G) the
minimum number of colours necessary in a p-centred colouring of G.
Note that χ2(G) is exactly the chromatic number (every edge receives
at least two colours) and χ3(G) the star-chromatic number of G (every
two colour classes induce a forest of stars).

In this chapter, we will provide an alternative proof for Theorem 15.
The reason for re-proving it are twofold: First, the machinery used
here was designed to be applied in practice and differs from the one in
the literature. It is therefore necessary to re-prove the above statement

65
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for this machinery in order to apply it with good conscience. Second, I
feel that an alternative proof might open up further improvements in
the future. Additionally, we show that if the bound on the treedepth
does not need to match the number of colour classes, that is, selecting k
colour classes results in a subgraph of treedepth at most h(k) for some
function h, we actually need less colours. This trade-off make low-
treedepth colourings more flexible in practice, since we can balance
the number of colours against the treedepth induced by few colours.tf-augmentation, transitive,

fraternal Let ~G be a directed graph. A 1-transitive fraternal augmentation is a
directed graph ~H with vertex set V(~G) and ~E(G) ⊆ E(~H) with the
following additional properties:

• If uv, vw ∈ E(~G), then uw ∈ E(~H) (transitive arcs)

• If uw, vw ∈ E(~G), then at least one of uv, vu is in E(~H) (fraternal
arcs)

Sequential, fraternal
Such an augmentation ~H is tight if every proper subgraph of it viol-
ates one of the above two properties. In the following we will silently
assume that augmentation are tight and thus drop this specifier for
brevity’s sake. Vertices u, w that are connect by arcs uv, vw with each
other will be called sequential in the following1 and vertices u, w con-
nected by arcs uv, vw fraternal.

We are interested in the repeated application of these augmenta-
tions. Consider a sequence of directed graphs ~G1, ~G2, . . . where ~Gi is a
1-transitive fraternal augmentation of ~Gi−1 and ~G1 is any orientation
of G (we will later impose more restrictions on ~G1 in order to ensure
additional properties of the augmentations). We call such a sequence
simply a transitive-fraternal augmentation (tf-augmentation) of G.dtf-augmentation

Let us introduce the following variant of tf-augmentations: let G
be an undirected graph and let ~G1 be any orientation of G. Then a
distance-constrained transitive-fraternal augmentation (dtf-augmentation)
of G is a sequence ~G1, ~G2, . . . of directed graphs which satisfy:

1. ~Gi ⊆ ~Gi+1, i > 1;

2. for arcs uv ∈ ~Gi, vw ∈ ~Gj it follows that vw ∈ ~Gi+j; and

3. for arcs uv ∈ ~Gi, wv ∈ ~Gj it follows that either vw ∈ ~Gi+j or
wv ∈ ~Gi+j.

To simplify notation we associate a weight function ωi : ~E(~Gi) → [i]
with the ith dtf-augmentation ~Gi as follows:

ωi(uv) =

{
min{ωi−1(uv), i} if uv ∈ ~Gi

∞ else

In other words: if the arc uv is present in ~Gi but not in ~Gi−1, then we
have ω>i(uv) = i and ω<i(uv) = ∞.

1 The term ‘transitive’ applied to such vertices simply does not sound right.
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First, let us prove that not only are only arcs of weight d added in
the dtf-step from ~Gd−1 to ~Gd, but this is exactly the step in which all
arcs of weight d appear.

Lemma 25. For any integers d, f with d 6 f it holds that every arc uv ∈ ~G f

with ω f (uv) = d is already contained in ~Gd with ωd(uv) = d.

Proof. The base case d = 1 follows immediately: no arc of weight 1 can
be added by a dtf-augmentation, hence they all are already present in
the orientation ~G1 of G.

Now choose the smallest f > 1 such that there exists an arc uv ∈ ~G f

with ω f (uv) = d < f (the case f = d is trivial) such that uv 6∈ ~Gd.
By the choice of f , this implies that uv 6∈ ~G f−1. Since uv is added by
a dtf-augmentation from ~G f−1 to ~G f , the vertices u and v are either
sequential or fraternal in ~G f−1. In either case, there exist two arcs e1, e2

of weights d1 and d2 in ~G f−1 with d1 + d2 = d who are responsible for
the addition of uv. But by the choice of f , e1 and e2 must be present in
~Gd1 and ~Gd2 , respectively. Since d1, d2 < d we have a contradiction.

The following property holds also for transitive-fraternal augmenta-
tions [189, 192]. In a way, tf-augmentations behave very similar to
graph powers: after d iterations, we have that all vertices at distance
at most d are either connected by an arc or they share a common in-
neighbour (in any case: they have distance at most two to each other).
This property lies at the heart of the low-treedepth colouring, though
we need to put in a lot more work to prove it. Let us first see that dtf-
augmentations behave the same as their non-constrained counterpart.

Lemma 26. For every vertices u, v ∈ G with dist(u, v) = d and for every
integer r > d one of the following holds:

1. uv ∈ ~Gr and ωr(uv) = d,

2. vu ∈ ~Gr and ωr(vu) = d,

3. or there exists x such that xu, xv ∈ ~Gr and ωr(xu) + ωr(xv) = d.

Proof. First note that it suffices to prove the statement for r = d. We
prove it by induction over d. For d = 1 either Case 1 or 2 will hold
since ~G1 is simply an orientation of G0 with arc weights set to 1. Thus
assume that the statement holds for vertices at distance at most d and
consider u, v with dist(u, v) = d + 1.

Chose some vertex z in N(v) that has distance d to u, then for u, z
the induction hypothesis holds. Note that if u and v are either fraternal
or sequential in ~Gd we are done: then ~Gd+1 must contain either the arc
uv or vu with weight d + 1. Let us distinguish the following cases:

Case 1: uz ∈ ~Gd with ωr(uz) = d.
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If zv ∈ ~G1 then u and v are sequential in ~Gd. Otherwise, vz ∈ ~G1 and
u and v are fraternal in ~Gd.

Case 2: zu ∈ ~Gd with ωr(zu) = d.

If zv ∈ ~G1 then the vertex z serves as the common in-neighbour of v
and u in ~Gd and we have that ωr(zu) + ωr(uv) = d + 1. If vz ∈ ~G1 then
v and u are sequential in ~Gd.

Case 3: There exists y such that yu, yz ∈ ~Gd with d1 = ωd(yu) and
d2 = ωd(yz) such that d1 + d2 = d.

If zv ∈ G0 we are done: then y and v are sequential in ~Gd, hence y
is a common in-neighbour of u and v in ~Gd+1. Thus assume in the
following that vz ∈ G0. Now y and v are fraternal in ~Gd, if the arc yv is
present in ~Gd+1 we are again done: the remaining case is that vy ∈ ~Gd.

Note that in this remaining case, we have ωd(vy) = d2 + 1 6 d
since d1, d2 > 1 and d1 + d2 = d. By Lemma 25, the arc vy therefore is
already present in ~Gd. Thus v and u are sequential in ~Gd.

Out-apex
Before we consider how general subgraphs behave under dtf-augment-
ations, let us first limit our attention to paths. We will use the term
out-apex in the following, by which we mean a vertex that contains
all other vertices (usually in the context of some subgraph) in its out-
neighbourhood.

Lemma 27. Let ~G1, ~G2, . . . be dtf-augmentations of G. Let P be a path of
length d in G1. Then ~Gd[P] contains an out-apex a ∈ P such that every
outgoing arc ax for x ∈ P has weight ωd(ax) 6 |P[a, x]|.

Proof. Consider any such path P with endpoints u and v. The state-
ment is trivially true for |P| = 2, hence assume |P| > 3. Assume the
predecessor of v on P is the vertex z 6= u. We assume that the state-
ment holds by induction for paths of length d, hence consider the case
that |P| = d+ 1. Since then the subpath P[u, z] has length d, it contains
an out-apex in Gd by the induction hypothesis. Let us call this apex a;
note however that a might be identical to u or z. Let d1 := ωd(a, z)
with the special case d1 = 0 if a = z. By the induction hypothesis, it
holds that d1 = |P[a, z]| and hence d1 + 1 = |P[a, v]|. The following
figure depicts the situation in ~Gd.
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Let us consider the possible orientations of the edge zv.

Case 1: zv ∈ G0.

Then a and v are sequential (via z) and hence the transitive edge av
exists in ~Gd with weight d1 + 1. It follows that a is an out-apex of P in
~Gd+1 as claimed.

In the remaining cases we assume that vz ∈ ~G0, hence a and v are
fraternal in ~Gd. We distinguish the two possible cases of which arc
between a and v is contained in ~Gd+1.

Case 2: vz ∈ G0 and av ∈ Gd+1.

Again a is an out-apex of P in ~Gd+1 with the desired properties.

Case 3: vz ∈ G0 and va ∈ Gd+1.

Note that now in ~Gd+1, all vertices in P \ {v, a} are sequential with v.
Hence for vertices in P[u, a] and for the vertex z we already have
that v is an out-apex in ~Gd+1 with the correct arc-weights. For ver-
tices in P(a, z) we have that v is an out-apex in ~Gd+1, but it is left
to show that the arc-weights are correct. To that end, consider any
vertex x ∈ P(a, z) and let dx = |P[dx, v]| be the distance of x to v
on P. By Lemma 26 we know that already in ~Gdx , either the arc xv
with weight dx or the arc vx with weight dx exists; or x and v share
a common in-neighbour y such that the sum of the two weights of yx
and yv is exactly dx. If the arc vx exists v we are done. Otherwise, as-
sume the arc xv exists. But then a is sequential with v in ~Gdx ⊂ ~Gd1 ,
hence the arc av would exist in ~Gd1+1, contradicting our assumption.
Lastly, assume x and v share a common in-neighbour: since such an
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in-neighbour must be contained in P(a, z), again a and v would be se-
quential in ~Gd and hence the arc av would exist in ~Gd1+1. We conclude
that the only possibility is that the first one: the arc vx exists with
weight at most dx. Therefore we have shown that v is an out-apex
for P in ~Gd+1.

In fact, one can easily prove the following more general statement with
the exact same approach:

Lemma 28. Let ~G1, ~G2, . . . be dtf-augmentations of G. Let P be a path of
weighted length d in G`. Then ~Gd[P] contains an out-apex a ∈ P such that
every outgoing arc ax for x ∈ P has weight ωd(ax) 6 ∑e∈~E(P[a,x]) ω`(e).

We can take this idea in a slightly different direction by asking in what
cases a vertex will be an out-apex of some path: this is essentially de-
termined by whether there exists an arc that spans the whole length of
the path. However, this only holds true if the path in question contains
the vertex that was ‘responsible’ for the addition of said arc.

Lemma 29. Let ~G1, ~G2, . . . be dtf-augmentations of G and let there be ver-
tices u, v connected by a path of length d in G. Then if uv ∈ ~Gd, then there
exists a u-v-path P of length d such that either u or v is an out-apex of ~Gd[P]
whose arc-weights correspond to the distances on P.

Proof. The statement is true for d = 2: if the arc uv exists in ~G2,
then u, v are either transitive or fraternal in ~G1 via some vertex x. In
either case, u is an out-apex of the path uxv.

Fix d > 2 and assume by induction that the statement holds for
all smaller values for d. First consider a vertex x such that u, v are
sequential via x in ~Gd−1, i.e. x is the responsible for the addition of the
arc uv in ~Gd. Let d1 be the arc-weight of ux and let d2 be the arc-weight
of xv. By induction, there exist paths Pux from u to x and Pxv from x
to v of respective length d1,d2 where Pux has u and Pxv has x as an
out-apex. Accordingly, u is sequential with every vertex of Pxv \ {x}
and thus is an out-apex of PuxPxv in ~Gd.

Now consider the case where u, v are fraternal via x. Again we have
paths Pux,Pxv; only this time u is an out-apex of Pux and v is an out-
apex of Pxv. By Lemma 27, the path PuxPxv contains an out-apex a
in ~Gd. If a is either u or v we are done. Otherwise, a lies either in Pux

or Pxv (or on both, in case a = x). If a lies on Pux, then u is sequential
via a with every vertex in Pxv and hence is an out-apex for PuxPxv. If a
lies on Pxv, the same holds for v.

Since in both cases we have that the out-apex a ∈ {u, v} is created
via transitive arcs, using induction we see that the arc-weights cor-
rectly reflect the distances along PuxPxv.

Lemma 29 has another interesting corollary; namely, that once no arc is
added during a step of the augmentation process, then each following
step will also not add further arcs.
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Corollary 4. If ~Gd+1 = ~Gd, then ~G>d = ~Gd.

Proof. Assume to the contrary that ~Gd+1 = ~Gd but ~Gd+2 6= ~Gd+1, i.e.
~Gd+2 contains an arc uv of weight d + 2. Applying Lemma 29, we have
that uv are connected by a path of length d + 2 in G and u is an out-
apex of that path. But then there is an arc of weight d + 1 emanating
from u, contradiction.

A simple corollary to Lemma 27 is that every path inside the original
graph will—after sufficiently many augmentations—contain a clique
whose size is related to the length of said path.

Corollary 5. Every path of length 2d in G contains an acyclic orientation of
the complete graph Kd in ~G2d .

This already suffices to show that a property colouring of ~G2d is some
kind of low-treedepth colouring—it does, however, not have a nice
bound on the treedepth as Theorem 15 has.

Corollary 6. There exists a function f such that every proper colouring
of ~G2d , every set of at most d− 1 colours-classes induces a subgraph of tree-
depth at most f (d).

Proof. By Corollary 5, every path of length d in G is augmented to a
complete graph in G2d and therefore receives d colours in any proper
colouring of G2d . Therefore any collection of up to d− 1 colour classes
must induce a subgraph of G that does not contain any path longer
than 2d. As mentioned in the proof of Proposition 4, any dfs-tree is
a treedepth decomposition. Therefore the treedepth of any subgraph
induced by up to d− 1 colour classes is bounded by 22d

.

To obtain a better bound on the treedepth, we need to see how arbit-
rary connected subgraphs behave under augmentation. As a sub-case,
we will need to bound the number of augmentations necessary to ob-
tain an out-apex inside a complete subgraph.

Lemma 30. Let ~G1, ~G2, . . . be dtf-augmentations of G and let ~H ⊆ ~Gd be
an orientation of Kh where h = |H|. Then ~Gdblog hc[H] contains an out-apex.

Proof. The statement is trivially true for h = 2 so we apply the argu-
ment inductively. Partition the graph H into two subgraphs H1, H2 of
size dh/2e and bh/2c, respectively. By the induction hypothesis, we
assume that ~G f (d,dh/2e)[H1] and ~G f (d,bh/2c)d[H2] each contain an out-
apex. Since these two apices are connected by an arc in ~Gd, one of
them is sequential to all vertices in the respective other half of H.
Hence that apex is an apex for all of H in ~G f (d,dh/2e)+d. We obtain
the claim by resolving the recurrence with the boundary condition
that f (d, 2) = d.

Armed with the above lemma, we can now tackle arbitrary subgraphs
of low treedepth. The following proof largely follows the correspond-
ing proof for tf-augmentations by Dvořák and Král [80]. Our version
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employs Lemma 30 and the arc-weights provided by the dtf-augment-
ations to improve the final bound2.

Lemma 31. Let H ⊆ G be a subgraph with td(H) = t. Then the induced
orientation ~H(2 log t)t := ~G(2 log t)t [V(H)] either contains an out-apex a ∈ H
or ~H(2 log t)t contains some orientation of Kt as a subgraph.

Proof. It suffices to show this for connected graphs. Note that for t = 1
the statement is trivially true.

Let t + 1 > 1 in the following and fix any nice treedepth decomposi-
tion T of H. Let r ∈ H be the root of that decomposition with subtrees
T1, . . . , Tp. Since td(H[V(Ti)]) 6 t for 1 6 i 6 p, we can assume by
induction that every subgraph ~H f (t)[V(Ti)] contains an out-apex ai or
an orientation of Kt+1. Since in the latter case we are done, assume that
for every such subgraph we have an out-apex ai. Note that every arc
outgoing from ai into its respective subgraph has necessarily weight
at most f (t).

Fix any 1 6 i 6 p and consider the graph Hi = H[r∪V(Ti)]. Since T
is a nice treedepth-decomposition, there exists a vertex xi ∈ Ti that is
connected to r in H. We consider the following cases.

Case 1: xi = ai. Then either the arc air or the arc rai exists in ~H1. In
the first case, ai is already an out-apex of Hi in ~H f (t). Otherwise, the
arc rai exists in ~H f (t) and hence r is sequential with every vertex in Ti.
Thus already in ~H f (t)+1, the root r is an out-apex of Hi.

Case 2: xi 6= ai and rxi ∈ ~H1. Since ai is an out-apex in ~H f (t), the arc
aixi exists. Hence ai and r are sequential in ~H f (t). It follows that ai is
an out-apex of Hi with the desired properties in ~H f (t)+1.

Because the first two cases will give us the desired outcome for any
vertex in Ti connected to r we assume in the last case that the above
two cases do not hold for any choice of xi.

Case 3: For all x ∈ N(r) ∩ V(Ti) it holds that x 6= ai and xr ∈ ~H1.
Any such vertex x will make ai and r fraternal in ~H f (t), thus either
the arc air or rai will be present in ~H f (t)+1. The arc air again makes ai

2 Translating their result from tf-augmentations to dtf-augmentations, their bound
states that around 2t2

augmentations are sufficient.
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the out-apex in ~H f (t)+1, therefore assume that air 6∈ ~H f (t)+1 and rai ∈
~H f (t)+1. This already implies that r is an out-apex for Hi in ~H2 f (t)+1

In the above cases, we have now proved that any Hi, 1 6 i 6 p, has
either ai or r as an out-apex in ~H2 f (t)+1. Note that in the case that ai is
the out-apex, the arc air is already present in ~H f (t)+1. Using this fact,
we now prove the statement for the whole graph H.

Let A− := {aj | ajr ∈ ~H2 f (t)+1}16j6p be those apices of subtrees
that have arcs towards r and let A+ := {aj | aj 6∈ A−}16j6p be the
remaining ones.

If A− = ∅ we are done with r as the apex of H. Note that all ver-
tices of A− are pairwise fraternal already in ~H f (t)+1, therefore the di-
graph ~H2 f (t)+2[A−] is an orientation of K|A−|. Hence if |A−| > t we are
done as well.

Assume therefore that 1 6 |A−| < t. Since ~H2 f (t)+2[A−] is an ori-
entation of a complete subgraph, we can apply Lemma 30 and obtain
that in augmentation number (2 f (t) + 2)blog(t−1)c there exists an
out-apex a ∈ A−. At that point the vertex a is sequential with all ver-
tices in subtrees containing an apex of A−. Since every apex in A− has
out-arcs with weight at most f (t) into its respective subtree, a is an
apex for subtrees with apices in A− in augmentation number

(2 f (t) + 2)blog(t−1)c+ f (t).

For subtrees with apices in A+ we have that the vertex r is an apex
after 2 f (t) + 1 augmentations, and after at most most f (t) + 1 aug-
mentations the arc ar appears. Hence, the vertex a is an out-apex of H
after at most

f (t + 1) > min{(2 f (t) + 2)blog(t− 1)c+ f (t), 3 f (t) + 2}
= (2 f (t) + 2)blog(t− 1)c+ f (t)

= f (t)(2blog(t− 1)c+ 1) + 2blog(t− 1)c

augmentations.
The function f (t + 1) = (2 log t)t satisfies the resulting recurrence

and hence the claim follow.

With the help of Lemma 31 we can now guarantee a better bound on
the treedepth of any selection of few colour classes.
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Lemma 32. For any p ∈ N, any proper vertex-colouring of G(2 log p)p is a
p-centred colouring of G. Hence any i < p colour classes will induce a graph
of treedepth at most i in G.

Proof. Let c : V(G) → [q] be a proper colouring of G(2 log p)p . Consider
any connected subgraph H ⊆ G with treedepth > p.

By Lemma 31, ~H(2 log p)p = ~G(2 log p)p [V(H)] either contains an out-
apex or some orientation of Kp. But since td(H) > p, we actually
obtain Kp as a subgraph in both cases: removing a vertex that is an
apex in ~H(2 log p)p from H results in a graph of treedepth at least p− 1.
Iterating this procedure will gives us an orientation of Kp. We conclude
that H receives at least p colours by c.

Now consider any connected subgraph H with treedepth less than p.
Again by Lemma 31, the subgraph ~H(2 log p)p will contain an out-apex
or Kp. In the latter case we are done, since H receives at least p colours
by c. Otherwise, the out-apex a ∈ ~H(2 log p)p will receive a unique colour
by c, hence a is a centre of H. Applying the same argument to the
connected components of H − a yields that c is a centred colouring
for H and the claim follows.

By Lemma 32 we now have the number of transitive- fraternal aug-
mentations needed to obtain a p-centred colouring. In order to obtain
a characterisation of bounded expansion classes, we need to bound the
number of colours necessary. To this end, we will show that the inde-
gree of dtf-augmentations is upper-bounded by the density of stable
topological minors. We roughly follow the proofs which were used
to relate the indegree of tf-augmentations to shallow minors [189, 192].
However, we refrain from switching between shallow minors and shal-
low topological minors in order to keep the bounds as low as possible.

In the following we now make use of stable and weighted topo-
logical minors. The weight function is simply the weight introduced
through the dtf-augmentation; by Lemma 26 this weight is simply the
distance between its endpoints in the original graph.

Lemma 33. Let ~G1, ~G2, . . . be a dtf-augmentation. Then for every d > 2 it
is true that

˙̃∇γ
r/2(Gd) 6 (40r′bγ/dc∆−(~Gd−1))

6 · ˙̃∇γ
r′/2(Gd−1)

2,

where r′ = r + 2 + bγ/dc.

Proof. Let φV , φE be the topological embedding of H with depth r/2
that further is γ-weighted, and `-stable for some ` 6 r + 1. We further
assume that the minor is ∇0-critical and thus by Lemma 14 we have
that δ(H) > ∇0(H).

We will modify the minor and embedding in several steps to ar-
rive at a minor H′ of Gd−1 with the desired properties; to that end
we will create a sequence of minors Hi and embeddings φi

E (the em-
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beddings φV are clear from the context and we simplify notation by
assuming that V(Hi) ⊆ V(Gd−1)). We begin with H0 equal to H:

V(H0) := V(H)

E(H0) := E(H)

Define Ed ⊆ E(Gd) as the set of edges with weight d in Gd, i.e. let Ed :=
{e ∈ E(Gd) | ωd(e) = d}; let further Ei

d be the subset of edges of Hi
whose image under φi

E contains an edge of Ed. Precisely, let Ei
d := {e ∈

Hi | E(φi
E(e)) ∩ Ed 6= ∅} for all future Hi, i > 0.

Every edge in Ed corresponds to a fraternal or transitive arc in ~Gd−1,
as such for every edge uv ∈ Ed there exists a vertex w ∈ G such that uv
are fraternal or sequential via w. Let us call w the pivot of the edge uv
and let P ⊆ V(G) be a set of pivot-vertices of edges in Ed. In the case
that an edge has multiple pivots, we only require at least one pivot to
be in P. Let π : Ed → P be a mapping assigning each edge in Ed to its
pivot in P. For brevity’s sake, we extend π to a function over E(Gd−1)

by setting π(e) = ⊥ for e ∈ E(Gd−1) \ Ed and extend it to edge sets
via π(E) := {π(e)}e∈E.

In general, the vertices P might appear as both nails and subdi-
vision vertices of the embedding φ0

E and make the subsequent opera-
tions on H0 rather tedious. We circumvent this problem by considering
the graph Gd−1 · K2, i.e. the graph obtained from Gd−1 by creating a
false twin for every vertex. By Proposition 7, we have for r′ > 2 that

∇̃r′(Gd−1 · K2) 6 (2r′ + 1) · ∇̃r′(Gd−1) + 1.

Hence we can construct a minor of Gd−1 · K2 and argue that a minor
of similar density must exist in Gd−1. Let us label the original ver-
tices of Gd−1 in the product graph by V and the twin-vertices by V ′.
Now we can consider the twin-vertices of P during the construction
which are disjoint from the embedding of the minor inside V. To avoid
cumbersome notation, we simply assume in the following that φ0

V(H)

and φ0
E(E(H)) are disjoint from P and will pay for this convenience

with the above loss in density at the very end.
Before we proceed to the next step, let us modify the minor in such a

way that each pivot is only responsible to add edges to a single nail in
the model of the minor. This will obviously remove some edges of Ed
and hence from the minor, but by the following claim we can pre-
serve a high-enough fraction of vertices. For convenience, we define
the function ρ : V(H0)2 → P as follows: for an edge uv ∈ H0, let ux be
the first edge in the path φ0

E(uv) (i.e. the one incident to u). If ux 6∈ Ed
or the arc uµ(ux) does not exist in ~Gd we set ρ(uv) = ⊥. Otherwise,
we let ρ(uv) = π(ux). Note that ρ is not symmetrical, in general we
have that ρ(uv) 6= ρ(vu).
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Since some pivots might not add any edges incident to a nail, we
partition the pivots as follows:

Ph := {w ∈ P | ∃uv ∈ H0 : ρ(uv) = w}
Pl := P \Ph

Claim. There exists a mapping µ : Ph → V(H) such that µ(w) ∈ N−d−1(w)

for w ∈ Ph and the minor H1 obtained from H0 by removing all edges uv ∈
H0 where u 6= µ(ρ(ux)) satisfies ‖H1‖ > ‖H0‖/4∆−(~Gd−1)

2.

Consider the auxiliary graph H with

V(H) :=
⋃

w∈Ph

{(w, v) | v ∈ N−d−1(w) ∩V(H)}

(w, v)(w′, u) ∈ E(H) ⇐⇒ uv ∈ H and w = ρ(vu), w′ = ρ(uv)

The partition {Vw}w∈P defined via Vw := {v ∈ V(H) | (w, v) ∈ V(H)}
has partite sets of size at most ∆−(~Gd−1) that induce independent sets
in H. Hence we can apply Corollary 2 and obtain a subset X ⊆ V(H)

such that

‖H[X ]‖ > ‖H‖/4∆−(~Gd−1)
2.

Note that for every w ∈ Ph there exists per construction exactly one
vertex v ∈ V(H) such that (w, v) ∈ X . The assignment µ therefore
simply assigns this v to w. Therefore any edge in H[X ] corresponds
to an edge not deleted in the construction of H1 and we have that
indeed ‖H1‖ > ‖H[X ]‖ (note that some edges of H0 might not be
affected at all, this is reflected by the inequality), as claimed.

Let us assume in the following that H1 is ∇0-critical. This property
can be enforced simply by removing nails of degree less than ∇0(H1)

and does not interfere with the remaining construction. We therefore
assume that H1 already has this property.

We continue by partitioning the vertices of H1 into two sets Vh, V l

as follows:

Vh := {v ∈ H1 : |µ−1(v)| > ∇0(H)
1/2}

V l := V(H1) \Vh

We construct the minor H2 from H1 as follows: for every vertex v ∈ V l

we add all pivots µ−1(v) to the nail set. We include the edges from v
to µ−1(v) and reroute the edges vu ∈ H2 with π(vu) 6= ⊥ to wu
where w = π(vu) ∈ µ−1(v). For vertices in v ∈ Vh we take every
pivot w ∈ µ−1(v) and of all the edge incident to v in H2 with pivot w,
we keep an arbitrary single one. We lower-bound the density of the
resulting minor by counting the degrees of vertices and obtain:

2
‖H2‖
|H2| >

|Vh|∇0(H)1/2 + |V l |∇0(H1)

|H1|+ |V l |∇0(H)1/2

>
|Vh|∇0(H)1/2 + |V l |∇0(H0)/4∆−(~Gd−1)

2

|H0|+ |V l |∇0(H)1/2
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This fraction takes its extreme values in the cases |Vh| = |V(H0)|
and |V l | = |V(H0)|. With these values we obtain the densities

1
2
∇0(H)

1/2 and
1

8∆−(~Gd−1)2
∇0(H)

1/2,

respectively. It follows that

∇0(H2) >
∇0(H)1/2

8∆−(~Gd−1)2
.

Note that we can adjust the embedding φ2
E in such a way that no nail

of the minor is incident to an edge in Ed: for every nail v ∈ V l , we
have added all pivots µ−1(u) responsible for edges incident to v as
nails—since the edges incident to these pivots have weight at most d,
they are not in Ed. For every nail v ∈ Vh we have reduced the number
of edges a single pivot in µ−1(v) contributes to v to one. Consider
such an edge vu ∈ H2 with π(vu) = w ∈ µ−1(v) and assume we
chose vu to be the single edge w still adds to v. If vx is the first edge
of the embedding φ1

E(vu), we reroute via the two edges vw, wx ∈ Gd−1
instead. We conclude this part of the construction by tracking how the
parameters of the embedding have changed so far.

Claim. The embedding φ2
E of H2 in Gd−1 has depth at most (r + 2)/2. and

weight at most γ.

The construction of H1 from H0 simply removed edges, so we focus
on the step from H1 to H2. For every edge uv ∈ E(H1) ∩ E(H2) we
potentially rerouted the embedding of uv through up to two pivots
of Ph, hence the embedding of such an edge was lengthened by two
edges. For an edge uv ∈ H2 where one of the endpoints is a pivot, the
length of the embedding (on that side) only got shorter. We conclude
that the embedding has depth at most (r + 2)/2. For the weight of the
embedding, notice that replacing an edge of Ed by a reroute through
its respective pivot adds two edges whose sum is exactly d; hence the
operations so far could only have decreased the weight of the embed-
ding. Consequently, the number of edges of weight d that can occur in
any embedding φ2

E(e), e ∈ H2 is bounded by bγ/dc.
We are now left with treating the pivots Pl and their respective

edges of Ed.

Claim. Let xy ∈ Ed be such that π(xy) = w ∈ Pl and there exists an
edge uv ∈ H2 with xy ∈ φ2

E(uv). Then x, y are distinct from u, v.

By the definition of Pl we have that x, y cannot be contained in H0

since then w would be contained in Ph. Further, since xy ∈ Ed, neither
the vertex x nor the vertex y can be in Ph and we conclude that x, y 6∈
V(H2). A simple consequence is that in every pivot in Pl can only be
responsible for up to ∆−(~Gd−1) edges in the embedding of H2.

With the above two claims we can construct the final minor H3 iter-
atively as follows: we take an arbitrary remaining edge in e ∈ E(H2)
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and collect all pivots Pe that occur as pivots of edges in φ2
E(e). We

delete all up to bγ/dc∆−(~Gd−1) other edges of H2 that share any of
the pivots Pe and reroute the embedding of e to avoid all edges of Ed
using Pe. This operation cannot increase the weight of the embedding,
but it will increase its length by up to bγ/dc many edges.

Finally, the minor H3 has an embedding that avoids all edges of Ed
and hence is a topological minor of Gd−1. Its density is at least

∇0(H3) >
‖H3‖
|H3| >

∇0(H2)

bγ/dc∆−(~Gd−1)
>

∇0(H)1/2

8bγ/dc∆−(~Gd−1)3
.

Remember that we constructed H3 implicitly in Gd−1 · K2 by assum-
ing that the pivots were disjoint from the vertices used by the embed-
ding of H. We conclude that Gd−1 contains a minor H′ of density at
least

∇0(H′) >
∇0(H3)− 1

2r′ + 1
>
∇0(H3)

5r′
>

∇0(H)1/2

40r′bγ/dc∆−(~Gd−1)3

and depth at most r′/2 := (r + 2 + bγ/dc)/2 and weight at most γ.
Note that we assume that ∇0(H3) > 2 to make the above simplifica-
tions.

We directly arrive at the following corollary by observing that an r-
shallow topological minor of the dth augmentation can have weight at
most (2r + 1)d.

Corollary 7. Let ~G1, ~G2, . . . be a dtf-augmentation. Then for every integer d
and half-integer r it is true that

∇̃r(Gd) 6 212(2r + 1)4∆−(~Gd−1)
6∇̃2r+3/2(Gd−1)

2.

Lemma 33 provides us with a recurrence to bound the (stable and
weighted) topological grad of dtf-augmentations. However, the bound
contains the maximum indegree of the previous augmentation; there-
fore we need a second recurrence relation to come to a closed form.

Lemma 34. For every graph G there exists a dtf-augmentation ~G1, ~G2, . . .
such that

∆−(~Gd) 6 ∆−(~Gd−1)
2 + 12∆−(~Gd−1)

3 · ˙̃∇d
1/2(Gd−1).

Proof. We estimate the above quantities for an orientation ~Gd by count-
ing the transitive and fraternal edges added separately. To that end,
let ~G f

d be the graph ~Gd−1 with the fraternal arcs of ~Gd added and, ana-
logously, ~Gt

d the graph ~Gd−1 with the transitive arcs added.
It is easy to see that ∆−(~Gt

d) 6 ∆−(~Gd−1)
2, so let us focus on the

fraternal arcs. Our orientation strategy is simple: we will prove that G f
d

has low degeneracy, hence an acyclic orientation of the graph G f
d will

have low maximal indegree.
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Claim. Let s := ∆−(~Gd−1)
2. The graph G f

d is a 1⁄2-stable topological minor
of Gd−1 · Ks with weight d.

For every vertex v ∈ Gd−1, at most(
N−d−1(v)

2

)
6
(

∆−(Gd−1)

2

)
=

∆−(Gd−1)(∆−(Gd−1)− 1)
2

6 s− 1

fraternal edges will be added in its in-neighbourhood N−d (v). Note
that the above inequality assumes ∆−(Gd−1) > 1, which we can safely
assume (the lemma holds trivially for edgeless graphs). Hence, we can
construct the graph G f

d from Gd−1 · Ks as follows: for every vertex v ∈
Gd−1, let v0, v1, . . . , vs denote its twin-vertices in the product graph. For
each edge that needs to be added in N−d−1(G) in order to construct G f

d ,
we contract a vertex vi with i > 1 to obtain it—by our choice of s,
we will not run out of vertices. After all fraternal edges have been
constructed, we remove all left-over vertices vi, i > 1 and arrive at a
graph isomorphic to G f

d . Since we only contracted paths of length 2
with weight d, we conclude that G f

d is a 1⁄2-stable topological minor
of Gd−1 · Ks with the claimed weight.

The claim allows us to apply Lemma 24 to show that

∇0(G
f
d ) 6 (4(1/2 + 1)(s− 1) + 1)s2 · ˙̃∇d

1/2(Gd−1)

6 6s3 · ˙̃∇d
1/2(Gd−1).

In order to obtain a bound on the maximum indegree we need to fix
and orientation strategy for the transitive edges. Since we saw that the
degeneracy of G f

d is bounded, a natural choice is an acyclic orientation
of the graph G f

d via the degeneracy-ordering. With this strategy we
obtain

∆−(~Gd) 6 ∆−(Gt
d) + ∆−(G f

d )

6 ∆−(~Gd−1)
2 + 12∆−(~Gd−1)

3 · ˙̃∇d
1/2(Gd−1),

which is the claimed bound.

We now possess all the ingredients to bound the maximum indegree of
the dth dtf-augmentation by the (stable topological) grad of the original
graph: we only have to resolve the recurrences given by Lemma 33 and
by Lemma 34.

Theorem 16. For every graph G there exists a dtf-augmentation ~G1, ~G2, . . .
such that

∆−(~Gd+1) 6 28·5d
d 6d

(d + 1)2d ·
( ˙̃∇d+1(G1) · ∆−(~G1)

)3·5d−1

.

Proof. Lemma 33 and Lemma 34 provide us with the recurrences

∆−(~Gd) 6 13∆−(~Gd−1)
3 · ˙̃∇d

1/2(Gd−1) 1
˙̃∇d+1

ri
(Gi) 6 (40ri−1 · ∆−(~Gi−1)

3 · ˙̃∇d+1
ri−1

(Gi−1))
2 2
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where the depth ri is recursively defined via

rd := 1/2

ri := ri+1 + 2 +
⌊

d + 1
i + 1

⌋
.

This easily expands into a closed form, allowing a simple bound:

ri := 1/2 + 2(d− i) +
d−1

∑
k=i

⌊
d + 1
k + 1

⌋

6 1/2 + 2(d− i) + (d + 1)
d

∑
k=i+1

1
k

= 1/2 + 2(d− i) + (d + 1)(Hd − Hi).

The second recurrence by can be brought into a more manageable
form by letting xi := log ˙̃∇d+1

ri
(Gi), yi := log ∆−(~Gi), and taking logar-

ithms on both sides:

xi 6 2 log 40ri−1 + 6yi−1 + 2xi−1

=⇒ xi 6 2i−1x1 +
i−1

∑
k=1

2i−k(log 40 + log rk + 3yk)

= 2i−1x1 + (2i − 1) log 40 +
i−1

∑
k=1

2i−k(log rk + 3yk).

To bound the sum over log rk, notice that

log rk = log((d + 1)(Hd − Hk) + 2(d− k) + 1/2)

= log
(
(d + 1)(Hd − Hk)

)
+ log

(
1 +

2(d− k) + 1/2

(d + 1)(Hd − Hk)

)
6 log(d2 + d) +

2(d− k) + 1/2

(d + 1) log d

and therefore
i−1

∑
k=1

2i−k log rk 6 (2i − 1)
(

log(d2 + d) +
5

2 log d

)
,

which simplifies the recurrence to

xi 6 2i−1x1 + (2i − 1)
(

log 40(d2+d) +
5

2 log d

)
+

i−1

∑
k=1

2i−k3yk.

Re-substitution provides the following reformulation

˙̃∇d+1
ri

(Gi) 6
˙̃∇d+1

r1
(G1)

2d−1
(40(d2+d)2

5
2 log d )2d−1

d−1

∏
k=1

∆−(~Gk)
3·2i−k

,

of the recurrence 2 . Plugging this into 1 yields

∆−(~Gd+1) 6 13 ˙̃∇d+1
r1

(G1)
2d−1

(40(d2+d)2
5

2 log d )2d−1
d

∏
k=1

∆−(~Gk)
3·2d−k

,
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which we can finally resolve. The solution to the following recurrence
relation (related again logarithmically to our recurrence)

zd+1 = cd + 3
d

∑
k=1

2d−kzk

has the form

zd+1 = cd + 3
d−1

∑
k=1

5d−k−1ck + 3 · 5d−1z1

which can be easily checked via induction and the fact that

zd+1 = cd + 3zd + 2(zd − cd−1).

With

cd := log
(

13 ˙̃∇d+1
r1

(G1)
2d−1

(40(d2 + d)2
5

2 log d )2d−1
)

and

zd := log ∆−(~Gd)

we see that

2zd+1 6 2cd
( d−1

∏
k=1

25d−k−1ck
)3
· 23·5d−1z1 ,

which we can further simplify by considering

d−1

∏
k=1

25d−k−1ck =
d−1

∏
k=1

(
13 ˙̃∇k+1

r1
(G1)

2k−1
(40(k2 + k)2

5
2 log k )2k−1

)5d−k−1

6 13(5
d−1−1)/4(240d2)

1
12 (5

d−2d+2+3) ˙̃∇d(G1)
1
3 (5

d−1−2d−1)

6 26·5d−1
d5d−1 ˙̃∇d(G1)

1
3 5d−1

where we used the fact that ˙̃∇d
r1
(G1) =

˙̃∇d(G1) since the edges of the
initial graph G1 = G have all weight one and d < r1. Applying the
same argument again and using the just derived bound on the product,
we finally arrive at the claimed bound:

∆−(~Gd+1) 6
(
13 ˙̃∇d+1(G1)

2d−1
(240(d2 + d))2d−1)

·
(
26·5d−1

d5d−1 ˙̃∇k+1
d (G1)

1
3 5d−1)3 · ∆−(~G1)

3·5d−1

6 28·5d
d 6d

(d + 1)2d ·
( ˙̃∇d+1(G1) · ∆−(~G1)

)3·5d−1

.

Armed with Theorem 16 we can now prove the characterisation of
bounded expansion classes by low-treedepth colouring. The technique
used above was rather tedious and complicated; but it pays off here
since we are able to bound the maximal number of colours necessary
for a p-centred colouring by a function of the stable topological grad.
This does not quite reach the best known bounds of Q(∇̃2p−2+1/2(G)),
where Q is a polynomial of degree 22p

, but it is better than the known
bound based on tf-augmentations which is P(∇(8p)p−1(G)), where P is
a polynomial of a similar degree as Q (cf. [192]).
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Theorem 17. Let G be a graph class of bounded expansion. Then for every
graph G ∈ G and every p ∈ N we can compute a p-centred colouring with
at most

χp(G) 6 22logO(p) p ˙̃∇(2 log p)p(G)3·5(2 log p)p

colours in time

22logO(p) p ˙̃∇(2 log p)p(G)6·5(2 log p)p

· |G|.

Proof. By Lemma 32, a proper colouring of ~G(2 log p)p is a p-centred
colouring of G. Theorem 16 gives us the bound

χ(G(2 log p)p) 6 2∆−(~G(2 log p)p) 6 22logO(p) p ˙̃∇(2 log p)p(G)3·5(2 log p)p

Since the running time of the dth dtf-augmentation step is bounded by
O(∆−(~Gd)

2|G|), the claimed running time follows.

The above bounds seem astronomically high, but we need to keep in
mind that they are only worst-case estimates. Our experiments (see
Chapter 17) show that real-world graphs behave much tamer than the
above bound might suggest.

We can use the same result to show that nowhere dense classes
admit low-treedepth colourings. Unsurprisingly, the running time is
almost linear. Note that Theorem 20, which is stated later in this thesis,
provides us with the fact that ˙̃∇r(G) = O(|G|o(1)) for every fixed r and
every graph G from a nowhere dense class

Lemma 35 (cf. [192]). Let G be a nowhere dense graph class. For G ∈ G
and p ∈N it holds that χp(G) 6 O(|G|o(1)). Moreover, such a colouring is
computable in time O(|G|1+o(1)).

Proof. Again, Theorem 16 gives us the bound

χ(G(2 log p)p) 6 2∆−(~G(2 log p)p) = O(|G|o(1)),

where the last bound follows from Theorem 20. Since the running
time of the dth dtf-augmentation step is bounded by O(∆−(~Gd)

2|G|),
the claimed running time follows.

Open question 1. The bound (2 log p)p on the number of dtf-augment-
ations necessary to obtain a p-centred could be immediately lowered
by improving Lemma 31. This might in particular be possible if we
fix the orientation strategy already at this point: consider a set of in-
dependent but pairwise fraternal vertices to which fraternal arcs are
added in the same augmentation step. Then the acyclic orientation
strategy for fraternal edges will immediately introduce an out-apex
into this vertex set. Can we show a bound of 2O(p) to match the best
known bound?
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N E I G H B O U R H O O D S T R U C T U R E S

An area in the theory of sparse graphs that seem to have garnered
little attention so far is the neighbourhood structure. The one example
that comes to mind is the result by Grohe, Kreutzer, and Siebertz that
nowhere dense classes admit small ‘neighbourhood covers’ [128]. We
present here two key ingredients to further unlock the algorithmic
potential of bounded expansion classes: the twin class lemma and its
refinement the charging lemma. Both will be extremely useful in our
work on preprocessing sparse graphs (Chapters 11 and 13). Inspired
by the bounds provided through the twin class lemma, we define the
notion of neighbourhood complexity and show that it provides an altern-
ative characterisation of bounded expansion classes. Our method of
arriving at this result uses some novel insight into how p-centred col-
ourings structure a graph and we find an interesting connection to
laminar set families.

8.1 the twin and charging lemma

The following lemma is the basis of much of the work presented in
this thesis. I first proved it in the context of graphs excluding a to-
pological minor [156] and later found the right way of extending it
to graphs of bounded expansion and nowhere dense classes [114]. It
is easiest proved by considering a bipartite graph (X, Y, E) where we
want to bound the structure and size of the set Y in terms of |X|. It
will be heavily featured in the kernelisation results in Chapter 11. The
below statement is in its most general form (which some of the applic-
ations need). One can mentally replace the values τ, ω by ∇̃1/2(G) and
ω̃1/2(G), respectively, without loosing too much of its power.

Lemma 36 (Twin class lemma). Let G = (X, Y, E) be a bipartite graph,
and let

τ > ∇0
(
(G Õ 1/2)6|X|

)
and

ω > ω
(
(G Õ 1/2)6|X|

)
.

Then it holds that

1. |{u | deg(u) > 2τ}u∈Y| 6 2τ · |X|, and

2. |{N(u)}u∈Y}| 6 (min{4τ, ω(eτ)ω}+ 2τ) · |X|.

Proof. We construct a sequence G0, G1, . . . , G` of topological 1⁄2-shallow
minors of G as follows. Set G0 = G, and for 0 6 i 6 `− 1 construct
Gi+1 from Gi by choosing a vertex v ∈ V(Gi) \ X such that N(v) ⊆ X
contains two non-adjacent vertices u, w in Gi; then contract v into the

83
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edge vu to obtain Gi+1. Note that this necessarily adds the edge uw. It
is clear from the construction that X ⊆ V(Gi) ⊆ X ∪Y for 0 6 i 6 `.

This process clearly terminates, as Gi+1 has at least one more edge
between vertices of X than Gi. Note that Gi ∈ G Õ 1/2 for 0 6 i 6 `,
as the edges e1, . . . , ei−1 that were contracted to vertices in X in order
to construct Gi correspond to paths of length two in G whose internal
vertices are pairwise disjoint. We therefore conclude that Gi is a 1⁄2-
shallow topological minor of G. Accordingly, G`[X] ∈ (G Õ 1/2)6|X|.
This implies that G`[X] is 2τ-degenerate and has at most 2τ · |X| edges.
Further, note that Y ∩ V(Gi) is, by construction, still an independent
set in Gi for each 0 6 i 6 `.

Let us now prove the first claim. To this end, assume towards a con-
tradiction that there is a vertex v ∈ Y ∩ V(G`) such that deg(v) > 2τ.
We claim that G`[N(v)] is a clique. If not, we could choose a pair
of non-adjacent vertices in G`[N(v)] and construct a (`+ 1)-th graph
for the sequence which would contradict the assumption that we ex-
hausted the process. However, a clique of size |{v} ∪ N(v)| > 2τ + 1
is not 2τ-degenerate. Hence we conclude that no vertex of Y ∩ V(G`)

has degree larger than 2τ in G`. Therefore all vertices in Y of degree
greater than 2τ in G must have been deleted during the edge contrac-
tions that resulted in the graph G`. As every contraction added one
edge between vertices in X and since G`[X] contains at most 2τ · |X|
edges, the first claim follows.

For the second claim, consider the set Y` = Y ∩ V(G`). The neigh-
bourhood of every vertex v ∈ Y` induces a clique in G`[X]. From
the degeneracy of G`[X] and Proposition 5, it follows that G`[X] has
at most 22τ|G`[X]| = 4τ · |X| complete subgraphs. Similarly, from
Lemma 7 we obtain the bound ω(eτ)ω · |X|.

Therefore the total number of neighbourhoods in X induced by ver-
tices of Y in G is bounded by the number of contractions ` 6 2τ · |X|
and the resulting number of complete subgraphs in G`[X]. This is ex-
actly the second claim.

A related tool developed for our paper on the kernelisation of Dom-
inating Set in structurally sparse classes [76] is the following char-
ging lemma. As it turns out, not only is the number of twin-classes
in the above setting bounded, they are also in a certain sense ‘well-
distributed’. We provide an alternative proof here using a more direct
approach than the one presented in the paper, which should be attrib-
uted to Marcin and Michał Pilipczuk, and Daniel Lokshtanov.

Lemma 37 (Charging lemma,cf. [76]). Let G = (X, Y, E) be a bipartite
graph such that Y is twin-free and every u ∈ Y has a non-empty neighbour-
hood. Let again

τ > ∇0
(
(G Õ 1/2)6|X|

)
and

ω > ω
(
(G Õ 1/2)6|X|

)
.

Then there exists a mapping φ : Y → X with the following properties:
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• uφ(u) ∈ E for u ∈ Y, and

• |φ−1(v)| 6 2∇0(G)(min{4τ, ω(eτ)ω}+ 2τ + 1) for every v ∈ X.

Proof. We partition the vertices of Y = Y` ∪ Yh according to their de-
gree as follows:

Y` := {x ∈ Y | deg(x) 6 2∇0(G)} and Yh := Y \Y`

We construct two mappings φd : Yd → X for d ∈ {h, `} and combine
them at the end. Accordingly, let Gd be the two bipartite graphs with
vertex sets (X, Yd), respectively.

Claim. There exists a mapping φh : Yh → X such that uφh(u) ∈ E(X, Yh)

for every u ∈ Yh and |φ−1(v)| 6 2∇0(G) for every x ∈ X.

The graph Gh is 2∇0(G)-degenerate thus contains a vertex of degree
at most 2∇0(G). By the construction of Yh then, this vertex must be
contained in X. With this observation at hand we proceed as follows to
construct φh: let v ∈ X be such that degGh

6 2∇0(G). We set φh(u) = x
for every x ∈ NGh(x), then we remove the set N[x] from the graph.
Note that this operation does not change the remaining vertices of Yh,
hence we can repeat this operation until every vertex of Yh has been
charged to a vertex in X. The bound on φ−1

h follows directly from the
observed degree bound.

Claim. There exists a mapping φ` : Y` → X such that uφ`(u) ∈ E(X, Y`)

for every vertex u ∈ Y` and |φ−1(v)| 6 2τ(min{4τ, ω(eτ)ω} + 2τ) for
every vertex x ∈ X.

By Lemma 36 the set Y` (since it is twin-free) has size at most

|Y`| 6 (min{4τ, ω(eτ)ω}+ 2τ) · |X|.

Therefore we have that

∑
v∈X

degG`
(v) = ∑

u∈Y`

degG`
(u)

6 2∇0(G) · (min{4τ, ω(eτ)ω}+ 2τ) · |X|,

which implies that the average degree of vertices in X is

1
|X| ∑

v∈X
degG`

(v) 6 2∇0(G) · (min{4τ, ω(eτ)ω}+ 2τ).

Accordingly, there exists a vertex v ∈ X that has degree at most
2∇0(G)(min{4τ, ω(eτ)ω} + 2τ) in G`. With this observation we con-
struct the mapping φ` exactly as in the high-degree case: We take the
vertex v ∈ X of minimal degree, set φ(u) = v for u ∈ N(v) and de-
lete N[v] from G`. Note that in the resulting graph, the remainder of
the set Y` is still twin-free. It follows that we can iterate this procedure
until every vertex of Y` has been charged to a vertex in X. The bound
on φ−1

` follows directly from the observed degree bound.
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To finally obtain the mapping φ we simply join the two constructed
mappings φh, φ`. The first desired property follows straight from the
construction of the two mappings. For the size bound we have that for
every v ∈ X it holds that

|φ−1(v)| = |φ−1
h (v)|+ φ−1

` (v) 6 2∇0(G)(min{4τ, ω(eτ)ω}+ 2τ + 1),

as claimed.

The factor ω(eτ)ω in the above two lemmas might look inferior to the
much cleaner 4τ, however, in the case of nowhere dense classes the
quantity τ might depend sublinear on |X| whereas ω will remain a
constant. In this case, we prefer a polynomial dependence on τ.

8.2 a characterisation by neighbourhood complexity

Neighbourhood complexity
The twin class lemma and the charging lemma have great algorithmic
potential as we will see in the next part of the thesis. But one has
to wonder: they both work on a strictly local level, formulated as a
‘depth-one’ statement if you will. Most statements and characterisa-
tions of bounded expansion classes work beyond that by introducing
exactly this depth as a parameter. Can we formulate and prove such
a variation? Let us define a parametrised measure which captures the
spirit of the twin class lemma.

Definition 17 (Neighbourhood complexity). For a graph G we define
the r-neighbourhood complexity as a function νr via

νr(G) := max
H⊆G,X⊆V(H)

|{Nr[v] ∩ X}v∈H |
|X| .

We extend this definition to graph classes G via νr(G) := supG∈G νr(G).

We say that a graph class G has bounded neighbourhood complexity if
there exists a function f such that for every r it holds that νr(G) < f (r).

Note the hereditary nature of the definition: we need to define it
over all subgraphs H of G in order to exclude dense graphs—without
this detail, a clique would have neighbourhood complexity one (which
might be an interesting measure in its own right).

The goal of this section is to show that graphs of bounded expansion
are exactly those with neighbourhood complexity.

Theorem 18. A graph class G has bounded expansion if and only if it has
bounded neighbourhood complexity.

The main challenge is to prove that graphs from a graph class of
bounded expansion have low neighbourhood complexity, the other
direction is quite simple. Some definitions will be necessary to prove
Lemma 38 which relates the neighbourhood complexity to the centred
colouring number.Signature, proper –
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A signature σ over a universe U is a sequence (ui)16i6`, ui ∈ U where
` is the length of the signature, also denoted by |σ|. Accordingly, a `-
signature is simply a signature of length `. We use the notation σ[i] :=
ui to signify the ith element of σ. A signature is proper if all its elements
are pairwise distinct. We impose a total order on all signatures (say,
lexicographic). Thus for a set Σ of signatures and a function f : Σ→ A
for an arbitrary set A, we employ the notation ( f (σ))σ∈Σ to obtain
sequences over elements of A derived from that ordering.

Recall that for a path P, we denote by P[i] the ith vertex on the path.
Hence, Let G be a graph coloured by c : V(G) → [ξ] for some ξ ∈ N.
Consider a path P ∈ G, then we denote by σP the |P|-signature over [ξ]
with σP[i] = c(P[i]). For a fixed signature σ, we say that P ∈ G is a
σ-path if σP = σ. σ-neighbourhood, Nσ(•)

For a fixed signature σ over [ξ], we define the σ-neighbourhood of a
vertex v in G as

Nσ(v) := {w ∈ G | ∃vPw such hat σvPw = σ}

Note that Nσ(v) ⊆ N|σ|(v). Also, if σ[0] 6= c(v) then Nσ(v) = ∅.
We use the following extension to vertex sets X ∈ V(G) and sets of
signatures Σ over [ξ]:

NΣ(v) :=
⋃

σ∈Σ

Nσ(v) Nσ(X) :=
⋃

v∈X

Nσ(v)

NΣ(X) :=
⋃

v∈X

⋃
σ∈Σ

Nσ(v)

Similarly, the σ-in-neighbourhood of a vertex v is defined as

N−σ(v) := {w ∈ G | ∃wPv such hat σwPv = σ}

and we extend this notation to vertex and signature sets in the same
manner as above:

N−Σ(v) :=
⋃

σ∈Σ

N−σ(v) N−σ(X) :=
⋃

v∈X

N−σ(v)

N−Σ(X) :=
⋃

v∈X

⋃
σ∈Σ

N−σ(v)

The following basic fact about σ-neighbourhoods for proper signa-
tures σ is easy to verify.

Observation 1. Let u, v ∈ G be distinct vertices and uP•, vP• be two
σ-paths for some proper signature σ. Then for any x ∈ uσ• ∩ vσ• it holds
that x has the same index on both uσ• and vσ• and that x is a centre of
uP• ∪ vP•.

We can define the neighbourhood complexity via the index of an equi-
valence relation. This turns out to be a useful perspective in the sub-
sequent proofs.
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For r ∈ N and X ⊆ V(G), we define the (r, X)-twin equivalence
over V(G) as

u 'G,X
r v ⇐⇒ Nr[u] ∩ X = Nr[v] ∩ X

which gives rise to the alternative definition

νr(G) = max
H⊆G,X⊆V(G)

|V(H)/'H,X
r |

|X| .

We will usually fix a graph in the following and hence omit the super-
script G of this relation.

8.3 bounding neighbourhood complexity

This section is dedicated to proving the following lemma, which con-
stitutes the challenging direction of Theorem 18.

Lemma 38. There exists a function f such that for every graph G, every
subset X ⊆ V(G) and r ∈N it holds that

|V(G)/'X
r | 6 f (χ2r+1(G)) · |X|

For the remainder of this section, fix a graph G, a vertex subset X ⊆
V(G), an integer r and a 2r+ 2-centred colouring c : V(G)→ [ξ] where
ξ = χ2r+1(G). We will introduce a sequence of equivalence relations
over V(G) and prove that they successively refine 'X,r. To that end,
define Σ6r to be the set of all r-signatures over [ξ].

The following sequence of lemmas will elucidate the connection
between centred colourings and proper signatures.

Lemma 39. For any proper signature σ ∈ Σ6r and any vertices u, v ∈
V(G), either Nσ(u) ∩ Nσ(v) = ∅ or Nσ(u) = Nσ(v).

Proof. Assume there exists x ∈ Nσ(u) ∩ Nσ(v) but Nσ(u) 6= Nσ(v).
Without loss of generality, let y ∈ Nσ(v) \ Nσ(u).

Fix one σ-path uPx and a σ-path vPx. Let s ∈ uPx ∩ vPx be the first
vertex in which both paths intersect (since both paths end in x, such a
vertex must exist). Further, fix a σ-path vPy. Now if vPy ∩ uPx is non-
empty, then y is σ-reachable from u: by Observation 1, there would be
a vertex z ∈ vPy ∩ uPx that has the same index on both paths. Since
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σ is proper, the subpath of vPy from z to y cannot share a vertex with
uPx, thus we can construct a σ-path by first taking the subpath from
u to z in uPx and then the subpath from z to y in vPy. Thus, assume
vPy and uPx do not intersect. But then the graph uPx ∪ vPx ∪ vPy is
connected and contains every colour of σ at least twice. Since it holds
that |σ| 6 2r + 1, this contradicts our assumption that the colouring c
is (2r + 2)-centred.

We see that a single proper signature σ imposes a very restricted struc-
ture on the respective σ-neighbourhoods in the graph. Even more in-
teresting is the interaction of proper signatures with each other, as
described in the following lemma.

Lemma 40. For every pair of proper signatures σ1, σ2 ∈ Σ6r and every pair
of vertices a, b ∈ N−σ1(X) ∩ N−σ2(X) we either have [a]σ1 ∩ [b]σ2 = ∅,
[a]σ1 ⊆ [b]σ2 or [a]σ1 ⊇ [b]σ2 .

Proof. The statement is trivial if σ1 = σ2 or a = b. Otherwise, assume
that there exist a 6= b such that indeed [a]σ1 and [b]σ2 are not related
in the three above ways—since this is impossible when |[a]σ1 | = 1 or
|[b]σ2 | = 1, we know that there exists vertices u, v, w ∈ N−σ1(X) ∩
N−σ2(X) with u ∈ [a]σ1 \ [b]σ2 , v ∈ [b]σ2 \ [a]σ1 and w ∈ [a]σ1 ∩ [b]σ2 .

The respective membership in the classes tell us the following about
the vertices u, v, w: Nσ1(u) = Nσ1(w) 6= Nσ1(v) and at the same time
Nσ2(u) 6= Nσ2(w) = Nσ2(v). Using Lemma 39 we can strengthen this
statement: Nσ1(u) ∩ Nσ1(v) = ∅ and Nσ2(u) ∩ Nσ2(v) = ∅ and from
the fact that u, v, w ∈ N−σ1(X)∩N−σ2(X) we know that all these neigh-
bourhoods are non-empty.

Therefore, we can pick distinct vertices x1, y1, x2, y2 ∈ X such that
x1 ∈ Nσ1(u), y1 ∈ Nσ1(v) and x2 ∈ Nσ2(u), y2 ∈ Nσ2(v).

Since Nσ1(w) = Nσ1(v), we can connect the vertices v, w with two
(not necessarily disjoint) σ1-paths Pσ1

u , Pσ1
w that start both in x1. Further,

there exists a σ1-path Pσ1
v from y1 to v. If Pσ1

v would intersect either Pσ1
u

or Pσ1
w , we could not have that Nσ1(v) ∩ Nσ1(u) = ∅. We conclude that

indeed Pσ1
v is disjoint from both Pσ1

u and Pσ1
w .

We repeat the same construction for x2, y2 and the signature σ2 to
obtain paths Pσ2

u , Pσ2
v , Pσ2

w . This time, Pσ2
u is necessarily disjoint from

both Pσ2
v and Pσ2

w . We reach a contradiction: observe that the graph
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induced by the paths Pσ1
u , Pσ1

v , Pσ1
w , Pσ2

u , Pσ2
v , Pσ2

w is connected, contains
every colour of σ1, σ2 at least twice and in total at most 2r + 1 colours.
This is impossible if c was indeed (2r + 2)-centred.

The above immediately yields a useful bound if we restrict ourselves
to vertices that connect to X via the same signatures: we show in the
next lemma that their number is linear in the size of X. In order to do
so, we need to introduce another equivalence relation, relative to any
set of signatures Σ̂: let in the following

u 'X
Σ̂ v ⇐⇒

(
Nσ(u) ∩ X

)
σ∈Σ̂ =

(
Nσ(v) ∩ X

)
σ∈Σ̂.

Recall that N−σ(v) denotes the σ-in-neighbourhood of v, that is, it
contains all vertices from which we can reach v by a σ-path.

Lemma 41. Let Σ̂ ⊂ Σ6r be a set of proper signatures and let WΣ̂ =⋂
σ∈Σ̂ N−σ(X) be those vertices in G who have a non-empty σ-neighbourhood

in X for every σ ∈ Σ̂. Then |WΣ̂/'X
Σ̂
| 6 |Σ̂| · |X|.

Proof. Define the set family F :=
⋃

σ∈Σ̂(WΣ̂/'X
σ ) that contains the

classes of all equivalence relations defined via the signatures in Σ̂. By
Lemma 40 and our choice of WΣ̂, the family F is laminar; i.e. every
pair B1, B2 ∈ F satisfies B1 ∩ B2 ∈ {∅, B1, B2}.

Consider a class B ∈ WΣ̂/'X
Σ̂

. Then B is the result of a intersection
of at most |Σ̂| classes in F . Since B 6= ∅ and F is laminar, it follows
that B ∈ F . We conclude that

|WΣ̂/'X
Σ̂ | 6 |F | 6 |Σ̂| · |X|

In order to apply the above lemma we need to bound the number of
possible r-neighbourhoods in X by σ-neighbourhoods of proper signa-
tures. We establish this bound by successively refining the (r, X)-twin
equivalence. The following figure gives an overview over the proof
(using relations yet to be introduced).

u 'X
r−1 v ⇐⇒ Nr−1[u] ∩ X = Nr−1[v] ∩ X~ww Lemma 42

u ∼=X
r−1 v ⇐⇒

(
Ni(u) ∩ X

)
06i<r =

(
Ni(v) ∩ X

)
06i<r~ww Lemma 43

u 'X
Σ6r

v ⇐⇒
(

Nσ(u) ∩ X
)

σ∈Σ6r
=
(

Nσ(v) ∩ X
)

σ∈Σ6r~ww Lemma 44

u 'X
Σ̂6r

v ⇐⇒
(

Nσ(u1) ∩ X|σ|
)

σ∈Σ̂6r
=
(

Nσ(v1) ∩ X|σ|
)

σ∈Σ̂6r

The last relation is defined with the help of an auxiliary graph Ĝ and
signature set Σ̂6r whose construction is described later. The bound on
the index of this last relation will prove Lemma 38.
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Lemma 42. The equivalence relation ∼=X
r over V(G) defined via

u ∼=X
r v ⇐⇒

(
Ni(u) ∩ X

)
06i6r =

(
Ni(v) ∩ X

)
06i6r

is a refinement of 'X
r .

Proof. Assume u ∼=X
r v. Since by definition Nr[v] =

⋃
16i6r Nr(v), we

have that Nr[u] = Nr[v] and hence u 'X
r v.

Lemma 43. The equivalence relation 'X
Σ6r

over V(G) defined via

u 'X
Σ6r

v ⇐⇒
(

Nσ(u) ∩ X
)

σ∈Σ6r
=
(

Nσ(v) ∩ X
)

σ∈Σ6r

is a refinement of ∼=X
r−1.

Proof. Assume u 'X
Σ6r

v. We need to prove that for every 0 6 i < r,
it holds that Ni(u) ∩ X = Ni(v) ∩ X. To that end, consider the set of
signatures Σ=i ⊆ Σ6r of length exactly i. The equivalence of u and v
implies that(

Nσ(u) ∩ X
)

σ∈Σ=i
=
(

Nσ(v) ∩ X
)

σ∈Σ=i

for every 1 6 i 6 r. Therefore we have that

w ∈ Ni(v) ∩ X =⇒ ∃σ ∈ Σ=i : w ∈ Nσ(v) ∩ X

=⇒ ∃σ ∈ Σ=i : w ∈ Nσ(u) ∩ X

=⇒ w ∈ Ni[u] ∩ X

Assume towards a contradiction that actually w 6∈ Ni(u). Since we can
swap u and v in the above, we also have that w 6∈ Ni(u) ∩ X =⇒
w 6∈ Ni[v] ∩ X which contradicts our above assumption. Hence we
necessarily have that Ni(u) ∩ X = Ni(v) ∩ X.

We now construct an auxiliary graph and colouring as follows: let Ĝ =

G · Kr and let ĉ : V(Ĝ) → [ξ] × [r]. Assuming that V(Kr) = [r] and
hence V(Ĝ) = V(G)× [r], we will use the shorthand vi = (v, i) for v ∈
V(G), i ∈ [r] and call vi the ith copy of v. Note that ĉ is a 2r + 2-centred
colouring of Ĝ: any connected subgraph Ĥ ⊆ Ĝ with less than 2r + 2
colours and no centre would directly imply that the subgraph H ⊆ G
with vertex set V(H) =

⋃
16i6r{v ∈ G | vi ∈ Ĥ} contains at most 2r+ 2

colours and no centre, contradicting our choice of c.
For a signature σ ∈ Σ6r we define the proper signature

σ̂ = ((σ[i], i))16i6|σ|.

Accordingly, we define the signature set Σ̂6r over colours [ξ]× [r] as

Σ̂6r = {σ̂ | σ ∈ Σ6r}.

The following lemma connects the sigma-equivalence 'X
Σ6r

over V(G)

with a suitable equivalence defined over the above auxiliary structure.
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Lemma 44. The equivalence relation 'X
Σ̂6r

over V(G) defined via

u 'X
Σ̂6r

v ⇐⇒
(

Nσ(u1) ∩ X|σ|
)

σ∈Σ̂6r
=
(

Nσ(v1) ∩ X|σ|
)

σ∈Σ̂6r

is a refinement of 'X
Σ6r

where Xi := {vi | v ∈ X}.

Proof. Assume u 'X
Σ̂6r

v. Then for every signature σ ∈ Σ6r we have

that Nσ̂(u1) ∩ X|σ̂| = Nσ̂(v1) ∩ X|σ̂|. Since a σ̂-path in Ĝ corresponds
to a σ-path in G, this implies that Nσ(u) ∩ X|σ| = Nσ(v) and thus we
have that u 'X

Σ6r
v.

Lemma 45. |V(G)/'X
Σ̂6r
| 6 2ξr+1 · |X|

Proof. To obtain the bound, we apply Lemma 41 to every subset of
signatures Σ̂ ⊆ Σ̂6r. Note that every signature σ̂ under consideration
ends in a tuple (•, r). Hence, we can restrict ourselves to the set X̂r =

X ∩ (V(G)× {r}) and obtain in total:

|V(G)/'X
Σ̂6r
| 6 |V(Ĝ)/ 'X̂r

Σ̂6r
| 6 ∑

Σ̂⊆Σ̂6r

|Σ̂| · |X̂r| = 2ξr+1 · |X|

Which proves the claim.

Now the proof of the main lemma is only a technicality.

Proof of Lemma 38. By Lemma 42 to 44 we have that

|V(G)/'X
r−1| 6 |V(G)/∼=X

r−1| 6 |V(G)/'X
Σ6r
| 6 |V(G)/'X

Σ̂6r
|,

which, by Lemma 45, is at most 2χ2r+1(G)r+1
· |X|.

We conclude that bounded expansion implies bounded neighbour-
hood complexity. Let us quickly prove the other direction to arrive
at the full characterisation and thus Theorem 18.

Lemma 46. For every graph G and every r it holds that ∇̃r(G) 6 νr(G).

Proof. Fix r and let H 4t rG be an r-shallow topological minor of G
with density ∇0(H) = ∇̃r(G). Let φV , φE be an embedding witnessing
this fact.

Since all paths (φE(e))e∈E(H) connect to unique pair of vertices of H
in G and the paths have length at most 2r + 1, we have that

∇0(H) 6 |{Nr[v] ∩V(H)}v∈φE(E(H))| 6 νr(G),

which proves the claim.

We can therefore add neighbourhood complexity as yet another tool
in our kit. It seem particularly useful in the context of kernelisation,
where we usually reason about the structure of a graph G around
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some special set X of small size (for example, an approximate solu-
tion to the problem obtained beforehand). The linear kernel for Dom-
inating Set presented in Chapter 13 makes use of it, however, only
at depth one for which the twin class lemma is already sufficient.
It seems likely that an extension of this result to ‘deeper’ problems
like r-Dominating Set will need to employ something like our bound
on the neighbourhood complexity.

Open question 2. The r-neighbourhood complexity is related to the
size of the chosen set X via an exponential function in the (2r+1)-
centred colouring number. Therefore we cannot say anything about
nowhere dense classes, where the latter value can only be bounded
by |X|ε. Can Lemma 38 be proved with a polynomial dependence
on χ• to also characterise nowhere dense classes?

Open question 3. Can we provide a bound of the neighbourhood com-
plexity that does not rely on p-centred colourings but works directly
with shallow minors?





9
F U RT H E R C H A R A C T E R I Z AT I O N S

As noted before, the notion of structurally sparse classes is extremely
robust in that there are a number of parametrised graph measures over
which they can be defined: in this part alone we saw the measures ˙̃∇•,
∇̇•, ∆−(~G•) and ν•. A whole zoo of other measures exist (cf. [192]) and
we can define classes of bounded expansion by using any of them:

Theorem 19 (cf. Theorem 13.2 [192], [191]). For every graph class G that
is nowhere dense and every parametrised graph measure f• equal to or polyno-
mially related to any of {∇•, ∇̃•, ∇̇•, ˙̃∇•, χ•, ν•, col•, wcol•, adm•} it holds
that for every integer r,

lim sup
G∈G

fr(G) < ∞.

The measures wcol•, col• and adm• will be introduced below in Sec-
tion 9.2. By observing that these measures are all polynomially related
to ∇•, and every nowhere dense class G satisfy ∇•(G) = no(1), we can
similarly define nowhere dense classes using these parameters (with
the exception of ν• since we only related it to an exponential function
of χ•).

Theorem 20 (cf. Theorem 13.1 [192], [191]). For every graph class G that
is nowhere dense and every parametrised graph measure f• equal to or poly-
nomially related to any of {∇•, ∇̃•, ∇̇•, ˙̃∇•, χ•, col•, wcol•, adm•} it holds
that for every integer r,

lim sup
G∈G

log fr(G)/ log |G| = 0.

Nešetřil, Ossona de Mendez, and Wood [193] also introduced a char-
acterisation for bounded expansion classes using unparametrised graph
measures1. Let φ be a graph measure. We say that φ is Strongly topological, monotone,

degree bound
• monotone if for every subgraph H ⊆ G it holds that φ(H) 6 φ(G),

• degree bound if for some function f , every graph has degree at
most f (φ(G)), and

• strongly topological if for some function f , every graph G and
every 6 1-subdivision H of G it holds that

φ(G) 6 f (φ(H)) and φ(H) 6 f (φ(G).

Such measures are related to bounded expansion classes as follows:

1 The use the term ‘graph parameter’ which for reasons of clarity we cannot adopt
here.

95
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Lemma 47 (Nešetřil, Ossona de Mendez, Wood [193]). A class G has
bounded expansion if and only if there exists a graph measure φ that is mono-
tone, degree bound, and strongly topological and a constant c such that

G ⊆ {G | φ(G) 6 c}.

For example, the width-measure tw fulfills all three requirement and
we can—not very surprisingly—conclude that classes of bounded tree-
width have bounded expansion. The authors apply this notion to show
that graphs whose crossing number per edge is bounded by c form a
class G with ∇̃r(G) = O(

√
cr). They also applied it to graphs with

special embeddings, see their paper for details.

9.1 large degree and subgraph-grads

The following characterisation will be very useful later to show that
certain random graphs have bounded expansion. In essence, it enables
us to prove that a class has bounded expansion if its members contain
only few vertices of high degree and all dense shallow minors have
embedding that span a large fraction of vertices.

Theorem 21 (Nešetřil, Ossona de Mendez, Wood [193]). A graph class G
has bounded expansion if and only if there exist real-valued functions fthresh,
fdeg, f∇̃, fH such that for all G ∈ G the following two conditions hold:

1. For all ε > 0 either |G| 6 fthresh(ε) or it holds that

|{v ∈ V(G) : deg(v) > fdeg(ε)}| 6 ε · |G|.

2. For all r ∈N, all H ⊆ G with ∇̃r(H) > f∇̃(r) satisfy

|H| > fH(r) · |G|.

9.2 generalised colouring numbers

We have seen earlier how low indegree augmentations of a graph
result in a characterisation of bounded expansion classes. In a sense,
they generalise the low indegree orientations that exist for degenerate
graphs and turn them into a parametrised graph measure. Other char-
acterisations of degeneracy are based on density of subgraphs, which
is generalised by the density of shallow minors, and on linear order-
ings. This latter definition is called the colouring number: Let Π(G) de-
note the set of all linear orderings of the vertices of G. The colouring
number is then defined as

col(G) := 1 + min
π∈Π(G)

max
v∈G
|N<

π (v)|.

It gets it’s name from the simple fact that a any graph can be properly
coloured (by a simple greedy algorithm) with col(G) colours—though
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its chromatic number might be much smaller. If we seek out to gener-
alised the colouring number by parametrising it with some notion of
‘depth’, we need to replace the left-neighbourhood N<

π by an appro-
priate parametrised notion. k-colouring number, weak –

Kierstead and Yang in their study of the game colouring number
introduced two such parametrisations, namely, the k-colouring num-
ber colk and the weak k-colouring number wcolk [155]. To define them,
we need to introduce the notions of accessible and weakly accessible. Fix-
ing an ordering π, and two vertices x, y with x <π y. Then x is weakly
k-accessible from y if there exists an x-y-path P of length at most k
such that x 6π V(P), that is, all vertices of P come after x in the or-
dering π. If even y 6π V(P) holds then x is k-accessible from y. The
set of vertices that are k-accessible from y is denoted by Rk

π(v) and the
set of weakly k-accessible vertices by Qk

π(v). Note that both sets are
exactly N<

π for k = 1. Therefore the following notions both coincide
with the colouring number for k = 1:

colk(G) = 1 + min
π∈Π(G)

max
v∈G
|Rk

π(v)|,

wcolk(G) = 1 + min
π∈Π(G)

max
v∈G
|Qk

π(v)|.

That these two quantities are polynomially related was also shown by
Kierstad and Yang: it is true that

colk(G) 6 wcolk(G) 6 colk(G)k.
Backconnectivity, k-admissibility

A different variant of |N<
π (v)| is the backconnectivity bk

π(v). It is defined
as the maximum number of paths of length at most k that only in-
tersect in v and whose respective other endpoints come before v in
the ordering. Note again that b1

π(v) = |N<
π (v)|. Accordingly, the k-

admissibility is defined as

admk(G) = min
π∈Π(G)

max
v∈G

bk
π(v).

This parametrised graph measure was introduced by Kierstead and
Trotter in a paper bounding the game chromatic number for planar
graphs [154]. From the definition it is immediately clear the k-admiss-
ibility is never larger than the k-colouring number: the paths used
in the definition of the backconnectivity bk

π can be assumed to con-
tain exactly one vertex smaller than v, which gives us a lower bound
for |Rk

π(v)|. Dvořák showed a bound in the opposite direction [79] and
we therefore have that

admk(G) 6 colk(G) 6 admk(G)(admk(G)− 1)k−1 + 1.

It was Xuding Zhu who related the above parametrised graph meas-
ures to classes of bounded expansion [253]: he showed that

∇(k−1)/2(G) 6 colk(G)k 6 Fk(∇(k−1)/2(G)),
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where the function Fk is a polynomial of degree around k2k. As a
consequence, we can define bounded expansion classes and nowhere
dense classes by the parametrised graph measures col•, wcol• or adm•
as formulated in Theorem 19.

9.3 wideness

We saw in Chapter 3 that while often algorithmic applications follow
new insights in structural graph theory, sometimes the direction is re-
versed (consider the definition of graph classes with locally bounded
treewidth). A similar advance-by-application can be posited in the ho-
momorphism preservation programme. The classical result from math-
ematical logic that first-order formulas are preserved under structure
homomorphisms if and only if they are existential and positive (or
equivalent to such a formula) holds in the class of all infinite and
in the class of all finite structures. However, it does not holds for all
classes of finite structures. Atserias, Dawar, and Kolaitis showed that
the homomorphism preservation holds in classes that are closed under
taking substructures and disjoint unions; and whose Gaifman graph
excludes a minor [14]. Introducing the notions of quasi-wideness (see
below), Dawar extended this result to a much larger set of classes—
including classes that have bounded expansion.Wide, almost wide, quasi-wide

A graph class G is wide if for all k, d there exists a threshold Nk,d such
that every graph of G with at least Nk,d vertices contains a d-scattered
set of size k. The simplest example for such a class are bounded-degree
graphs.

Similarly, a graph class G is almost wide if there exists s such that
we can remove up to s vertices from every graph in G to turn it into
a wide class. The class of stars is a simple example: the removal of
the centre vertex allows arbitrarily large scattered sets. Alternatively,
adding a few apex vertices to the members of a wide class turns it into
a almost wide class. Importantly, the number s depends only on the
class and not on k or d.

Finally, a graph class G is quasi-wide if there exists a function s such
that we can remove up to s(d) vertices from every graph in G to turn
it into a wide class. It turns out that nowhere dense classes are quasi-
wide and the converse holds for hereditary nowhere dense classes:

Theorem 22 (Nešetřil, Ossona de Mendez [190]). Every hereditary graph
class is nowhere dense if and only if it is quasi-wide.

Furthermore, Dawar showed that classes of bounded expansion (as
well as classes locally excluding a minor) are quasi-wide and provided
a simple bound on the function s.

Theorem 23 (Dawar [57]). Let G be a bounded-expansion class. Then G is
quasi-wide with s(r) = 2∇̃r+1(G).
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A L G O R I T H M I C A P P L I C AT I O N S

The bounded expansion toolkit presented in the preceding chapters—
in particular the low-treedepth colourings introduced by Nešetřil and
Ossona de Mendez and the first-order model checking by Dvořák,
Král, and Thomas—has interesting applications to well-established al-
gorithms designed for structurally sparse classes. Both of these general-
purpose algorithms run themselves in linear time (or almost linear
time in the case of nowhere dense classes) and we can apply these
tools to algorithms designed for classes that are much smaller, say,
planar graphs, to improve their polynomial dependence on the input
size. The reason for this is twofold: first, in many fields (like para-
metrised algorithms), only recently have people taken interest in re-
ducing the polynomial dependence of algorithms. Second, some tools
developed in the context of bounded expansion classes simply have
not had a comparable counterpart in smaller classes—in fact, most
smaller classes provide much more powerful tools with high polyno-
mial dependence (think Robertson-Seymour decomposition) that are
so convenient to use that it might not have occurred to researchers to
look for less powerful but faster replacements. Working in classes of
bounded expansion, however, does not leave us any other choice: we
have to re-think many ideas and work around the limits imposed by
our tools. Preprocessing

Two good examples of how fruitful this forced change of perspect-
ive can be will be described later in this part: the extension of the
meta-kernels framework, where the restrictions already imposed by
classes excluding a topological minor led to the shift to structural
parametrisation and ultimately to an extension to bounded expan-
sion and nowhere dense classes, and a ‘handcrafted’ linear kernel for
Dominating Set that works in an entirely different manner than its
predecessors in smaller classes. As a consequence, we can confidently
state that structurally sparse classes—although far from being fully ex-
plored in terms of preprocessing—admit efficient (almost) linear-time
preprocessing routines for a number of pivotal problems. We preface
these results by smaller observations and algorithmic applications that
we deem interesting and further support our claim that these classes
are rich with algorithmic potential.

10.1 faster local search

Fellows et al. demonstrated a remarkably practical application of para-
metrised complexity in a paper on local search in graphs with loc-
ally bounded treewidth [91]. They observed that the usual k-exchange-

101
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rule for local search, i.e. exchanging k elements of the current solu-
tion for k − 1 elements to obtain a smaller solution (in the case of
minimisation), runs in time nO(k). Such running time is clearly pro-
hibitive already for very small values of k. Since the quality of local
search heuristics scales with the size of the exchanges, it is desirable to
design algorithms that reduce the dependence on k. This is a perfect
application for parametrised complexity: we decouple the dependence
of the input size from the parameter and obtain an algorithm that will
scale better in terms of k. Concretely, the authors provide k-exchange
algorithms for the weighted version of r-Centre,Vertex Cover, Odd
Cycle Transversal,Max-Cut and Min-Bisection.

We will demonstrate that for a whole class of problems—which
includes Vertex Cover, Dominating Set, r-Dominating Set and r-
Centre—the unweighted k-exchange problem can be solved in linear
time and the weighted k-exchange in almost linear time. For simpli-
city we will work only with vertex-exchanges here, but all techniques
presented here generalise to edge-exchanges and mixed-exchanges as
well.

Input: A graph G and a feasible solution X ⊆ G to Π.

Problem: Is there a tuple (X−, X+) with X− ⊆ X, |X−| = k
and X+ ∩ X = ∅, |X+| = k− 1 such that (X \ X−) ∪
X+ is a feasible solution of G to Π?

min -Π-Vertex Exchange parametrised by k

Our approach is to exploit the first-order model checking machinery.
In order to do so, we consider the following class of problems.FO-Certifiable

Definition 18 (FO-Certifiable). Let φ(X) be a first-order formula with
one free set variable S. We say that a vertex-set optimisation problem
is first-order certifiable if for every instance G every subset X ⊆ V(G) is
a feasible solution of G iff S satisfies φ.

Feasible k-exchange
This notion is very similar to first-order definable optimisation prob-
lems [59], without the monotonicity constraint. Given an instance G
of a problem that is first-order certifiable by φ and given a feasible
solution X, we will call a k-exchange (X+, X−) feasible if the set (X \
X−) ∪ X+ satisfies φ.

Lemma 48. Let Π be an optimisation problem that is first-order verifiable.
Then for every k ∈ N, the problem Π-k-Vertex Exchange is first-order
definable.

Proof. We assume that Π is a minimisation problem, the proof for max-
imisation problems works analogously. Let φ(X) be the first-order for-
mula that certifies the feasible solutions of Π. We construct a first-
order formula φ̂(x+, x−) that additionally has a relation RX in its
vocabulary with x+ = (x+i )i∈[k−1] and x− = (x−i )i∈[k] from φ(X) as
follows.
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Let φ̂ be the formula φ(X) where every atom of the form Xv is
replaced by the formula

(RXv ∧
k∧

i=1

x+i 6= v) ∨ (¬RXv ∧
k−1∧
i=1

x−i 6= v).

We also add clauses to φ̂ to ensure that ¬Rxx+i and Rxx−i for all vari-
ables in x+, x−; and a clause to ensure that x+i 6= x+j , x−i 6= x−j for i 6= j
and x+i 6= x−j for all i, j. It is easy to verify that, by construction, the
formula

∃x+∃x−φ̂(x+, x−)

is true for (G, X) (that is: the structure obtain from G, X by augmenting
the canonical structure of G with the relation RX that contains exactly
the member of X) if and only if there exists a feasible k-exchange
(X+, X−) for X in G.

Using the result by Dvořák, Král, and Thomas (see Chapter 4) and the
result by Grohe, Kreutzer, and Siebertz (see Chapter 5) we immedi-
ately obtain the following:

Corollary 8. Let Π be an optimisation problem that is first-order verifiable
and G be a graph class. Then Π-k-Vertex Exchange can be decided in non-
uniform linear fpt-time on instances from G if G has bounded expansion and
in non-uniform almost-linear fpt-time if G is nowhere dense.

As a consequence, we can solve Vertex Cover k-VE, Independent
Set k-VE, Dominating Set k-VE, r-Dominating Set k-VE in linear
fpt-time on bounded-expansion classes and almost linear fpt-time on
nowhere-dense classes. Similar results can be obtained for H-Packing,
i.e. the problem of finding k vertex-disjoint (or edge-disjoint) subgraphs
isomorphic to H; we only need to define a suitable notion of ex-
change in first-order logic—for example, exchanging one subgraph of
the packing for two others is a possibility. Handling weights

Finally, let us consider weighted variants of the exchange problem:
given G, a weight function ω : V(G)→N and a feasible solution X ⊆
V(G) we want to find a k-exchange (X+, X−) that minimises the result-
ing weight ω((X \X−)∪X+). We prove only the minimisation variant,
the proof for maximisation works exactly the same.

Lemma 49. Let Π be a weighted minimisation problem that is first-order
verifiable by φ(S) and let G, ω be an instance of Π with a feasible solution X.
For every k ∈ N we can in time f (k) · |G| log w find a feasible k-exchange
(X+, X−) such that ω((X \ X−) ∪ X+) is minimal among all feasible k-
exchanges, where w is the total number of different weights in G.

Proof. Define the weight function ω′(v) = W − ω(v) where W =

maxv∈G ω(v) is the largest weight assigned by ω. Note that minim-
ising ω((X \ X−) ∪ X+) is equivalent to minimising ω(X+) + ω′(X−).
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Given φ(S), we construct the formula φ̂(x+, x−) as in the proof of
Lemma 48. Let R6τ be a relation that contains exactly the vertices

R6τ := {v ∈ G \ S | ω(τ) 6 τ} ∪ {v ∈ S | ω′(τ) 6 τ},

and let φ6τ(x+, x−) be a formula with this relation in its vocabulary
derived from φ̂ by adding the additional clause∧

x∈x+,x−
R6τx.

Now φ̂6τ(x+, x−) has a model in G, S exactly if there exists a k-exchange
whose vertices all have weight at most τ. Using binary search on τ and
the first-order model checking algorithms, we can find this maximal
weight ŵ in time g(k)|G| log w for some function g. We then guess
which of the 2k − 1 variables x+, x̄− are assigned vertices with this
maximal weight ŵ in a minimal k-exchange and add our guess to the
formula φ̂ in the form of clauses R=ŵx for every guessed variable x ∈
x+, x−, obtaining the formula φ̂′. We then repeat the above construc-
tion to obtain formulas φ′6τ, with the constraint that the guessed vari-
ables are excluded from the relation R6τ.

Since every iteration will fix one more weight of the variables, we
have to iterate at most 2k − 1 times. Taking into consideration our
guesses, the whole process hast to be repeated at most 2(2k−1)2

times
and the claimed running time follows.

The same process can be easily adapted to nowhere-dense graphs.
Since log w 6 log n, the additional factor even hurts us less since it
can be hidden in the running time of the model-checking procedure.

Corollary 9. Let Π be a weighted optimisation problem that is first-order
verifiable and G be a nowhere dense graph class. Then Weighted Π-k-
Vertex Exchange can be decided in non-uniform almost linear fpt-time
on instances from G.

In conclusion, structurally sparse classes possess properties that lets
us design local-search routines that scale much better than brute-force
enumeration. The local-search setting seems to be the perfect playing
field for parametrised algorithms and, as we will argue and experi-
mentally verify in the last third of this thesis, a lot of real-world graphs
are best modelled by bounded-expansion classes. These algorithms
seem to be a great starting point to show that results from the theory
of structurally sparse graphs can be applied in practice.

Open question 4. Can we obtain a uniform fpt-algorithm for the k-
exchange variant of some practically relevant problem?

Open question 5. Can we improve the running time of the weighted
variant for bounded-expansion classes? The first-order enumeration
algorithm by Kazana and Segoufin [153] in bounded-expansion classes
might provide a good starting point.



10.2 Using low-treedepth colourings 105

10.2 using low-treedepth colourings

We will now demonstrate how low-treedepth colourings can be em-
ployed to approximate or solve many problems relating to finding
small structures in graphs. Given that graphs of bounded expansion
admit low-treedepth colourings with only a constant number of col-
ours, these algorithms constitute important building blocks for more
involved results and even practical applications (see Section 14.2).

Theorem 24 (Nešetřil, Ossona de Mendez [192, 189]). Let G,H be graphs
and c a (|H|+1)-centred colouring of G. Then one can count

1. how often H appears as a (induced) subgraph of G,

2. the number of homomorphisms from H to subgraphs of G, or

3. the number of isomorphisms from H to subgraphs of G

in time |c(G)|O(1)|G|.

Proof sketch. Regardless of what type of substructure related to H we
want to count, we know that it is contained in subgraphs of G with
at most |H| vertices. These subgraphs will receive at most |H| colours
by c, hence iterating through all (|c(G)|

k ), 1 6 k 6 |H| colour sets re-
duces the problem to counting in a graph of bounded treedepth F
(and some inclusion-exclusion post processing to recover the correct
number). This can be done by basic branching on what vertices of H
to map/assign to those of F (cf. ‘Sparsity’ [192]).

In our work on applying the theory of structurally sparse graphs to
real-world instances we improved this result by developing a faster
dynamic programming routine for graphs of bounded treedepth.

Theorem 25 (Demaine et al. [65]). Given graphs G, H and a treedepth
decomposition of G of height t, one can count

1. how often H appears as a (induced) subgraph of G,

2. the number of homomorphisms from H to subgraphs of G, or

3. the number of isomorphisms from H to subgraphs of G

in time O(6hthh2 · |G|) and space O(3hthht · log |G|), where h = |H|.

This immediately implies that the running time in Theorem 24 is at
most O(|c(G)|2h6hh2 · |G|).

Centred colourings are very suited to locate small structures in a
larger host-graph and we can, for example, use it to approximate prob-
lems related to removing specific subgraphs from a host graph.

Corollary 10. Let F be a finite set of graphs with p := maxH∈F |H|
and let G a graph with a (p+1)-centred colouring c. Then the problems F -
Deletion and Induced-F -Deletion can be approximated within a factor
of |c(G)|p in time |c(G)|p · 2O(p) · |G|.
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Input: A graph G and an integer r.
Output: A r-dominating set D and 2r + 1-scattered set A.

Initialise D ← ∅ and A ← ∅
Compute a dtf-augmentations ~G2r of G
1 Calculate dominating set

for v ∈ V (G) \ N r [D ] do
D ← D ∪ N−2r (v) ∪ {v}
A ← A ∪ {v}

2 Construct auxiliary graph
H ← (A , ∅) for u , v ∈ A do

if distG (u , v) 6 2r + 1 then
E(H ) ← E(H ) ∪ {uv}

3 Construct scattered set
Colour H with (∇0 (H ) + 1) colours
Let S ⊆ A be the largest colour class
return D and S

Algorithm 1: Approximating r-Dominating Set in linear time in graphs of
bounded expansion.

Proof. Since every forbidden (induced) subgraph receives at most p
colours, we can solve the problem—using dynamic programming—for
every collection of subgraph induced by at most p colours. Since c is
(p+1)-centred, these subgraphs have treedepth at most p. Taking the
union of all local solutions gives us an approximate solution that is at
most |c(G)|p times larger than an optimal solution. The time taken on
each subgraph is single-exponential, hence the above claimed running
time follows.

For nowhere dense classes this results implies |G|ε-approximations in
time 2O(p) · |G|1+ε.

10.3 approximating r -domination : dvořák’s algorithm

The following Lemma was proved by Dvořák in [79] using weak col-
ouring numbers. We prove it here using dtf-augmentations instead
to obtain a more direct bound in terms of the topological grad. This
bound will help use to obtain tighter bounds in Chapter 13 where we
prove that Dominating Set has a linear kernel in graphs of bounded
expansion. As part of the kernelisation routine, we will need to in-
voke Dvořák’s algorithm to find large 2-scattered sets, i.e. obstructions
towards having a small domination number.

Lemma 50 (cf. [79]). Let G be a graph class of bounded expansion. For every
integer r there exists a constant cr such that for every graph G ∈ G, we can
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in linear time construct an r-dominating set D ⊆ G and a (2r+1)-scattered
set S ⊆ D of size at least |S| > |D|/cr.

Proof. Consider Algorithm 1. Note that we can calculate the 2rth dtf-
augmentation ~G2r with weights ω2r in linear time (cf. Theorem 16).
Then by Lemma 26, for every pair of vertices uv with distG(u, v) 6 2r,
we either have that uv or vu ∈ ~G2r with weight ω2r(uv) = distG(u, v);
or there exists a third vertex w ∈ N−2r(u) ∩ N−2r(v) such that ω2r(wu) +
ω2r(vw) = dist(u, v).

Consider the sequence of sets D0, D1, . . . and A0, A1, . . . as they are
constructed by the loop in Step 1, i.e. A0, D0 = ∅ and Ai, Di are the
sets A, D after the ith iteration. Let further v1, v2, . . . be the sequence of
vertices added to A; hence Ai = Ai−1 ∪ {vi}. Note that Step 1 clearly
terminates after at most |G| iterations since in every loop at least one
vertex is added to D.

Claim. For every distinct pair of vertices vi, vj with i < j and for every
w ∈ N−2r(vi) ∩ N−2r(vj) we have that ω2r(wvj) > r + 1.

Assume the contrary, i.e. there exists such a vertex w with ω2r(wvj) 6 r.
Now Di ⊆ Dj−1 and by construction N−2r(vi) ⊆ Di. Since the ver-
tex w ∈ N−2r(vi) and distG(w, vj) 6 ω2r(wvj) 6 r, it follows that w
dominates vj. This contradicts that vj was not dominated by Dj−1 at
step j and proves the claim.

Claim. For every vertex vj and w ∈ N−2r(vj) with ω2r(wvj) > r + 1 there
exists at most one vertex vi, i < j such that w ∈ N−2r(vi) and ω2r(wvi) 6 r.

Assume otherwise: let vh, vi, h < i, be vertices both connected to w
with an in-arc of weight at most r. Then distG(w, vh), distG(w, vi) 6 r
and hence w already r-dominates vi before step i. Contradiction.

Claim. The auxiliary graph H is 2(∆−(~G2r) +∇0(~G2r))-degenerate.

We focus on those edges uv ∈ H that are not present in G2r. By the
above properties of ~G2r, these edges occur exactly between those ver-
tices vivj ∈ A that are connected via a third vertex w ∈ N−2r(vi) ∩
N−2r(vj). As proved in the previous claim, vj can have at most N−2r(vj)

vertices preceding it that are connected via such a third vertex. We
conclude that the number of edges present in H but not present in G2r

is bounded by |A| · ∆−(~G2r). By Lemma 8, the graph H is therefore
2(∆−(~G2r) +∇0(~G2r))-degenerate.

Finally, since S is by construction an independent set in H, it follows
that S is (2r + 1)-scattered in G. The size of S is at least

2|S| > |H|/(∆−(~G2r) +∇0(~G2r))

> |A|/(∆−(~G2r) +∇0(~G2r))

> |D|/((∆−(~G2r) +∇0(~G2r))∆−(~G2r)).

Choosing cr := 2(∆−(~G2r) +∇0(~G2r))∆−(~G2r) and noting that by The-
orem 16 the function ∆−(~G2r) is a function of 2r and ∇̃2r(G) then
proves the claim.
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The following corollary rephrases this result in a more algorithmic
way and foreshadows how we will apply it later on.

Corollary 11. For every graph G and integers r, k we can either compute
a dominating set of size crk in time O(cr‖G‖) or conclude that ds(G) > k
by obtaining a (2r + 1)-scattered set of size k + 1 as a witness. The ratio cr

depends only on ∇0(G2r), where ~G2r is the 2rth dtf-augmentation of G.

In Chapter 13 we will need to solve an annotated domination prob-
lem, in which we are given a subset of vertices that need to be domin-
ated. We can use Dvořák’s approximation algorithm as a black box to
achieve that. The variable cr is the same as in the proof of Lemma 50.

Lemma 51. For every graph G, vertex set Z ⊆ V(G) and integers r, k we
can either compute in time O(cr‖G‖) a Z-dominator of size crk or conclude
that ds(G, Z) > k by obtaining a (2r + 1)-scattered set S ⊆ Z of size k + 1
as a witness.

Proof. We construct a graph G? from G as follows: add two labelled
vertices a, x 6∈ G to the graph and connect every vertex v ∈ G \Z∪ {x}
to a by a path Pv of length r (with endpoints v and a). In the case
of r = 1, this construction adds a universal vertex a to G \ Z and adds
a pendant vertex x to a.

We apply Corollary 11 with parameter k + 1 to G?. First assume that
the algorithm returns a r-dominating set D of G? with |D| 6 cr(k + 1).

Claim. There exists an r-dominating set D′ of G? that satisfies

• |D′| 6 |D|,
• a ∈ D, and

• Pv ∩ D ⊆ {a, v} for every v ∈ V(G) \ Z ∪ {x}.

We start out with D′ = D and modify it until it has the desired prop-
erties. Assume a 6∈ D: then there must exist a vertex v ∈ D ∩ Px since
otherwise x would not be dominated. We set D′ ← D′ \ {x} ∪ {a},
this neither changes the size nor the fact that D′ is an r-dominating
set of G?. Now assume there exists a vertex v ∈ V(G) \ Z such that
there is u ∈ Pv ∩ D with u 6∈ {v, a}. Since a ∈ D′, all vertices of Pv are
already dominated and we can set D′ ← D′ \ Pv ∪ {v, a}. This at most
decreases the size of D′ and keeps its domination property. Applying
this procedure for every offending vertex v ∈ V(G) \ Z results in a
set D′ with the claimed properties.

Since D′ is in particular a Z-dominator of the claimed size we have
proved the first part of the lemma. Let us no assume that the algorithm
returns a (2r + 1)-scattered set S of size k + 2 (recall that we called it
with parameter k + 1).

Claim. There exists a (2r + 1)-scattered set S′ ⊆ Z with |S′| = k + 1.
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Simply observe that the subgraph G? \ Z has diameter 2r, therefore at
most one vertex of it can be contained in the scattered set. Removing
this offending vertex from S yields the set S′ with the desired proper-
ties. This proves the claim and concludes the proof of the lemma.

It is worthwhile to calculate what the approximation factor c1 for Dom-
inating Set turns out to be. By Lemma 34, we have for every graph G
there exist a dtf-augmentation ~G1, ~G2, . . . such that

∆−(~Gd) 6 ∆−(~Gd−1)
2 + 12∆−(~Gd−1)

3 · ∇̃1/2(Gd−1)

which for the case of d = 2 implies that

∆−(~G2) 6 ∆−(~G1)
2 + 12∆−(~G1)

3 · ∇̃1/2(G)

6 ∇0(G)2 + 12∇0(G)3 · ∇̃1/2(G)

where the last inequality follows from our assumption that ~G1 is ob-
tained by orienting the edges of G according to its degeneracy-order.
Hence we have that c1 is at most

c1 6 2(∆−(~G2) +∇0(G2))∆−(~G2) 6 6∆−(~G2)
2

6 210∇0(G)6∇̃1/2(G)2.

where we used the bound ∇̃0(G2) 6 2∆−(~G2) from Lemma 9 and our
usual assumption that ∇0(G) > 1. While this constant is not absurdly
large, it clearly lies more in the theoretical than the practical realm.
However, it is quite probable that our worse-case assumptions are far
off the mark when it comes to practical instances.

10.4 computing neighbourhood sizes

Nešetřil and Ossona de Mendez noted that tf-augmentations can carry
information about local distances in graphs, an observation that in-
spired the dtf-augmentations in Chapter 7.

Lemma 52 (cf. [192]). For every graph G and every integer d, one can
compute a data structure in time ˙̃∇d(G)2O(d) |G| that can return for every
pair u, v ∈ G either their distance distG(u, v) or ascertain that it is larger
than d in time ˙̃∇d(G)2O(d)

.

Proof. The complexity of calculating the dth dtf-augmentation crucially
depends on the maximum in-degree, which by Theorem 16 can be
bounded by

∆−(~Gd) =
˙̃∇d(G)2O(d)

.

By Lemma 26, for every pair of vertices uv with distG(u, v) 6 d, we
either have that uv or vu ∈ ~Gd with weight ωd(uv) = distG(u, v); or
there exists a third vertex w ∈ N−d (u) ∩ N−d (v) such that ωd(wu) +
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ωd(vw) = dist(u, v). In the former case, we can simply return the arc-
weight as the correct distance. In the latter case, we need to consider
all vertices in the intersection N−d (u) ∩ N−d (v). By the above bound on

the maximum in-degree, this takes time ˙̃∇d(G)2O(d)
.

In this section, we ask whether this idea can be taken further: can
we compute a data structure that for a query-vertex v returns how
many vertices have distance r from v? In other words, for a fixed r
we want to compute a data structure in linear time that tells us the
neighbourhood-sizes |Ni(•)| for any query-vertex in constant time.
This is indeed the case, and we can even generalise it by allowing
weights on the vertices of our input graph. The proof of the following
theorem will be the scope of the remaining section.

Theorem 26. Let G be a class of bounded expansion. Then for G ∈ G with
vertex-weights α we can, in linear time, compute a table C such that

C[v][d] = ∑
u∈Nd(v)

α(u).

In the following we fix a graph G weighted by the function α and a
dtf-augmentation ~G1, ~G2, . . .. For simplicity, we write N−r (v) instead of
the unwieldy N−~Gr

(v). We will assume that the weights assigned by α

are polynomial in |G| and hence addition and subtraction of all values
are assumed to take constant time.

Definition 19. Let ~G1, ~G2, . . . be a dtf-augmentation of G and let α

be vertex-weights. Fix a vertex v ∈ G and let ∅ 6= X ⊆ N−r (v) be
subset of v’s in-neighbourhood and let d ∈ [r]|X| be a distance vector
of matching length. We define

N(v, X, d) := {u ∈ V(G) | N−r (v)∩N−r (u) = X and dist(u, X) = d}

as those vertices whose in-neighbourhood in ~Gr overlap with the in-
neighbourhood of v in exactly X and whose distance-vector to X is
exactly d. We further define the query-function cα is defined as

cα(v, X, d) := ∑
u∈N(v,X,d)

α(u).

Lemma 53. Let ∆ = ∆−(~G). One can compute a data structure R in time
O(2∆n) such that queries cα(v, X, d) can be answered in time O(∆2∆) by R.

Proof. We define an auxiliary dictionary R indexed by vertex sets X
for which a vertex v exists with X ⊆ N−r (v). At each entry v ∈ ~Gr,
we will store another dictionary indexed by distance vectors which in
turn stores a simple counter. We initialise R as follows: for every v ∈
~Gr, X ⊆ N−r (v) and every distance vector d ∈ [r]|X|, set R[X][d] = 0.
Note that in total, R contains at most 2∆−(~Gr)n entries.

We can implement R as a hash-map to achieve the desired (expec-
ted) constant-time for insertion and look-up, though this would yield
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a randomised algorithm. A possible way to implement R on a RAM de-
terministically is the following: We store the key X = {x1, x2, . . . , xp}
at address x1 + n · x2 + · · · + np · xp. This uses addresses up to size
nc, for some constant c, but since we only insert O(n) keys the set-up
takes only linear time. Our later queries to R will be restricted to keys
that are guaranteed to be contained in the dictionary, thus we will
never visit a register that has not been initialised.

Now, for every v ∈ G, every X ⊆ N−r (v), we increment the counter
R[X][dist(v, X)] by α(v):

for v ∈ G do
for X ⊆ N−r (v) do

R[X][dist(v, X)]← R[X][dist(v, X)] + α(v)

We now claim that queries of the form cα(v, X, d) can be computed
using inclusion-exclusion as follows:

cα(v, X, d) = ∑
X⊆Y⊆N−r (v)

(−1)|Y\X| ∑
d
′
:d
′|X=d

R[Y][d
′
].

Here d|X denotes the restriction of the distance-vector d to those entries
that correspond to the vertices in X. Computing this value is possible
in time O(|N−r (v)| · 2|N−r (v)|) using fast Möbius inversion. Let us now
prove that it indeed computes the quantity cα(v, X, d).

First, consider a vertex u ∈ ~Gr, such that N−r (u) ∩ N−r (v) = X and
dist(u, X) = d. Now since α(u) is not counted by R[Y][·] with Y ) X,
it appears exactly once in the above sum when Y = X.

Second, consider a vertex u ∈ ~Gr such that dist(u, X) 6= d. The
weight of such a vertex is not counted by the above sum, since α(u) is
only counted in entries of R that do not occur as summands.

Finally, consider a vertex u ∈ ~Gr with N−r (u) ∩ N−r(v) = Z where
X ( Z ⊆ N−r (v) such that dist(u, X) = d. The weight of this vertex is
counted in each term of

∑
X⊆Y⊆Z

(−1)|Y\X|R[Y][dist(u, Z)|Y],

and since

∑
X⊆Y⊆Z

(−1)|Y\X| = ∑
06k6n

(−1)k
(

n
k

)
= 0,

we know that the signs cancel out and thus α(u) does not contribute
to cα(v, X, d). We conclude that the inclusion-exclusion formula above
computes the query cα(v, X, d), as claimed.

Given the auxiliary data structure R we can now compute the weights
of all r-neighbourhoods.

Lemma 54. Given R, one can compute a table C with

C[v][d] = ∑
w∈Nd(v)

α(w) for v ∈ G, d 6 r
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in time O(∆(4r)∆|G|), where ∆ = ∆−(~Gr).

Proof. Let αd(v) := ∑w∈Nd(v) α(w), where v ∈ G and 1 6 d 6 r, for
convenience. To compute the quantity αd(v) for all vertices and dis-
tances smaller than r, we initialise a table C with C[v][d] = 0 for every
v ∈ G, 1 < d 6 r.

Now we update the table by the following algorithm:

for v ∈ G do
for X ⊆ N−r (v) do

for d ∈ [r]|X| do
dmin ← min(d + dist(v, X))

if dmin 6 r then
C[v][dmin]← C[v][dmin] + cα(v, X, d)

dsel f = 2 min(dist(v, X))

if dsel f 6 r then
C[v][dsel f ]← C[v][dsel f ]− 1

The number of iterations of this update is O((2r)∆|G|). Each iteration
can query R to calculate cα, hence the total time taken is O(∆(4r)∆|G|).

At this point, C[v][d] contains (by the definition of cα) the sum of
weights of vertices u for which min(dist(v, X) + dist(u, X)) = d for
non-empty X = N−r (v)∩N−r (u): We have counted the ‘indirect’ neigh-
bours in ~Gr.

By Lemma 26, every pair of vertices of distance at most r in G either
is connected by an arc or they share a common in-neighbour in ~Gr. To
count these ‘direct’ neighbours, we update C as follows (recall that ωr

is the arc-weight function of ~Gr):

for uv ∈ ~Gr do
if N−r (u) ∩ N−r (v) = ∅ then

1 Not counted yet
C[v][ω(uv)]← C[v][ω(uv)] + α(u)
C[u][ω(uv)]← C[u][ω(uv)] + α(v)

else if vu 6∈ ~Gr or u < v then
2 Wrong distance

dwrong = min(dist(u, X) + dist(v, X))

C[v][dwrong]← C[v][dwrong]− α(u)
C[u][dwrong]← C[u][dwrong]− α(v)
C[v][ω(uv)]← C[v][ω(uv)] + α(u)
C[u][ω(uv)]← C[u][ω(uv)] + α(v)

Vertices for which block 1 is executed do not share common in-
neighbours, hence before the execution of the above algorithm the
weight of u was not counted in C[v][•] and vice-versa.

Vertices for which block 2 is executed were already counted in C,
however, their distance according to the common in-neighbours might
be larger than the actual distance given by ωr. We therefore correct the
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counts in C; note that if the distance was correct the above adjustments
cancel out. To avoid applying the correction twice in case ~Gr contains
both arcs uv and vu, we introduce the condition u < v to enter the
block. At this point, C[v][d] contains the sum of weights of vertices
u 6= v for which either

• uv 6∈ ~Gr, the intersection X = N−r (v) ∩ N−r (u) is not empty and
min(dist(v, X) + dist(u, X)) = d, or

• uv ∈ ~Gr and ωr(uv) = d.

It follows from Lemma 26 that C[v][d] = αd(v) for d < r and v ∈ G.
The claimed running time follows by seeing that the second algorithm
takes time O(‖~Gr‖) = O(∆|G|).

Now Theorem 26 follows directly from the just proved Lemma 53 and
the bound ∆−(~Gd) =

˙̃∇d(G)2O(d)
given by Theorem 16. In practice, the

dependence on ∆−(~Gd) is much easier to measure and certainly better
than our worse-case upper bound.

Some practical test (executed by our student Xinyu Ge in his master
thesis) showed that while the above algorithm on its own is too slow
in practice—the quantity ∆−(~Gd) is rather high, but only very few
vertices attain the maximum—a heuristic based on it has good chances
of being faster then truncated bfs from every vertex of the graph for
very large instances.

Open question 6. Can we remove the exponential dependence on
∆−(~Gd) in order to extend Theorem 26 to nowhere-dense classes?





11
T H E M E TA - K E R N E L I S AT I O N F R A M E W O R K

It seems that perfection is attained not when there is nothing more to add,
but when there is nothing more to remove.

— Antoine de Saint Exupéry, Terre des Hommes

The first steps towards a kernelisation meta-theorem appeared in a
paper by Guo and Niedermeier who provided a framework to design
linear kernels on planar graphs for graph problems which satisfy a
certain distance property [133]. Their work built on the seminal paper
by Alber, Fellows, and Niedermeier who showed that Dominating
Set has a linear kernel on planar graphs [3]. This was followed by
the first true meta-theorem in this area by Bodlaender, Fomin, Lok-
shtanov, Penninkx, Saurabh and Thilikos [23] who showed that graph
problems that have finite integer index (f.i.i., defined below) and sat-
isfy a property called quasi-coverable1, admit linear kernels on bounded
genus graphs.

Shortly after the meta-kernelisation paper was published, Fomin et
al. [101] proved a meta-theorem for linear kernels on classes excluding
a minor, a graph class that strictly contains graphs of bounded genus.
A rough statement of their main result states that any graph problem
that has finite integer index, is contraction bidimensional, and satisfies a
separation property has a linear kernel on graphs that exclude a fixed
graph as minor.

Keeping the structurally sparse hierarchy in mind, we ask the nat-
ural question: can the same be achieved for graph classes excluding
a topological minor? Can we go even higher? We answer these ques-
tions in the positive, with some caveats. After a revision of the im-
portant properties like finite integer index (Section 11.1), well-quasi
orders (Section 11.2) and protrusions (Section 11.3) we prove the fol-
lowing two extensions of the meta-kernel framework. First, we obtain
the following for classes defined by an excluded topological minor.

Theorem 27. Let Π be a graph problem that has f.i.i. on graphs of bounded
treewidth and let G be a graph class that excludes a fixed graph H as a
topological minor. For every d ∈ N there exists an algorithm that takes as
input (G, ξ) ∈ G ×N and outputs in time O(|G|) an instance (G′, ξ ′) such
that

1. (G, ξ) ∈ Π ⇐⇒ (G′, ξ ′) ∈ Π with ξ ′ 6 ξ,

2. H 64t G′, and

3. |G′| = O(tw∆
d (G)).

1 This property was called quasi-compactness in the earlier version of their paper.
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For example, the problems Feedback Vertex Set, Chordal Vertex
Deletion Interval Vertex Deletion, Proper Interval Vertex Dele-
tion, Cograph Vertex Deletion, and Edge Dominating Set all have
the property that they bound the treewidth of the graph surrounding
the solution2. There are two interpretations of the above result: one is
that it holds only for problems that are treewidth-bounding, that is, a
small solution guarantees the existence of small treewidth-modulator.
The other, and in hindsight more useful interpretation, is that a large
number of problems—those that have finite integer index—admit lin-
ear kernels in classes excluding a topological minor if we parametrise
them by the size of a small treewidth-modulator. Further discussion on
this shift to a structural parametrisation can be found in Section 12.2.Larger classes

This structural interpretation of our result enables us to continue
the programme: using a modulator to constant treedepth.

Theorem 28. Let Π be a graph problem that has f.i.i. on graphs of bounded
treedepth. Let G be a graph class of bounded expansion and let t ∈ N be a
constant. Then there is an algorithm that takes as input (G, ξ) ∈ G ×N and,
in time O(|G|+ log ξ), outputs (G′, ξ ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ ′) ∈ Π;

2. G′ is an induced subgraph of G; and

3. |G′| = O(td∆
t (G)).

Theorem 29. Let Π be a graph problem that has f.i.i. on graphs of bounded
treedepth. Let G be a nowhere dense graph class and let t ∈ N be a constant.
Then there is an algorithm that takes as input (G, ξ) ∈ G ×N and, in time
O(|G|1+o(1)), outputs (G′, ξ ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ ′) ∈ Π;

2. G′ is an induced subgraph of G; and

3. |G′| = O(td∆
t (G)1+o(1)).

We immediately have that Dominating Set, r-Dominating Set, Con-
nected Dominating Set, Connected Vertex Cover, Feedback Ver-
tex Set, Connected Feedback Vertex Set, Independent Set, among
others, admit linear kernel in bounded expansion classes and almost-
linear kernels in nowhere-dense classes when parametrised by a tree-
depth-modulator. For Connected Vertex Cover, this also implies a
linear kernel (almost linear kernel) using its natural parametrisation—
since this problem does not admit a polynomial kernel in general
graphs unless NP ⊆ coNP/poly [69], we have another example of struc-
tural sparseness improving tractability.

The introduction of a structural parameter also makes it possible to
include problems like Hamiltonian Path and Hamiltonian Cycle
who simply lack a suitable natural parameter.Further improvements

2 For Chordal Vertex Deletion this holds because we work in a class with bounded
clique number.
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We also extend the machinery in two further directions. By prov-
ing these results in such a way that it is enough for a problem to
have finite integer index only when restricted to graphs of bounded
treewidth/treedepth, we expand on the number of problems for which
our results hold. For example, the above two theorems are also applic-
able to k-Path, k-Cycle, Exact s, t-Path, and Exact Cycle, problems
that do not have finite integer index in general. We provide a proof of
this fact in Section 11.1.2. Further, we proved that Treewidth has finite
integer index if restricted to graphs of bounded treewidth, Pathwidth
for graphs of bounded pathwidth, and Branchwidth for graphs of
bounded branchwidth [114, 116, 115]. As a consequence, these prob-
lems admit kernels if parametrised by a treedepth-modulator in struc-
turally sparse classes; in contrast, note that the smallest known kernel
for a structural parametrisation of Treewidth in general graphs is
O(vc(G)3) = O(td∆

1 (G)3) [24].
As a second improvement to the meta-kernelisation framework, we

address the problem of protrusion replacement for graph classes that
themselves do not have finite index by using well-quasi ordering rela-
tions. In the context of nowhere dense classes, our algorithm returns
an induced subgraph of the input graph. Consequently, the only ad-
ditional condition we need to impose on the target graph class is that
it is hereditary. The same idea can be applied to the kernelisation of
planar, bounded-genus, and classes excluding a minor: the resulting
graph is then a minor of the input graph (note that while planarity is
a property with finite index, there are planar graph classes that do not
have finite index).

Let us state the consequences of the above theorems and smaller
results in the rest of the chapter succinctly.

Corollary 12. The following graph problems have finite integer index in
general graphs, and hence admit

• linear kernels in classes excluding a topological minor when paramet-
rised by a modulator to constant treewidth,

• linear kernels in hereditary bounded-expansion classes when paramet-
rised by a modulator to constant treedepth, and

• almost linear kernels in hereditary nowhere-dense classes when paramet-
rised by a modulator to constant treedepth.

Dominating Set, r-Dominating Set, Edge Dominating Set, Con-
nected Dominating Set, Connected Vertex Cover, Independent
Set, Feedback Vertex Set, Efficient Dominating Set, Hamiltonian
Path, Hamiltonian Cycle, Induced Matching, Chordal Vertex
Deletion, Odd Cycle Transversal, Induced d-Degree Subgraph,
Min Leaf Spanning Tree, Max Full Degree Spanning Tree.

wm-w-Deletion
Consider the following generic parametrised problem: fix a constant w
and a with-measure wm. For a given graph G and budget k, can we
find a set X ⊆ V(G) of size at most k such that wm(G \ X) 6 w?
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In graph classes excluding a topological minor, Fomin, Oum, and
Thilikos demonstrated that the width-measures cw,rw, and tw are all
linearly related to each other [104]. The same is true for bw and tw in
general graphs, as shown by Robertson and Seymour [214]. Together
with Theorem 27 we therefore obtain the following.

Corollary 13. wm-w-Deletion admits a linear kernel in graphs excluding
a topological minor, where wm is either tw,rw,cw or bw.

11.1 finite integer index

Recall that for a graph class G we write ◦Gt to denote all t-boundaried
graphs whose underlying graphs are contained in G.Finite index, f.i.

Definition 20 (Finite index, f.i.). Let P be a graph property and let
◦G1, ◦G2 be two t-boundaried graphs. We write ◦G1 ≡P ◦G2 if for all
t-boundaried graphs ◦H it holds that

◦G1 ⊕ ◦H ∈ P ⇐⇒ ◦G2 ⊕ ◦H ∈ P .

We say that P has finite index in the class G if, for every t ∈ N, the
quantity |◦Gt/≡P | is finite.

Crucially, all properties that are CMSO-definable have finite index [74].
However, the notion of finite index is yet too weak to apply it to
decision problems. Bodlaender and van Antwerpen-de Fluiter intro-
duced the property finite integer index in the context of reducing graphs
of low treewidth [26] which forms a cornerstone of the meta-kernelisation
framework. We adapt this notion slightly by allowing the finiteness-
condition to hold only in a certain graph class instead of all graphs.Finite integer index, f.i.i.

Definition 21 (Finite integer index; f.i.i.). Let Π be a graph problem
and let ◦G1, ◦G2 be two t-boundaried graphs. We write ◦G1 ≡Π

◦G2

if there exists an integer ∆Π(
◦G1, ◦G2) such that for all t-boundaried

graphs ◦H and for all ξ ∈N it holds that(◦G1 ⊕ ◦H, ξ
)
∈ Π ⇐⇒

(◦G2 ⊕ ◦H, ξ + ∆Π(
◦G1, ◦G2)

)
∈ Π.

We say that Π has finite integer index in the class G if, for every t ∈ N,
the quantity |◦Gt/≡Π| is finite.

Note that the constant ∆Π(
◦G1, ◦G2) depends on Π, t, and the ordered

pair (◦G1, ◦G2) so that ∆Π(
◦G1, ◦G2) = −∆Π(

◦G2, ◦G1). We point out that
the restriction of ≡Π to a class G does not mean that the graph ◦H in
the above definition is contained in G.e

For a graph problem Π and a graph property P , we denote by ΠeP
the YES-instances (G, •) ∈ Π where additionally G ∈ P . Since graph
properties and classes are exchangeable, the same notation can be used
to restrict a problem to instances of a certain class.

The following basic observations demonstrate how properties with
finite index interact with each other, with graph problems that have
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finite integer index, and with graph classes. The proofs are simple
arguments about refinements and we omit them here.

Observation 2. Let P ,Q be graph properties that have finite index on a
graph class G. Then the property P ∩Q has finite index on G.

Observation 3. Let Π be graph problem that has finite integer index on a
graph class G and let P be a graph property that has finite index on G. Then
the equivalence relation ≡ΠeP defined as

◦G1 ≡ΠeP
◦G2 ⇐⇒ ◦G1 ≡Π

◦G2 and ◦G1 ≡P ◦G2

has finite integer index on G.

Observation 4. If P has finite index on G, then P has finite index on every
subclass G ′ ⊆ G. If Π has finite integer index on G, then Π has finite integer
index on every subclass G ′ ⊆ G.

A great tool provided by the original meta-kernelisation paper to show
that a specific problem has f.i.i. is the notion of strong monotonicity:
While expressibility in a certain logic does not seem to delineate prob-
lems that do have f.i.i. from those that do not, we can at least prove f.i.i.
for this subset of problems expressible in min/max-CMSO. We recapit-
ulate the definition for minimization problems here, the maximization
variant works analogously. Strong monotonicity

Definition 22 (Strong monotonocity). A problem that is expressible as
a min-CMSO formula ψ is strongly monotone if there exists a function
f with the following property: for every t-boundaried graph ◦G there
must exist a subset W ⊆ V(◦G) such that for every other t-boundaried
graph ◦G′ and subset S′ ⊆ V(◦G′) we have that either

∀S : ◦G⊕ ◦G′ 6|= ψ(S ∪ S′),

or we have that

◦G⊕ ◦G′ |= ψ(W ∪ S′)

and |W| 6 | arg min
S⊆V(◦G)

{◦G⊕ ◦G′ |= ψ(S ∪ S′)}|+ f (t).

The intuition for strong monotonicity is that an optimal solution of a
problem computed in a boundaried graph can always be extended to
an almost optimal solution in a graph obtained from gluing something
to it. The ‘loss’ in optimality should only be a function of the boundary
size. For example, Vertex Cover is strongly monotone: by taking all t
boundary vertices into a solution, we can always ensure that a local
optimal solution can be extended to an almost optimal solution since
we are now essentially dealing with two independent subinstances.

Another helpful tool is the following result: for finite families of
connected graph H, the problems H-Minor Deletion and H-Minor
Packing have f.i.i. [23]3.

3 Note that in the original proof it is assumed that H contains at least one planar graph.
This additional property is needed to show quasi-coverability, not f.i.i.
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Similarly, let F be a family of finite connected graphs. Then the
problems F -Deletion and F -Packing have f.i.i. if the input instance
does not contain a so-called redundant vertex [23].Redundant vertex

In this context, a redundant vertex is a vertex which does not belong
to any subgraph isomorphic to a graph in F . A simple preprocessing
rule, which removes such vertices, then leaves a modified instance on
which the above mentioned problems do indeed have f.i.i. and thus
are amenable to the kernelisation framework. We can improve this
result slightly using the bounded expansion toolkit: the preprocessing
rule can be implemented to run in linear time (or almost linear time
in nowhere dense classes).

Lemma 55. Let F be a finite set of graph with at most p vertices. Let G be
a graph class. Then we can remove all vertices from a graph G ∈ G that are
redundant with respect to F in time O(|G|) if G has bounded expansion and
in time O(|G|1+ε) if G is nowhere dense.

Proof. By Theorem 17, we can compute a (p+1)-centred colouring of G
in linear time or in almost-linear time in the nowhere-dense case. Since
every occurrence of a subgraph isomorphic to a graph in F receives
at most p colours, we can then find the irrelevant vertices using Cour-
celle’s Theorem in the subgraphs induced by at most p colours. Since p
is a constant, the claimed running time follows.

On the other hand, to show that a problem Π does not have f.i.i., we
need to find an infinite set of graphs that are pairwise not equivalent.
To show in turn that two distinct boundaried graphs ◦G1, ◦G2 are not
equivalent, we need to provide for every offset ∆ ∈N a distinguishing
pair ◦H, ξ such that

(◦G1 ⊕ ◦H, ξ) ∈ Π ⇐⇒ (◦G2 ⊕ ◦H, ξ + ∆) 6∈ Π.

We can streamline this procedure by looking at a minimal or maximal
solution. DefineξΠ

min(•)

ξΠ
min(G) = arg min

ξ∈N

{(G, ξ) ∈ Π}

as the minimal parameter such that G is a yes-instance (we will drop
the superscript Π in the following if the problem is clear from the
context). Now if indeed ◦G1 6≡Π

◦G2 then there exist two graph ◦H, ◦H′

such that

ξmin(
◦G1⊕ ◦H)− ξmin(

◦G2⊕ ◦H) 6= ξmin(
◦G1⊕ ◦H′)− ξmin(

◦G2⊕ ◦H′).

In order to show that a problem is not f.i.i. in a graph classes G, we
simply need to take care to choose an infinite set of pairwise not
equivalent boundaried graphs whose underlying graphs are contained
in G. Since the graph classes that proved to be useful consist of graphs
of bounded treewidth or treedepth, we will focus on classes defined
by width-measures in the following.
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11.1.1 Selected negative results

Lemma 56. Independent Dominating Set does not have f.i.i. on graphs
of treedepth two.

Proof. Let {◦S`}`∈N be the class of stars with their centre as the single
boundary vertex and let {◦S′`}`∈N be the class of stars with a single
leaf as their boundary. In both cases, the integer ` denotes the number
of leaves of the star. The following tableaux shows that the graphs ◦S`

and ◦S`′ for 2 6 ` < `′ are not equivalent.

ξmin(
◦S` ⊕ ◦S′`+1) = ` ξmin(

◦S` ⊕ ◦S′`′+1) = `+ 1

ξmin(
◦S`′ ⊕ ◦S′`+1) = ` ξmin(

◦S`′ ⊕ ◦S′`′+1) = `′ + 1

0 `− `′

We conclude that Independent Dominating Set does not have finite
integer index on graphs of treedepth two.

Lemma 57. k-Path and Treedepth do not have f.i.i. on graphs of pathwidth
one.

Proof. Consider the graph class {◦PP`}`∈N consisting of two paths of
length ` with each one endpoint in the boundary. Let ◦P2 be a single
edge with both endpoints in the boundary. The following tableaux
shows that the graphs ◦PP` and ◦PP`′ for 1 6 ` < `′ are not equivalent
under k-Path.

ξmin(
◦PP` ⊕ ◦P2) = 2`+ 1 ξmin(

◦PP` ⊕ ◦PP`) = 2`

ξmin(
◦PP`′ ⊕ ◦P2) = 2`′ + 1 ξmin(

◦PP`′ ⊕ ◦PP`) = `+ `′

2`− 2`′ `− `′

The proof for Treedepth works analogous since a path of length 2`

has treedepth `.

Lemma 58. Chromatic Number does not have f.i.i. on general graphs.

Proof. The counterexample is the class of complete graphs with an
empty boundary. Consider integers 1 6 ` < `′ and note that

χ(K` ∪ K`) = ` χ(K` ∪ K`′) = `′

χ(K`′ ∪ K`) = `′ χ(K`′ ∪ K`′) = `′

`− `′ 0

We conclude that Chromatic Number does not have finite integer
index on general graphs.
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11.1.2 Selected positive results

Let us show for some problems that do not have finite integer index
in general graphs that they do have this property if restricted to a
suitable small class.

Lemma 59. Chromatic Number has f.i.i. on degenerate graphs.

Proof. Fix an integer t and let ◦Gt be the class of all t-boundaried
graphs. For simplicity, we identify the vertices of a graph ◦G ∈ ◦Gt with
the numbers 1, . . . , t. We abbreviate the problem Chromatic Number
by χ in the following.

We define a configuration with respect to ◦Gt as a (t + 1)-tuple C =

(p, c1, . . . , ct), where p, ci ∈ N. A t-boundaried graph ◦G satisfies this
configuration if the partial colouring c1, . . . , ct of its boundary-vertices
can be extended to a proper colouring of Gt using in total p different
colours.

The signature σ[◦G] of a graph ◦G ∈ ◦Gt is a function from the con-
figurations into {0, 1} where σ[◦G](C) = 1 if and only if ◦G satisfies C.
We define:

◦G1 'σ
◦G2 ⇐⇒ σ[◦G1] ≡ σ[◦G2] for ◦G1, ◦G2 ∈ ◦Gt.

We claim that the equivalence relation 'σ is a refinement of the canon-
ical equivalence ≡χ.

Assume the contrary, that σ[◦G1] ≡ σ[◦G2] while ◦G1 6≡χ
◦G2. The lat-

ter implies that for all constants q ∈ N, there exists a graph ◦G3 ∈
◦Gt such that ◦G1 ⊕ ◦G3 is q-colourable while ◦G2 ⊕ ◦G3 is not. We
choose c = 0 to arrive at a contradiction. Let c be a proper colour-
ing of ◦G1 ⊕ G3 with q colours. By projecting c on ∂◦G1 and counting
the number of colours in c(V(◦G1)), we identify a configuration C
such that σ[◦G1](C) = 1. By our above assumption, σ[◦G2] ≡ σ[◦G1]

and therefore σ[◦G2](C) = 1 as well. But then the colouring c(V(◦G3))

can be extended to a proper colouring of ◦G2 ⊕ ◦G3 with exactly q col-
ours, a contradiction. Since in the above argument we can exchange
◦G1 and ◦G2 we conclude that 'σ is a refinement of ≡χ.

Finally, observe that the index of σ is finite in d-degenerate graphs
since the number of signatures is bounded by 2dt+1: we need at most d
additional colours to extend a colouring of the boundary to a proper
colouring. We conclude that the index of σ is at most 22dt+1

and the
claim follows.

For Chromatic Number it is beneficial to bound the maximal number
of colours ‘behind’ the boundary. Note that the above lemma easily ex-
tends to graph classes whose colouring number is bounded by other
means than degeneracy. For connectivity problems like k-Path we
show a similar result, this time we need that one side of the boundary
does not contain arbitrarily long paths. We prove it here for bounded-
treedepth graphs since this is the setting that is applicable in the con-
text of Theorems 28 and 32.
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Lemma 60. k-Path, k-Cycle, Exact s, t-Path, Exact Cycle have f.i.i. on
graphs of bounded treedepth.

Proof. Let D be a class whose treedepth is bounded by a constant d.
Let Π be any one of the mentioned problems. Consider the class Gt of
all t-boundaried graphs, and let T = {0, 1, . . . , t}.

We define a configuration of Π with respect to ◦Gt as a multiset

C = {(s1, d1, t1), . . . , (sp, dp, tp)}

of triples from (T ×N× T). We say a t-boundaried graph ◦G ∈ ◦Gt

satisfies the configuration C if there exists a set of (distinct) paths
P1, . . . , Pp in G such that

• si, ti can only be endvertices of Pi, V(Pi) ∩ ∂(◦G) ⊆ {si, ti}, and
|Pi| = di, for 1 6 i 6 p,

• V(Pi) ∩V(Pj) ⊆ ∂(◦G) for 1 6 i < j 6 p,

• V(Pi) ∩V(Pj) ∩V(Pk) = ∅ for 1 6 i < j < k 6 p.

Note that, for simplicity, we identify the boundary vertices in ∂(◦G)

with their labels 1, . . . , t from T. Moreover, si, ti can take the value 0
which is not contained in ∂(◦G): semantically these tuples describe
paths that intersect the boundary of ◦G at only one or no vertex. An-
other special case are tuples with si = ti and d = 0: those describe
single vertices of the boundary. In short, a graph satisfies a config-
uration if it contains internally non-intersecting paths of length and
endvertices prescribed by the tuples of the configuration, and no three
of the paths are prescribed to have the same endvertex (hence some
configurations are not satisfiable at all, but this is a small technicality).

The signature σ[◦G] of a graph ◦G ∈ ◦Gt is a function from the con-
figurations into {0, 1} where σ[◦G](C) = 1 if and only if ◦G satisfies C.
We define:

◦G1 'σ
◦G2 ⇐⇒ σ[◦G1] ≡ σ[◦G2] for ◦G1, ◦G2 ∈ ◦Gt.

We claim that the equivalence relation 'σ is a refinement of the ca-
nonical equivalence ≡Π. We provide only a sketch for Π = k-Path, the
proofs for the other problems work analogous.

Assume the contrary, that σ[◦G1] ≡ σ[◦G2] while ◦G1 6≡Π
◦G2. Up

to symmetry, this means that for all integers c there exists a graph
◦G3 ∈ ◦Gt such that (◦G1 ⊕ ◦G3, `) ∈ Π but (◦G2 ⊕ ◦G3, `+ c) 6∈ Π. We
choose c = 0 and show the contradiction. Thus the graph ◦G1 ⊕ ◦G3

contains a path P of length ` but ◦G2 ⊕ ◦G3 does not.
Using the implicit order given through the vertex order of P, we

sort the subpaths of P contained in P ∩ G1 and obtain a sequence of
paths P1, . . . , Pq ⊆ G1, each with at most two vertices—the ends—in
◦(G1). By identifying each subpath Pi with the tuple (si, di, ti), where
di = |Pi| and si is the label of the start of Pi in ∂(◦G1) (or 0 if si 6∈
∂(G1)), and ti the label of the end of Pi in ∂(◦G1) (ditto), we obtain a
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configuration CP = {(s1, d1, t1), . . . , (sq, dq, tq)}. Now, ◦G1 satisfies CP

by the definition. Since σ[◦G1](CP) = σ[◦G2](CP), there exists a set
of paths Q1, . . . , Qq ⊆ G2 witnessing that ◦G2 satisfies CP. But then
Q1, . . . , Qq together with P∩G3 form a path Q of length ` in ◦G2⊕ ◦G3,
a contradiction.

Second, although 'σ is generally of infinite index, we claim that for
every t, only a finite number of equivalence classes of 'σ carry a rep-
resentative of treedepth 6 d, and hence 'σ is of finite index when re-
stricted to graphs from D. This is rather easy since graphs of treedepth
6 d do not contain paths of length 2d − 1 or longer, and so a graph
◦G ∈ ◦Dt can satisfy a configuration C = {(s1, d1, t1), . . . , (sp, dp, tp)}
only if di ∈ {0, 1, . . . , 2d − 2} for 1 6 i 6 p. Recall, each boundary
vertex label occurs at most twice among s1, t1, . . . , sp, tp in a satisfiable
configuration. Hence only finitely many such configurations C can be
satisfied by a graph from ◦Dt, and consequently, finitely many func-
tion values of σ[◦G] are non-zero for any ◦G ∈ ◦Dt and the number of
the non-empty classes of 'σ restricted to ◦Dt is finite.

Further, we proved the following results relating to width-measures.

Lemma 61 ([116]). The problem Branchwidth has finite integer index on
graphs of bounded branchwidth.

Lemma 62 ([116, 115]). The problem Pathwidth has f.i.i. on graphs of
bounded pathwidth and Treewidth has f.i.i. on graphs of bounded treewidth.

11.2 wqo & representative sets

Representative set
Definition 23 (Representative set). Let (G,J) be a wqo graph class,
let Π be a graph problem, and let further t be an integer.

We call a set of t-boundaried graphs R a representative set of ◦Gt if
for all ◦G ∈ ◦Gt there exists ◦H ∈ R with ◦H ≡Π

◦G. We call ◦H the
representative of ◦G and will denote it by R(◦G) in the following.

Obviously we want the set of representatives to be as small as possible
and we will see in the following that the concept of finite integer index
helps to achieve this. Before that, we impose certain restrictions on the
set of representatives which will simplify the following proofs.Monotone, order-preserving,

canonical
Definition 24. Let (G,J) be a wqo graph class, let Π be a graph prob-
lem, and let further t be an integer.

Let R be a set of representative for ◦Gt. We call R . . .

. . . monotone if ∆Π(R(◦G), ◦G) > 0

. . . canonical if ∂R(◦G) = ∂◦G

. . . order-preserving if R(◦G)J ◦G

holds for all ◦G ∈ ◦Gt. For a set R with any of these properties, we
denote by R(◦G) the representative of ◦G that satisfies exactly these
properties.
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Lemma 63. Let (G,J) be a wqo graph class, Π be a graph problem that
has f.i.i. in G. Then for every t ∈ N there exists a finite set of monotone,
canonical, and order-preserving representatives R of ◦Gt.

Proof. Consider the equivalence classes C1, . . . , Cp of ◦Gt/≡Π; by the
definition of f.i.i. we know that p is finite—this already proves that
there is a finite representation, it is left so show that we can enforce
the additional properties.

We start by showing that we can find a canonical set. This can be
simply enforced by refining the classes C1, . . . , Cp further: we partition
each individual class Ci into at most 2O(t2) subclasses according to the
boundaries of its members. The following construction will choose a
set of graphs from each such equivalence class, therefore the resulting
set will be canonical.

Fix a class C = Ci and first assume that for every graph ◦H and
every ◦G ∈ C we have that (◦G⊕ ◦H, •) 6∈ Π—such a class essentially
contains only no-instances of Π. Then we can assume that ∆Π(

◦G1, ◦G2)

is zero for all members ◦G1, ◦G2 ∈ Π and therefore any choice of a
representative will be monotone for members of C.

Now assume that C does not contain such a graph. Consider the
relation defined via

◦G1 6
◦G2 ⇐⇒ ∆Π(

◦G1, ◦G2) > 0.

Claim. The relation 6 is a linear order.

Since ∆Π(
◦G, ◦G) = 0, the relation is reflexive and, since we defined it

on the equivalence class C, it is total. Unsurprisingly, it is also trans-
itive which we can quickly verify: consider a triple of graphs from C
with ◦G1 6

◦G2 and ◦G2 6 ◦G3. Let c12 = ∆Π(
◦G1, ◦G2) and c23 =

∆Π(
◦G2, ◦G3). For every ◦H and ξ ∈ N we have that

(◦G1 ⊕ ◦H, ξ) ∈ Π ⇐⇒ (◦G2 ⊕ ◦H, ξ + c12 ∈ Π

⇐⇒ (◦G3 ⊕ ◦H, ξ + c12 + c23) ∈ Π,

which immediately implies that ◦G1 6
◦G2 since c12, c23 > 0.

Fix a graph ◦H such that for all ◦G ∈ C it holds that (◦G⊕ ◦H, •) ∈ Π.
Such a graph must exist by our choice of C. Define

Φ(◦G) = min{ξ ∈N | (◦G⊕ ◦H, ξ) ∈ Π}.

It is easy to check that for ◦G1, ◦G2 ∈ Ci it holds that

Φ(◦G1) = Φ(◦G2) + ∆Π(
◦G1, ◦G2).

Therefore, we have that ◦G1 6
◦G2 implies Φ(◦G1) 6 Φ(◦G2). Any

graph in C that minimizes Φ will be a minimum according to the
order defined by 6; choosing a representative from this set would
therefore ensure the monotonicity—however, we need to work a bit
more to make sure that our choice is also order-preserving.
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Recall that Lemma 4 implies that ◦Gt is wqo by the boundary-pre-
serving extension ofJ. Our class C does not need to be closed underJ;
we will therefore rely on the finite set basis(C) (cf. Lemma 3 for the
necessary properties). Now the members of basis(C) need not be min-
imal according to Φ, our construction of the representative set is not
yet done.

Let us partition C into slices Ck, k > 0, where Ck := CΦ=k. Since
basis(C) has finite cardinality, there exists a number λ such that for
all k > λ we have Ck ∩ basis(C) = ∅. For all these slices the two
properties already hold if basis(C) is contained in the representative
set; it is left to show that we can ensure it for the lower slices as well.
To that end, consider the following iterative construction:

Rk :=
⋃

06i6k

basis(Ck).

We claim that
⋃

06k6λRk has the above two properties for all graphs
in the lower slices.

Claim. Let ◦G ∈ Ck for k < λ. Then there exists ◦H ∈ Rk such that ◦HJ ◦G
and Φ(◦H) > Φ(◦G).

We prove the claim by induction over k. For k = 0, the statement clearly
holds. Assume the statement holds for k− 1 > 0. If there exists ◦H J
◦G, ◦H 6= ◦G such that ◦H ∈ C<k we are done by induction and the
transitivity of J. Otherwise we have that every ◦H J ◦G is either not
in C or it is in Ck. But then, for some ◦H J ◦G, it must hold that ◦H ∈
basis(Ck) ⊆ Rk.

We are finally done: the set RC := Rk ∪ basis(C) contains all rep-
resentatives for the class C. Taking the union over all such sets for
all classes C1, . . . , Cp the set R is monotone, canonical and order-pre-
serving. This concludes the proof.

The above lemma tells us that problems with finite integer index be-
have well with respect to constant-sized separators: in a sense, there is
only small amount of information which can be passed through such
a bottleneck. Even more, the necessary information can be reduced
to a constant-sized (boundaried) instance of the same problem. While
we will in the following assume that such a set of representatives is
simply part of algorithm, we will need to take care of identifying the
correct representative.

Lemma 64 (Finding representatives). Fix a graph class G, a problem Π
that has f.i.i. on G and an integer t. Let R be a representative set of ◦Gt.

Then for every t-boundaried graph ◦G, the representative R(◦G) for ◦G is
computable.

Proof. Consider first the case that R contains only two graphs ◦H1, ◦H2

and that ◦Gt/≡Π has only two equivalence classes C1, C2 represented
by them. In this setting, given a t-boundaried graph from ◦Gt, we need
to determine to which of the two classes it belongs.
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Since ◦H1 6≡Π
◦H2, for every d ∈ N there exists a (minimal) wit-

ness ◦Θd, ξd such that

(◦H1 ⊕ ◦Θd, ξd) ∈ Π ⇐⇒ (◦H2 ⊕ ◦Θd, ξd + d) 6∈ Π.

For every witness graph ◦Θd we define, as we did in the proof of
Lemma 63, the function

Φd(
◦G) := min{ξ | (◦G⊕ ◦Θd, ξ) ∈ Π}.

Now if ◦G ≡Π
◦Hi, then for every d > 0 it holds that ∆Π(

◦G, ◦Hi) =

Φd(
◦G) − Φd(

◦Hi). Define δ = Φ0(
◦H2) − Φ0(

◦H1). Assume without
loss of generality that (◦H1 ⊕ ◦Θδ, ξδ) ∈ Π. Then the two following
implications hold:

◦G ≡Π
◦H1 =⇒ (◦G⊕ ◦Θδ, ξδ + Φ0(

◦G)−Φ0(
◦H1)) ∈ Π

◦G ≡Π
◦H2 =⇒ (◦G⊕ ◦Θδ, ξδ + δ + Φ0(

◦G)−Φ0(
◦H2)) 6∈ Π

⇐⇒ (◦G⊕ ◦Θδ, ξδ + Φ0(
◦G)−Φ0(

◦H1)) 6∈ Π

Therefore, we have the following test for membership in classes C1, C2:
the graph ◦G is equivalent to ◦H1 if and only if

(◦G⊕ ◦Θδ, ξδ + Φ0(
◦G)−Φ0(

◦H1)) ∈ Π↔ (◦H1 ⊕ ◦Θδ, ξδ) ∈ Π.

Let us now generalise to the case for arbitrarily many equivalence
classes C1, . . . , Cp. We use the above test between each pair of distinct
classes and note the outcome in the form of a tournament; that is,
for a pair Ci, Cj we add the arc CiCj if the binary tests come out in
favour of ◦G ∈ Cj and CjCi otherwise. Since we know that there ex-
ists a representative R(◦G), this tournament contains a sink—the class
‘wins’ all binary tests against all other classes. Since a tournament can
contain at most one sink, we correctly identify the class and represent-
ative R(◦G). Note that all involved quantities, in particular δ, depend
on ◦G,R. Hence the total time necessary to determine a representative
is a function of these two inputs only.

Corollary 14. Assume the conditions of Lemma 64 and additionally, let R
be any combination of monotone, canonical, and order-preserving. For the
last case, assume that (G,J) is wqo for a decidable relation J.

Then we can compute for every graph ◦G ∈ ◦Gt a representative R(◦G)

that obeys these constraints.

Proof. For all three properties, we use a simple preprocessing routine
to identify a subset of representatives on which we proceed as before.

• If we need to find a canonical representative, we only retain those
representatives that have a boundary identical to the query graph.

• If the representative needs to be monotone, we disregard all can-
didate representatives where the prospective ∆Π-value is negative
(using, for example, Φ0 as in the proof of Lemma 64).
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• If the representative is supposed to be order-preserving, we test
for every candidate representative ◦H and query graph ◦G whether
◦HJ ◦G and keep those representatives that pass this test. We rely
on the assumption that J is decidable.

We conclude that the three constraints, in any combination, do not
change that a representative is computable from the representative set
alone.

11.3 protrusions : replacement and decomposition

The notion of a protrusion was introduced in the original meta-kernels
paper [23]. We adapt and extend the definition as follows.

Definition 25 ((α, β)-protrusionwm). Given a graph G and a width-
measure wm, a set W ⊆ V(G) is a (α, β)-protrusionwm of G if

• |∂GW| 6 α and

• wm(G[W]) 6 β.

We call ∂GW the boundary, α the adhesion, β the width and |W| the size
of the protrusion W.

Note that for a (α, •)-protrusion W in G we have that ◦G[W]• is a α-
boundaried graph. If a suitable labelling b of the boundary is fixed we
will therefore use the shorthand ◦W := ◦G[W]b.

With the tools proved in Section 11.1 at hand we can finally prove
the cornerstone of the meta-kernelisation framework: protrusion re-
placement. We already saw in the previous section that problems with
f.i.i. allow us to replace small boundaried graphs with even smaller
graphs taken from a finite selection of representatives. As a thought
experiment, consider a ‘trivial’ protrusion: a graph of bounded tree-
width. Iteratively replacing small boundaried graphs will, in essence,
persistently eat away at the graph until only a constant-sized, equival-
ent instance of our original problem remains.

The same procedure is possible even if a protrusion attaches to some
larger set—as shown in the next lemma.Protrusion replacement

Lemma 65 (Protrusion replacement). Let wm be a with-measure that
upper-bounds tw Let G be a graph class, J a graph relation, α, β integers
and Π be a graph problem such that

• wm is monotone under J,

• Gwm6α+β is wqo by J and

• Π has f.i.i. on Gwm6α+β.

Let further R be a set of monotone, canonical, and order-preserving repres-
entatives for Π on Gwm6α+β.
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Let (G, k) be an input instance of Π with G ∈ G and let W ⊆ G be a
(α, β)-protrusionwm of G, and b a suitable α-labelling of ∂W. There exists
an algorithm that computes in time O(|W|) a representative R(◦G[W]b)

for ◦G[W]b.

Proof. We first compute a tree-decomposition T = (T, χ) of G[W] of
width at most α + β− 1 that satisfies the following conditions:

1. The tree-decomposition is nice and the leaf bags contain one ver-
tex, and

2. the bag of r = root(T) is exactly the boundary of W, i.e. we have
χ(r) = ∂GW.

The first condition can be achieved by simply modifying the graph
G[W] so that ∂GW induces a clique; if a bag containing ∂GW we make
it the root of T, otherwise we introduce such a node (since ∂GW will
be contained in some bag there must be a way of attaching it). This
construction also justifies the width α + β− 1, using the fact that

tw(G[W]) 6 wm(G[W]) 6 β.

We abbreviate γ := α + β in the following.
For a node x ∈ T, we let ◦Gx denote the γ-boundaried graph induced

by the vertices in the bags of the rooted subtree Tx. That is,

◦Gx := ◦G
[⋃

y∈Tx
Wy

]
bx

and ∂◦Gx = χ(x),

where bx is some fixed labelling of χ(x). Note that ◦Gr = ◦G[W].
Since Π has f.i.i. on Gwm6w there exists a finite set of representativesR
for Π with properties as defined in Lemma 63. In particular, we have
that for every node x ∈ T, there exists a representative R(◦Gx) ∈ R
for ◦Gx such that

• R(◦Gx) ≡Π
◦Gx with ∆Π(R(◦Gx), ◦Gx) > 0,

• ∂R(x) = ∂◦Gx, and

• R(◦Gx)J ◦Gx.

Note that the size ofR(◦Gx) is only depends on our ‘constants’: γ, Π,G
and J. For brevity’s sake, we introduce the function µ(x)

µ(x) := ∆Π(R(◦Gx), ◦Gx).

Our first goal is to prove the following claim, under the assumption
that the finite set R is part of the algorithm.

Claim. The values R(◦Gr), µ(r) can be computed in time O(|◦Gr|).

We use a bottom-up computation over the tree decomposition. For a
leaf-node x ∈ leaves(T), Lemma 64 and Corollary 14 tell us that we
can compute a suitable representative R(◦Gx) of ◦Gx. In the following,
we consider nodes x ∈ T and assume that the values R(•), µ(•) are
known for all its children.
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Case 1: x ∈ T is an introduce- or forget-node. Let y ∈ N+
T (x) be the

unique child of x. Consider the γ-boundaried graph

◦G′x := (◦Gx 	by
◦Gy)⊕by R(◦Gy),

where by is the labelling fixed for χ(y). We claim that ◦G′x ≡Π
◦Gx; to

prove this we need to show that for all γ-boundaried graphs ◦H and
for all ξ ∈N,

(◦Gx ⊕bx
◦H, ξ) ∈ Π ⇐⇒ (◦G′x ⊕bx

◦H, ξ + ∆Π(
◦Gx, ◦G′x))

for some yet to be specified constant ∆Π(
◦Gx, ◦G′x) and some labelling

bx of the boundary ∂◦Gx. Observe that, by some basic ‘arithmetic’,

◦G′x ⊕bx
◦H = (◦Gx 	by Gy)⊕by R(◦Gy)⊕bx

◦H

= (◦Gx ⊕bx
◦H)	by Gy ⊕by R(◦Gy).

Therefore, we have that

(◦G′x ⊕bx
◦H, ξ) ∈ Π

⇐⇒
(
(◦Gx ⊕bx

◦H)	by Gy ⊕by R(◦Gy), ξ
)
∈ Π

◦Gy≡ΠR(◦Gy)⇐⇒
(
(◦Gx ⊕bx

◦H)	by Gy ⊕by
◦Gy, ξ − µ(y)

)
∈ Π

⇐⇒
(◦Gx ⊕bx

◦H, ξ − µ(y)
)
∈ Π,

proving the claim with ∆Π(
◦Gx, ◦G′x) = −µ(y). Since ◦G′x has con-

stant size, we can safely invoke Lemma 64/Corollary 14 to determ-
ine R(◦Gx) = R(◦G′x) and µ(x) = µ(y) + ∆Π(

◦G′x,R(◦G′x)) in constant
time. Further, since R(◦G′x)J ◦Gx, we have that wm(◦G′x) 6 wm(◦Gx).

Case 2: x ∈ T is a join-node. Let y, z ∈ N+
T (x) be the two chil-

dren of x. Since the tree-decomposition is nice, we have that χ(x) =

χ(y) = χ(z) and therefore also ∂◦Gx = ∂◦Gy = ∂◦Gz. Let b := bx

be the fixed labelling of the shared boundary ∂◦Gx. Consider the γ-
boundaried graph ◦Gzy defined as

Gyz := R(y)⊕bR(z) and ∂◦Gyz := χ(x).

Analogous to the previous case, we can show that for all ◦H and ξ ∈N,

(◦Gyz ⊕b
◦H, ξ) ∈ Π ⇐⇒ (◦Gx ⊕b

◦H, ξ − µ(y)− µ(z)) ∈ Π.

Again, the graph ◦Gyz has, by induction, constant size and it follows
that we can compute R(◦Gx) and µ(x) in constant time.

This concludes the proof of the claim: we are able to compute R(◦Gr)

and µ(r) in time O(|◦Gr|). Actually, we have now proved the Lemma—
the pair ◦H := R(◦Gr) and k′ := µ(r) with boundary b := br satisfies
the above conditions.
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We now have the template for a reduction rule: using a suitable width-
measure and graph relation, we are able to safely replace protrusions
while preserving important properties—like membership in a graph
class (more on this later). The second ingredient to prove a kernels is,
as always, the proof that the exhaustive application of the reduction
rule will output an instance of bounded size. This second step will
crucially depend on the graph class we are working in; in order to
unify the following results as much as possible we will rely on the
following graph decomposition. Protrusion decomposition

Definition 26 (Protrusion decomposition). For a graph G, a vertex par-
tition Y0 ]Y1 ] · · · ]Y` is a protrusionwm decomposition of width β and
adhesion α if K(G − Y0) refines the partition {Y1, . . . , Y`} and for all
1 6 i < j 6 ` we have that

• N(Yi) 6= N(Yj) and

• Yi is a protrusionwm of adhesion α and width β.

We call the set Y0 the core of the decomposition.

Note that decompositions is entirely defined by its core: given Y0 ⊆ G,
we group the components K(G \ Y0) according to their boundaries
in Y0 to obtain Y0 ]Y1 ] · · · ]Y`. Moreover, we can compute the de-
composition for a given core in linear time: we construct an bipart-
ite auxiliary graph with vertex set K(G \ Y0) ∪ Y0 and add the edges
from C ∈ K(G \ Y0) to ∂GC ⊆ Y0. Computing the twin classes of this
bipartite graph then produces the correct grouping of the connected
components; by Lemma 2 this can be done in linear time. Low-adhesion –

The following lemma shows how the structure of protrusion decom-
positions can be improved further by reducing the adhesion at the cost
of slightly increasing the size of the core. The exact cost of this increase
will depend on the graph class we are working in, therefore we simply
return a suitable witness-structure whose size is related to the increase
and which can be bounded in sparse classes.

Lemma 66 (Low-adhesion protrusion decomposition). Let G be a graph
with protrusiontw decomposition Y0 ]Y1 ] · · · ]Y` of with width β and ar-
bitrary adhesion. There is an algorithm that for every α > 0 computes in
linear time

• a witness structure of pairwise disjoint vertex subsets W1, . . . , Wp

where Wj ∩Y0 = ∅, G[Wj] connected and N(Wj) ∩Y0 > α; and

• a protrusiontw decomposition Y′0 ]Y′1 ] · · · ]Y′`′ for G of width β and
adhesion at most α + 2β + 2 where Y′0 ⊇ Y0, Y′i ⊆ Yi for 1 6 i 6 ` and
further |Y′0| 6 2p(β + 1) + |Y0|.

Proof. The procedure is listed as Algorithm 2. We prove the different
claims in the statement one by one for the output of the algorithm. Ac-
cordingly, we denote by Y′0 ]Y′1 ] · · · ]Y′`′ and W1, . . . , Wp the output
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Input: A graph G with a protrusiontw decomposition
Y0 ]Y1 ] · · · ]Y` and an integer α > 0.

Output: A protrusiontw decomposition Y′0 ]Y′1 ] · · · ]Y′`′ and
witness structure W1, . . . , Wp as described in Lemma 66.

For every C ∈ K(G−Y0) with |N(C) ∩Y0| > α, compute an
optimal rooted tree-decomposition TC = (TC, χC)

Set M← ∅ as the set of marked nodes
SetW ← ∅ as the list of witnesses
Repeat the following loop for every rooted tree-decomposition TC:
while TC contains an unprocessed node do

Let x ∈ T be an unprocessed node at the farthest distance
from root(T)

1 LCA marking
if x is the LCA of two nodes in M then

M← M ∪ {x}

2 Large-subgraph marking
else if G[

⋃
y∈Tx

χ(y) \⋃z∈M χ(z)] contains a connected component
W such that |N(W) ∩Y0| > α then

M← M ∪ {x}
W ← W ∪ {W}

Node x is now processed

3 Decomposition construction
Y′0 = Y0 ∪V(M)

for 1 6 i 6 ` do
Y′i = Yi \V(M)

return Y′0 ]Y′1 ] · · · ]Y′`′ andW = W1, . . . , Wp

Algorithm 2: Computing a low adhesion protrusion decomposition.
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of the algorithm for given inputs G and Y0 ]Y1 ] · · · ]Y`. We imme-
diately see that, by construction, Y′0 is a superset of Y0 and that each
protrusion Y′i is a subset of the protrusion Yi. This implies that the
width of Y′0 ]Y′1 ] · · · ]Y′`′ is at most β, since tw is monotone under
taking subgraphs. Let us examine the remaining claims.

Claim. The witness sets W1, . . . , Wp are pairwise disjoint, induce connected
subgraphs and have at least α neighbours in Y0.

Consider that iteration i in the algorithm where Wj was added to the
list of witnesses in Step 2: from the if-clause it directly follows that the
witness sets induce connected subgraphs and they contain at least α

neighbours in Y0. Furthermore, since the tree node x is added to the set
of marked nodes, we have—by the properties of tree-decompositions—
that none of the vertices in W will be added to any other witness set.
Hence they are pairwise disjoint.

Claim. |Y′0| 6 2p(β + 1) + |Y0|.

Each marked node in Algorithm 2 adds the vertices of a bag to Y0 in
order to construct Y′0; since the protrusion decomposition has width β,
each such bag contains at most β + 1 vertices. It remains to be shown
that at most 2p nodes are marked in total. Every node marked in
Step 2 will create a witness and hence increase the final number of
witnesses p. Since Step 1 simply computes the lca closure of the so-far
marked nodes, we have by Lemma 1 that the total number of marked
nodes is at most 2p.

Claim. Y′0 ]Y′1 ] · · · ]Y′`′ has adhesion at most α + 2β + 2.

For every protrusion Y′i we have that each connected component of
G[Y′i ] has at most α neighbours in Y0 (as ensured by Step 2). How-
ever, these components are potentially adjacent to Y′0 \ Y0. We finally
see the reason behind computing the lca closure: by Lemma 1, every
connected component of unmarked nodes in the tree decomposition
has at most two marked neighbours. Since a connected component
of G[Y′i ] lives inside bags corresponding to unmarked nodes in the
tree decomposition, we have that G[Y′i ] can be adjacent to at most two
bags worth of vertices in Y′0 \Y0. Hence, in total the adhesion of Y′i and
subsequently Y′0 ]Y′1 ] · · · ]Y′`′ is bounded by α + 2β + 2.

Because the only modification Algorithm 2 applies to a protrusion de-
composition is that it pushes some vertices from the protrusions into
the core, the above lemma holds for width measures like pathwidth or
treedepth, as well. The following corollary formalises the conditions
under which the results can be carried over for general width meas-
ures.

Corollary 15. Let wm > tw be a width measure that is monotone under
taking induced subgraphs. Then Lemma 66 can be applied to a protrusionwm-
decomposition as well.





12
M E TA - K E R N E L I S AT I O N B E Y O N D E X C L U D E D
M I N O R S

Having introduced the necessary ingredients—finite integer index, pro-
trusions, and protrusion decompositions—we will now see how they
interact with structurally sparse classes. In essence, the kernelisation
routine simply reduces all protrusions; the decomposition is then used
in combination with the graph classes’ properties to show that the res-
ulting graph is indeed a kernel.

12.1 classes excluding a topological minor

Recall that tw∆
d denotes the size of a minimal treewidth-d-modulator.

This section is dedicated to proving the first of the two main theorems.
Let us restate it here:

Theorem 27. Let Π be a graph problem that has f.i.i. on graphs of bounded
treewidth and let G be a graph class that excludes a fixed graph H as a
topological minor. For every d ∈ N there exists an algorithm that takes as
input (G, ξ) ∈ G ×N and outputs in time O(|G|) an instance (G′, ξ ′) such
that

1. (G, ξ) ∈ Π ⇐⇒ (G′, ξ ′) ∈ Π with ξ ′ 6 ξ,

2. H 64t G′, and

3. |G′| = O(tw∆
d (G)).

For the remainder of this section, let G be a graph class that excludes
the fixed graph H as a topological minor. Recall that, by Theorem 4,
there exists a constant ρ 6 10 such that G is ρ|H|2-degenerate. We fix
a problem Π that has f.i.i. on graphs of bounded treewidth, i.e. for
every d ∈N, it has f.i.i. if restricted to Gtw6d.

Let us begin with a technical but highly useful lemma on graphs
excluding a topological minor—this was, historically, the predecessor
to Lemma 36 and uses a very similar proof.

Lemma 67. Let G be a graph that excludes Kh as a topological minor and
let X ⊆ V(G) be a vertex set. Then it holds that

1. |{C : |∂C| > h}C∈K(G\X)| 6 ρh2|X|, and

2. |{∂C}C∈K(G\X)| 6 (2ρh2
+ ρh2)|X|.

Proof. We construct a sequence of graphs G0, G1, . . . , G` while ensur-
ing that Gi 4t G for all 0 6 i 6 ` as follows. Set G0 = G, and
for 0 6 i 6 ` − 1 construct Gi+1 from Gi by choosing a component
C ∈ K(G \ X) such that ∂C ⊆ X contains two non-adjacent vertices

135
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u, w in Gi. We construct Gi+1 by adding the edge uw and removing C;
to see that Gi+1 4t Gi, note that there exists a u-w-path whose internal
vertices lie completely in C. Hence we can contract this path into the
edge uw and remove the remainder of C to obtain Gi+1 via legal topo-
logical minor operations.

This process clearly terminates, as Gi+1 has at least one more edge
between vertices of X than Gi. Since Gi+1 4t Gi we in particular have
that Gi 4t G0 for all i. Therefore, G`[X] excludes Kh as a topological
minor and is ρh2-degenerate.

Let us now prove the first claim. To this end, assume towards a con-
tradiction that there is a connected component C ∈ K(G` \ X) such
that |∂C| > h. If G`[∂C] contains a pair of non-adjacent vertices, we
can construct the (`+ 1)th graph in the sequence contradicting the as-
sumption that G` was the last graph of the sequence. But then G`[∂C]
induces a clique of size at least h, contradicting that G does not con-
tain Kh as a topological minor.

We conclude that no connected component of G` \X has a boundary
of size larger than h. Therefore components of G \ X with boundaries
of size > h must have been deleted in the sequence of edge contrac-
tions. As every contraction adds exactly one edge between vertices
in X and since we established that G`[X] contains at most ρh2|X| edges,
the first claim follows.

For the second claim, consider the set C` = K(G`−X). By the above
observation, the boundary of every component C ∈ C` induces a clique
in G`[X]. From the degeneracy of G`[X] and Theorem 4, it follows that
G`[X] contains at most 2ρh2 · |G`[X]| = 2ρh2 · |X| complete subgraphs.
Therefore the total number of boundaries in X of components in G \X
is bounded by the number of contractions ` 6 ρh2|X| and the resulting
number of complete subgraphs in G`[X]. This is exactly the second
claim.

Consider the first statement of Lemma 67 and recall the ominous wit-
ness structure constructed by Algorithm 2. The claim was designed to
bound the size of that witness structure, which in turn will bound the
increase of the core set necessary to ensure that a protrusion decom-
position has low adhesion.

We will assume, for now, that we are given an instance (G, ξ) of Π
with G ∈ G and a treewidth-d modulator X ⊆ G and see in the fol-
lowing how the protrusion reduction rule enables us to compress the
instance to size O(|X|). Afterwards, we tie in known results to derive
Theorem 27.

Lemma 68. Let Y0 ]Y1 ] · · · ]Y` be the protrusion decomposition of G
with Y0 = X of width d. Then the witness structure obtained by applying
Algorithm 2 with parameter α = h contains at most ρh2|X| sets.

Proof. Recall that the witness structure consist of pairwise disjoint
vertex subsets W1, . . . , Wp contained entirely in G \ Y0 that each in-
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duce a connected subgraph and have at least h neighbours in X (cf.
Lemma 66). To prove the claim, we show that p 6 ρh2|X|.

To that end, construct the auxiliary subgraph H ⊆ G with vertex
set X ∪ ⋃16i6p Wi and edge set E[X] ∪ ⋃16i6p E[Wi]. Note that every
subgraph G[Wi] is a connected component of H \ X; therefore we can
apply the first statement of Lemma 67 to see that

p = |K(H \ X)| 6 ρh2|X|,

as claimed.

We can now already prove a major part of Theorem 27: if we are
given a modulator to constant treewidth as part of the input then we
can compute a compressed instance that excludes H as a topological
minor.

Lemma 69. Given the instance (G, ξ) and the treewidth-d modulator X, we
can, in linear time, compute an instance (G′, ξ ′) such that

1. (G, ξ) ∈ Π ⇐⇒ (G′, ξ ′) ∈ Π with ξ ′ 6 ξ,

2. H 64t G′, and

3. |G′| = O(|X|).

Proof. We first construct a protrusion decomposition Y0 ]Y1 ] · · · ]Y`

around the core Y0 = X in linear time. Applying Algorithm 2 with
parameter α = h gives us, by Lemma 66, a protrusion decomposi-
tion Y′0 ]Y′1 ] · · · ]Y′`′ with adhesion at most α′ := h + 2d + 2 and a
witness structure W1, . . . Wp. As proved above in Lemma 68, the num-
ber of witness sets is bounded by p 6 ρh2|X|.

It follows (cf. again Lemma 66) that the size of the new core Y′0 is

|Y′0| 6 2p(d + 1) + |Y0| = 2ρh2(d + 1)|X|+ |X| = O(|X|).

Let us fix for every protrusion Y′i a 6 α′-labelling of its boundary bi,
which enables us to refer to the 6 α′-boundaried graphs ◦Y′i := G[Y′i ]bi

in the following and avoid clumsy notation.
Now, applying the protrusion reduction machinery, we replace every

protrusion Y′i , 1 6 i 6 `, by a constant sized representative. More pre-
cisely, we apply Lemma 65 choosing the following parameters:

• The problem is Πe G;

• the width-measure is treewidth;

• the graph relation is the minor relation 4m; and

• the parameters are α = α′ = h + 2d + 2 and β = d.

Since Π has f.i.i. on graphs of bounded treedepth, we assume that
the finite set of canonical, monotone and minor-preserving represent-
atives R for Π on Gtw6α+β is contained in the algorithm.

Note that since G is the class of all graphs excluding a fixed topolo-
gical minor, and this fact is expressible in CMSO, we have that G has
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finite index. By Observation 3, the problem Π e G therefore has finite
integer index.

Applying Lemma 65 with the above parameters to (G, ξ) and a pro-
trusion Y′i with boundary bi provides us in time O(|Y′i |) with the rep-
resentative ◦Y′′i := R(◦Y′i ). Given all such representatives ◦Y′′i for in-
dices 1 6 i 6 `, we compute a sequence of instances (Gi, ξi) as follows:
start with (G0, ξ0) := (G, ξ). Then (Gi, ξi) is obtained from (Gi−1, ξi−1)

by replacing a protrusion and adjusting the parameter accordingly:

Gi := Gi−1[Y′i 7→ ◦Y′′i ]bi

ξi := ξi−1 − ∆ΠeG(
◦Y′′i , ◦Y′i ).

Since Lemma 65 computes representatives that are canonical, we know
that G[Y′0] is not affected by these operations and therefore the se-
quence can be constructed as described above. Because the represent-
atives are monotone, we have that ∆ΠeG(

◦Y′′i , ◦Y′i ) > 0 and therefore
it holds that ξi 6 ξi−1. Since we used the problem Π e G, we have
that Gi ∈ G and thus H 64t Gi.

Obviously, but most importantly, we have that

(Gi, ξi) ∈ Π ⇐⇒ (Gi−1, ξi−1) ∈ Π.

We set (G′, ξ ′) = (G`′ , ξ`′); the first two claims then follow via in-
duction over the just constructed sequence. It is left to show the size
bound. Note that the total size of the graph is

|G′| 6 |Y′0|+
`′

∑
i=0
|Y′′i | 6 O(|X|) + `′ ·max

◦R∈R
|R|.

Since R is finite, the maximum in the above bound is a constant—it
therefore remains to bound the number of (non-empty) protrusions `.

We finally invoke the second statement of Lemma 67: applying it
to Y′0 it states that

|{∂C}C∈K(G′\Y′0)| 6 (2ρh2
+ ρh2)|Y′0| = O(|X|).

Now since every protrusion in Y′0 ]Y′1 ] · · · ]Y′`′ has—by definition—
its unique boundary in Y′0 and the replacement does not change the
respective boundaries, we can bound the number of protrusions by
the number of possible boundaries. Specifically:

`′ = |{∂Y′i }16i6`′ | 6 |{∂C}C∈K(G′\Y′0)| = O(|X|).

We conclude that |G′| = O(|X|) as claimed.

The one crucial missing piece from Lemma 69 to Theorem 27 is
that we are not given a treewidth modulator as input. However, note
that the proof of Lemma 69 only needs the modulator to construct
the protrusion decomposition, and the decomposition to reduce the
protrusions—if we can replace protrusions without using the decom-
position, we are done.
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To achieve this feat in the claimed running time we employ the
following nice result by Fomin, Lokshtanov, Misra, Ramanujan, and
Saurabh (improving on a previous randomised algorithm [99]).

Theorem 30 (Fomin et al. [98]). Let Π be a problem that has a protrusion
replacer which replaces r-protrusions of size at least r′ and let s and β be
constants such that r > 3(β + 1) and s > 2rr′.

Given an instance (G, k) as input, there exists a linear-time algorithm that
produces an equivalent instance (G′, k′) with |G′| 6 |G| and k′ 6 k. If
additionally G has a protrusion-decomposition Y0 ]Y1 ] · · · ]Y` of width at
most β and satisfies max{|Y0|, `} 6 n

244s , then we have |G′|(1− δ)|G| for
some constant δ.

The bottom line is: we can replace ‘enough’ protrusions using a linear-
time algorithm such that the size of the resulting kernel is only larger
by a constant factor compared to the kernel obtained by replacing
every protrusion. Combining Lemma 69 with Lemma 30 proves The-
orem 27.

12.2 interlude : the need for a stronger parameter

As it turns out, we cannot obtain linear kernels using treewidth-modu-
lators as parameter for the next larger sparse class; graphs of bounded
expansion. To see this, we combine the following result with a simple
observation.

Theorem 31 (Dell and van Melkebeek [242]). Let P be a monotone graph
property that is satisfied by infinitely many but not all graphs. Let ε be a
positive real. If coNP 6⊆ NP/poly, there is no protocol of cost O(k2−ε) for
deciding whether a graph satisfying P can be obtained from a given graph by
removing at most k vertices, even when the first player is co-nondeterministic

Luckily, the authors spell out the consequences of their results for
people not versed in communication complexity: the k-vertex deletion
problem for such properties P does not admit subquadratic kernels.
Famous problems that can be modelled with such properties are Ver-
tex Cover (where P is being an edgeless graph), Feedback Vertex Set
(where P is being free of cycles) or Chordal Vertex Deletion (where
P is, well, being chordal). To avoid confusion: both Vertex Cover and
Feedback Vertex Set allow kernels that have only 2k vertices, how-
ever, the above states that we cannot give any guarantee about the
number of edges in general graphs.

We make the following simple observation:

Lemma 70. Fix a function f > 2 and let G f be the class of all graphs G
with∇r(G) 6 f (r) for all r > 0. Let Π a parametrised problem that is closed
under edge subdivision. Then if Π admits kernels of size g(k) in G f then Π
admits kernels of size g(k) in general graphs.
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Proof. Since Π is closed under edge subdivision, we have that for every
graph G and all integers k, ` it holds that

(G, k) ∈ Π ⇐⇒ (G[E/`], k) ∈ Π.

Since ∇r(G[E/|G|]) 6 2 6 f (r) we have that G[E/|G|] ∈ G f . As such,
a kernel of size g(k) for G[E/|G|] is also a kernel for G.

As a corollary to Theorem 31 and Lemma 70 we see that the prop-
erty of ‘just’ having bounded expansion is not enough to facilitate lin-
ear kernels for certain problems—we seem to need a parametrisation
which restricts the structure sufficiently.

Corollary 16. Fix a function f > 2 and let G f be the class of all graphs G
with ∇r(G) 6 f (r) for all r > 0. Unless coNP 6⊆ NP/poly, Feedback
Vertex Set restricted to G f does not admit a kernel of size O(k2−ε).

In general, we can state that problems that are invariant under edge
subdivision cannot profit from structural sparseness. As an aside, this
also holds true for the graph isomorphism problem; which is solvable
in time n f (H) for classes excluding a topological minor [130].Structural parameters

In the parametrised framework, we have a way of addressing this is-
sue rather elegantly: we simply change the parametrisation. The first
important realisation is that all previous meta-kernelisation results,
be it in planar, bounded-genus or minor-excluding classes, can be re-
phrased using a structural parameter. For example, combined proper-
ties of bidimensionality and separability (used to prove the result on
minor-free graphs) imply that the problem is treewidth-bounding (cf.
Lemma 3.2 and 3.3 in [101]). That is: the natural parameter implies
the existence of a treewidth-modulator, where the treewidth of the re-
maining graph depends only on the problem. Quasi-coverability on
bounded genus graphs implies the same (cf. Lemma 6.4 in [23]). These
two meta-theorems alongside the one proved in the previous section
can therefore be rephrased using the size of treewidth-modulator as a
structural parameter.

In the context of bounded-expansion and nowhere dense classes,
parametrising by a treewidth-modulator is out of the question: Again,
this parameter is closed under edge subdivisions. But keeping with
the theme of modulating to a width-measure, another candidate para-
meter emerges naturally: a modulator to bounded treedepth.

12.3 classes of bounded expansion and beyond

We will first prove that problems that have finite integer index (either
in general graphs or in graphs of bounded treedepth) admit linear ker-
nels if a) inputs are restricted to a hereditary bounded-expansion class
and b) they are parametrised by a modulator to constant treedepth.

Theorem 28. Let Π be a graph problem that has f.i.i. on graphs of bounded
treedepth. Let G be a graph class of bounded expansion and let t ∈ N be a
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constant. Then there is an algorithm that takes as input (G, ξ) ∈ G ×N and,
in time O(|G|+ log ξ), outputs (G′, ξ ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ ′) ∈ Π;

2. G′ is an induced subgraph of G; and

3. |G′| = O(td∆
t (G)).

The proof of the corresponding theorem for nowhere dense classes,
Theorem 32, works very similarly and we elaborate on the necessary
changes after the proof of Theorem 28. As a first ingredient, we need
to be able to compute an (approximate) treedepth modulator which
then forms the core around which the kernelisation routine works.

Lemma 71. Fix a constant t ∈ N. Given a graph G from a class G, a
treedepth-d modulator of size at most 2d td∆

t (G) can be computed in time
O(td∆

t (G)‖G‖). If G has bounded expansion, we can compute such a modu-
lator in time O(|G|).

Proof. Note that any path of length 2d+1 must intersect any treedepth-
d modulator. We will call such a path a long path in the following.

We start with an empty vertex set S0. By Proposition 4 we can com-
pute a decomposition F of width at most 2td(G) in time O(|G|+ ‖G‖)
by computing a dfs forest. If the height of F is larger than 2d, we find
a long path P in F and include it into S0. We remove V(P) from the
graph and iterate this procedure, until the resulting decomposition F′

of G \ S0 has height at most 2d. This gives us a tree (path) decomposi-
tion of the graph of width at most 2d−1. Now use standard tools (e.g.,
Courcelle’s Theorem) to obtain an optimal treedepth-d modulator S1

in G \ S0, and set S = S0 ∪ S1. Since the treewidth of G \ S0 is a con-
stant, the latter algorithm runs in time linear in the size of the graph.
The overall size of the modulator S is at most 2d times the optimal
solution.

For graph classes of bounded expansion we change the computation
of S0 by using Corollary 10 with a (2d+2)-centred colouring computed
in linear time (cf. Theorem 17): With the forbidden family F = {P2d+1}
the approximate solution to F -Deletion yields S0. Note that the ap-
proximation factor only depends on d and the graph class.

For the remainder of this section, let G be a graph class whose expan-
sion is bounded by f .

Recall the first statement of Lemma 36 which says that in a bipartite
graph with partite sets X, Y the number of vertices in Y of large degree
is bounded linearly in |X| with a factor that depends on ∇1/2. The
following is a simple corollary to that fact and we will use it, as before,
to bound the size of the witness structure computed by Algorithm 2.

Corollary 17. Suppose that for G ∈ G and X ⊆ V(G), the connected
components {C1, . . . , Cp} = K(G \ X) of G \ X satisfy the following two
conditions:



142 12 meta-kernelisation beyond excluded minors

1. diam(G[V(Ci)]) 6 r and

2. |N(Ci) ∩ X| > 2 f (r + 1) for 1 6 i 6 p.

Then p 6 2 f (r + 1) · |X|.

Proof. We construct an auxiliary bipartite graph G′ with partite sets X
and Y = {C1, . . . , Cp}. There is an edge between Ci and x ∈ X in G′

iff x ∈ N(Ci) ∩ X. Note that G′ is a depth-r shallow minor of G with
branch sets Ci.

First, let us prove that for every H 41
t G′ it holds that H 4r+1

t G. To
this end, let φ′ be the minor embedding witnessing that H 41

t G′. Note
that the branch sets {φ′(x)}x∈H induce stars with centres either in X
or Y. Therefore, if we construct a minor embedding φ of H in G by
simply mapping the vertex Ci in G′ to the vertex set Ci in G, the depth
of φ is at most 1 + maxi diam(Ci) 6 r + 1. It follows that H 4r+1

t G.
Consequently, we can apply Lemma 36 to G via G′ and conclude

that for τ = f (r + 1) > ∇r+1(G) > ∇1(G′) it holds that

p 6 2τ · |X| = 2 f (r + 1) · |X|,

as claimed.

We can use the second statement of Lemma 36 in a similar manner.
Recall that it stated that in a bipartite graph with partite sets X, Y
the number of possible neighbourhoods of vertices contained in Y is
bounded linearly in |X| with a factor that, again, depends on ∇1/2.
We will use it to bound the number of protrusions in a protrusion
decomposition, using the fact that there is a one-to-one correspond-
ence between the protrusions and the boundaries attaching them to
the core.

Corollary 18. Suppose that for G ∈ G and X ⊆ V(G), the connected com-
ponents {C1, . . . , Cp} = K(G \ X) of G \ X are partitioned into equivalence
classes C1, . . . , C` where

C, C′ ∈ C ⇐⇒ N(C) ∩ X = N(C′) ∩ X.

Let further r > max16j6p diam(Cj) be a bound on the diameter of the
components of G \ X. Then the number of classes ` is bounded by ` 6
(4 f (r+1) + 2 f (r + 1)) · |X|.

Proof. As in the proof of Corollary 17, we construct a bipartite graph
G′ with partite sets X and Y = {C1, . . . , Cr}. By the previous observa-
tion in the proof of Corollary 17, we have that every graph H 41

t G′

satisfies H 4r+1
t G. Choosing again τ := f (r + 1) > ∇r+1(G) > ∇1(G′)

we apply the second statement of Lemma 36 and obtain the bound

` 6 (4τ + 2τ) · |X| = (4 f (r+1) + 2 f (r + 1)) · |X|

as claimed.
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With the above lemmas at hand we can now prove the main theorem
of this section. The proof is similar to that of Theorem 27.

Proof of Theorem 28. Given an instance (G, ξ) of Π with G ∈ G, we
use Lemma 71 to calculate a treedepth-d modulator X of size at most
2d td∆

d (G) in linear time.
We construct a protrusiontd decomposition Y0 ]Y1 ] · · · ]Y` around

the core Y0 = X in linear time. Since the protrusions have treedepth at
most d they have diameter at most 2d. We therefore apply Algorithm 2
with parameter α = 2 f (2d + 1) and obtain, by Lemma 66 a protrusion
decomposition Y′0 ]Y′1 ] · · · ]Y′`′ with adhesion at most1 α′ := α + 2d
and a witness structure W1, . . . Wp. By a applying Corollary 17 to the
subgraph induced by the witness structure together with X, we obtain
that the number of witness sets is bounded by p 6 2 f (2d + 1) · |X|

It follows (cf. again Lemma 66) that the size of the new core Y′0 is

|Y′0| 6 2p(d + 1) + |Y0| = 2 f (2d + 1) · |X|+ |X| = O(|X|).

Let us fix for every protrusion Y′i a 6 α′-labelling of its boundary bi,
which enables us to refer to the 6 α′-boundaried graphs ◦Y′i := G[Y′i ]bi

in the following and avoid clumsy notation.
Applying the protrusion reduction machinery, we replace every pro-

trusion Y′i , 1 6 i 6 `, by a representative of constant size. To this end,
we apply Lemma 65 choosing the following parameters:

• The problem is Π;

• the width-measure is treedepth;

• the graph relation is the induced subgraph relation;

• the parameters are α = α′ = 2 f (2d + 1) + 2d and β = d.

Since Π has f.i.i. on graphs of bounded treedepth, we assume that the
finite set of canonical, monotone, and induced-subgraph-preserving
representatives R for Π on Gtd6α+β is part of the algorithm.

Applying Lemma 65 with the above parameters to (G, ξ) and a pro-
trusion Y′i with boundary bi provides us in time O(|Y′i |) with the
representative ◦Y′′i := R(◦Y′i ). Given all such representatives ◦Y′′i for
every 1 6 i 6 `, we compute a sequence of instances (Gi, ξi) as fol-
lows: let the first instance be (G0, ξ0) := (G, ξ). Then (Gi, ξi) is ob-
tained from (Gi−1, ξi−1) by replacing a protrusion and adjusting the
parameter accordingly:

Gi := Gi−1[Y′i 7→ ◦Y′′i ]bi

ξi := ξi−1 − ∆ΠeG(
◦Y′′i , ◦Y′i ).

Since Lemma 65 computes representatives that are canonical, we know
that G[Y′0] is not affected by these operations and therefore the se-
quence can be constructed as described above. Because the represent-
atives are monotone, we have that ∆ΠeG(

◦Y′′i , ◦Y′i ) > 0 and therefore

1 the missing offset of two traces back to the bound tw 6 td−1
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it holds that ξi 6 ξi−1. Since the representatives are simply induced
subgraphs, we have that Gi ⊆i Gi−1.

Most importantly, we have that

(Gi, ξi) ∈ Π ⇐⇒ (Gi−1, ξi−1) ∈ Π.

We set (G′, ξ ′) = (G`′ , ξ`′); the first two claims then follow via induc-
tion over the above sequence. It is left to show the size bound. Note
that the total size of the graph is

|G′| 6 |Y′0|+
`′

∑
i=0
|Y′′i | 6 O(|X|) + `′ ·max

◦R∈R
|R|.

Since R is finite, the maximum in the above bound is a constant—it
therefore remains to bound the number of (non-empty) protrusions `.

We now invoke Corollary 18: applying it to Y′0 it states that

|{∂C}C∈K(G′\Y′0)| 6 (4 f (2d+1)+2 f (2d+1)) · |Y′0| = O(|X|)

using again the fact that the diameter of the reduced protrusions is at
most 2d.

Since every protrusion in Y′0 ]Y′1 ] · · · ]Y′`′ has—by definition—its
unique boundary in Y′0 and the replacement does not change the re-
spective boundaries, we can bound the number of protrusions by the
number of possible boundaries. Specifically:

`′ = |{∂Y′i }16i6`′ | 6 |{∂C}C∈K(G′\Y′0)| = O(|X|).

We conclude that |G′| = O(|X|) = O(td∆
d (G)) as claimed.

The proof of Theorem 32, restated below, works exactly as the one
above; we only have to replace Corollary 17 and 18 by suitable altern-
atives for the nowhere dense case.

Theorem 32. Let Π be a graph problem that has f.i.i. on graphs of bounded
treedepth. Let G be a nowhere dense graph class and let t ∈ N be a constant.
Then there is an algorithm that takes as input (G, ξ) ∈ G ×N and, in time
O(|G|1+o(1)), outputs (G′, ξ ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ ′) ∈ Π;

2. G′ is an induced subgraph of G; and

3. |G′| = O(td∆
t (G)1+o(1)).

Let us quickly prove the two necessary corollaries. Again, we essen-
tially apply Lemma 36 to a suitable shallow minor in order to obtain a
bound in the witness-structure outputted by Algorithm 2 and a bound
on the number of protrusions.

Corollary 19. Suppose that for G ∈ G, where G is nowhere dense, and
X ⊆ V(G), the connected components {C1, . . . , Cp} = K(G \ X) of G \ X
satisfy the following two conditions:
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1. diam(G[V(Ci)]) 6 r and

2. |N(Ci) ∩ X| > ∇̃0
(
(G Õ(r + 1))6|X|

)
for 1 6 i 6 p.

Then p = O(|X|1+o(1)).

Proof. We construct an auxiliary bipartite graph G′ with partite sets
X and Y = {C1, . . . , Cp}. There is an edge between Ci and x ∈ X
in G′ iff x ∈ N(Ci) ∩ X. Note that G′ is a depth-r shallow minor of
G with branch sets Ci. As shown in the proof of Corollary 17, for
every H 41

t G′ it holds that H 4r+1
t G.

Consequently, we can apply Lemma 36 to G via G′ and conclude
that for τ = ∇̃0

(
(G Õ(r + 1))6|X|

)
> ∇̃0

(
(G′ Õ 1/2)6|X|

)
, it holds that

p 6 2τ · |X| = 2|X|o(1) · |X| = 2|X|1+o(1),

where we used that ∇̃0
(
(G Õ(r + 1))6|X|

)
= O(|X|o(1)) in nowhere

dense classes.

Corollary 20. Suppose that for G ∈ G, where G is nowhere dense, and
X ⊆ V(G), the connected components {C1, . . . , Cp} = K(G \ X) of G \ X
are partitioned into equivalence classes C1, . . . , C` where

C, C′ ∈ C ⇐⇒ N(C) ∩ X = N(C′) ∩ X.

Let further r > max16j6p diam(Cj) be a bound on the diameter of the com-
ponents of G \ X. Then the number of classes ` is bounded by O(|X|1+o(1)).

Proof. As in the proof of Corollary 17, we construct a bipartite graph
G′ with partite sets X and Y = {C1, . . . , Cr}. By the previous observa-
tion in the proof of Corollary 17, we have that every graph H 41

t G′ sat-
isfies H 4r+1

t G. Choosing again τ := ∇̃0
(
(G Õ(r + 1))6|X|

)
and ω =

ω(
(
G Õ(r + 1))6|X|

)
> ω

(
(G′ Õ 1/2)6|X|

)
, we apply the second state-

ment of Lemma 36 and obtain the bound

` 6 (ω(eτ)ω + 2τ) · |X| = ω(eω)ω|X|1+o(1) + 2|X|1+o(1),

and this last expression is O(|X|1+o(1)), since ω is a constant.

Proof of Theorem 32. We proceed exactly as in the proof of Theorem 28
and construct a reduced protrusion-decomposition Y′0 ]Y′1 ] · · · ]Y′`′ .
Using Corollary 17, we obtain that the number of witness sets re-
turned by Algorithm 2 is at most O(|X|1+o(1)) and therefore that |Y′0| =
O(|X|1+o(1)).

Applying Corollary 20 to Y′0 now yields

|{∂C}C∈K(G′\Y′0)| 6 O(|Y′0|1+o(1)) = O(|X|1+o(1)),

using again the fact that the diameter of the reduced protrusions is at
most 2d.

We again bound the number of protrusions by the number of pos-
sible boundaries:

`′ = |{∂Y′i }16i6`′ | 6 |{∂C}C∈K(G′\Y′0)| = O(|X|1+o(1)).
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We conclude that |G′| = O(|X|1+o(1)) = O(td∆
d (G)1+o(1)) as claimed.

12.4 further work and open questions

As argued in Section 12.2, it is unlikely that we can extend the meta-
kernelisation framework to bounded expansion classes using a weaker
parameter. We will see in the next chapter that there is hope to obtain
linear kernels for some problems using their natural parametrisation.
Aside from this line of work, several interesting developments can
be noted since we introduced the ‘structural’ perspective into meta-
kernelisation. At this point we should note that it was Jansen’s pro-
gramme on kernelisation by structural parameters (see, e.g., his dis-
sertation [144]) who introduced the idea of replacing the natural para-
meter by a more promising, structure-based one.

First, we should ask where the limitation of the protrusion-based
approach lie. The number of problems it can be applied to is impress-
ive, but there exist natural problem for which even the parametrisa-
tion to a treedepth-modulator does not seem to help. As shown in
Section 11.1.1, Independent Dominating Set does not have finite in-
teger index even in the class of stars, i.e. graphs of treedepth two. Some
form of monotonicity therefore seems to be an indispensable property
in order to apply the meta-kernelisation framework, even if we restrict
ourselves to very simple forms of protrusions.

Garnero, Paul, Sau, and Thilikos have recently demonstrated that
for a large subset of problems, the protrusion replacement used for
Theorems 27, 28 and 32 can be made uniform by using a dynamic
programming [121].

Ganian, Slivovsky, and Szeider independently extended the meta-
kernelisation framework by using a structural parametrisation that is
orthogonal to modulators [119]: specifically, they parametrise by the
number of modules into which the graph can be partitioned such that
each module induces a graph of bounded rankwidth. Using this para-
meter, all problems expressible in MSO1 admit polynomial kernels.

Recently, Eiben, Ganian, and Szeider refined the notion of structural
parameters combining the ideas of a modulator to some bounded
with-measure with the ‘internal’ complexity of such a set (the exact
definition is rather technical) [83]. As a result, they can apply The-
orem 28 and 32 with a potentially smaller parameter.

Modulators to bounded treewidth have been used to obtain uni-
form polynomial kernels for H-Minor Deletion where H contains
at least one planar graph [122] (uniform meaning that the polynomial
does not depend on H). In the same paper, the authors also demon-
strate a O(k6) kernel for Treedepth-t-Deletion. Modulators can also
be used to define backdoors in SAT-formulas. In particular, one can in
fpt-time decide whether a formula contains such a backdoor to small
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treewidth [98]. Modulators to bounded treewidth have also been em-
ployed to preprocess ILP instances [146].

Open question 7. In the spirit of the work by Garnero et al., can the
non-uniformity of the protrusion replacement be circumvented for all
problems that admit dynamic programming routines on graphs with
bounded width-measures?

Open question 8. Can the non-uniformity of the protrusion replace-
ment be avoided using Turing-kernelisation? Jansen showed that in
the case of k-Path, this is possible for planar and other classes [145].

Open question 9. Can the meta-kernelisation framework be applied
to dense classes? In particular, can we use modulators to a dense width-
measure like cliquewidth or rankwidth and obtain polynomial kernels
in a suitable graph class?

Open question 10. One implication of the above result is that a large
set of problems is fpt in structurally sparse classes if parametrised by
a treedepth-modulator. Is there a direct way—maybe using dynamic
programming on the protrusions—of designing such algorithms?
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A L I N E A R K E R N E L F O R D O M I N AT I N G S E T

Reading the original meta-kernelisation paper, one cannot help but
feel a certain polarity between the problems affected by the result.
On the one side, we have problems like Feedback Vertex Set and
H-Minor Deletion (with at least one planar graph in H) whose solu-
tion structures the remainder of the graph by providing a bound on
the treewidth. On the other side, problems like Dominating Set and
Independent Set do not structure the graph outside a solution in any
direct way, but we know that all vertices have to lie within a constant
radius around the solution. This mix of problems is still approach-
able in apex-minor free graphs [101], but for classes excluding an ar-
bitrary minor only the first flavour of problems can be tamed. This
pattern continued the previous chapters, where we have seen how the
meta-kernelisation framework can be lifted for the second flavour of
problems only by reintroducing additional structure through a suit-
able parametrisation. A novel approach

However, in a different line of work Fomin, Lokshtanov, Saurabh,
and Thilikos showed that Dominating Set and Connected Domin-
ating Set admit linear kernels in classes excluding a minor [102] and
classes excluding a topological minor [103]. Both times the respective
decomposition theorems [216, 130] were the key. Motivated by these
results, we show that indeed Dominating Set still admits a linear
kernel in bounded expansion classes and an almost-linear kernel in
nowhere dense classes under its natural parametrisation. Moreover,
the approach presented here is radically different from previous ap-
proaches: without a suitable decomposition theorem, we had to resort
to more fundamental arguments. The twin and the charging lemma
introduced in Section 8.1 make another appearance here, as well as
our reformulation of Dvořák’s algorithm from Section 10.3. Domination core

The kernelisation routine is split into two phases: in the first phase
we identify a suitably small subset of vertices called the domination
core. This set has the property of acting as a ‘proxy’: if every vertex
in the core is dominated, then so is the rest of the graph. Once we
have computed a small core, the kernelisation proceeds by reducing
the remainder of the graph until its size is comparable to that of the
core.

13.1 finding a small domination core

The central concept that facilitates the kernel will be that of a domin-
ation core: a subset of vertices in a graph that can ‘witness’ that an-
other set is dominating the whole graph. Similar ideas are abundant in

149
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combinatorial arguments; the famous sunflower reduction rule being
probably the most prominent example. However, the idea of a core
specifically for Dominating Set needs to be credited to Dawar and
Kreutzer who used it to obtain an fpt-algorithm for r-Dominating
Set in nowhere dense classes [60].

Definition 27 (Domination core). Let G be a graph and Z ⊆ V(G) a
vertex set. We say that Z is a domination core in G if every minimum-
size Z-dominator of G is also a dominating set in G.

Clearly, the vertex set V(G) is a domination core; the goal will be to
find a sufficiently small one and later build a kernelisation routine
around it. Note that if Z is a domination core, then ds(G) = ds(G, Z).
As the first important step we will prove the following theorem.

Theorem 33. Given an instance (G, k) of Dominating Set, we can in
time ‖G‖ · ∇̃2(G)ω2(G)O(1)

either

1. prove that ds(G) > k or

2. find a domination core Z ⊆ V(G) with |Z| 6 cZ · k where cZ (defined
below) depends only on ∇̃2(G) and ω1/2(G).

Let us fix an instance (G, k) for the remainder of this section. We prove
Theorem 33 by starting with the trivial domination core Z = V(G) and
gradually reduce |Z|.

For convenience and readability, we define the following quantities
related to the density of G and will use them lavishly for the remainder
of this section:

τ := ∇̃1/2(G) ω := ω̃1/2(G) ξ := min{2∇̃0(G), ω}
ρ := 2∇0(G)(2ω(eτ)ω + 1),

where c1 is the approximation ratio of Lemma 50 for r = 1. We also
will need the rather horrible quantities

cZ := (ω2 + 1)(2ω(eτ)ω)

·
(
1 + c1 · 212ω2(G)+55ρ18 ·ω2(G)2 · ∇̃2(G)

18ω2(G)+11)ξ · c1

cX :=
(
1 + c1 · 212ω2(G)+55ρ18 ·ω2(G)2 · ∇̃2(G)

18ω2(G)+11)ξ−1 · c1

cSX := 212ω2(G)+55ρ18 ·ω2(G)2 · ∇̃2(G)18ω2(G)+11.

The following lemma is the crucial tool in reducing the size of Z.

Lemma 72. Given a domination core Z of size > cZ · k, we are able to either
conclude that ds(G) > k, or find a non-empty subset Z? ⊆ Z such that
Z \ Z? is still a domination core in time O(‖G‖ · cSX · cX · k).

Theorem 33 follows directly from Lemma 72, we dedicate the rest of
this section to its proof.

The first step of the core reduction is an algorithm that computes
sets (X, S) where X is a Z-dominator of size O(k) and S ⊆ Z is a
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sufficiently large 3-scattered set in G \ X. With this pair of sets it will
be possible to find irrelevant vertices in Z.

To construct (X, S), we first apply Lemma 51 with r = 1 and Z, k as
given. We either obtain a two-scattered set of size k + 1, in which case
we conclude that ds(G) > k, or a dominating set X0 of G with |X0| 6
c1k. In the latter case we construct a sequence (Xi)i∈N beginning with
the dominating set X0 as follows. Define the functions

g(x) := 212ω2(G)+55ρ18 ·ω2(G)2 · x18ω2(G)+11

fi(x) :=
(
1 + c1 · g(x)

)i · c1 for i > 0.

Throughout the construction, we will maintain the invariant |Xi| 6
fi(∇̃2(G)) · k. Note that this invariant is indeed satisfied for i = 0. We
iteratively proceed as follows:

1. Apply the algorithm of Lemma 51 to the graph G \ Xi, using the
set Z \ Xi, the integer g(∇̃2(G)) · |Xi| and r = 1 as parameters.

2. If the algorithm has found a 3-scattered set S ⊆ Z \ Xi of cardin-
ality larger than g(∇̃2(G)) · |Xi|, we let X = Xi and continue with
the second phase using the tuple (X, S).

3. Otherwise, the algorithm found a (Z \Xi)-dominator Di+1 in G \
Xi of size at most

|Di+1| 6 c1g(∇̃2(G)) · |Xi|.

We set Xi+1 = Xi ∪ Di+1 and repeat with the next i. Note that

|Xi+1| 6
(
1 + c1g(∇̃2(G))

)
· |Xi|

6
(
1 + c1g(∇̃2(G))

)
· fi(∇̃2(G)) · k

= fi+1(∇̃2(G)) · k,

so the invariant on the size of Xi is maintained.

In a nutshell, the above algorithm iteratively extracts Z-dominators
D1, D2, . . . and constructs sets X1, X2, . . . until the second case occurs.
Before we show that the algorithm necessarily terminates after few
steps, let us make use of the helping functions fi, to rewrite cZ, cX into
the more digestible form

cZ := (ω2 + 1)(2ω(eτ)ω) · fξ(∇̃2(G))

cX := fξ−1(∇̃2(G))

cSX := g(∇̃2(G)).

This should give some intuition how these values were chosen in the
first place. Let us return our attention to the above algorithm.

Lemma 73. The above algorithm terminates with a tuple (X, S) after less
than ξ = min{2∇̃0(G), ω} iterations, provided that |Z| > cZ · k.
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Proof. Assume towards a contradiction that the algorithm iterates ξ

or more steps, in particular it constructs the set Xξ . By the invariant,
we have that |Xξ | 6 fξ(∇̃2(G)) · k. Consider any vertex in Z \ Xξ : it is
dominated by every set X0, D1, D2, . . . Dξ and hence has at least one
neighbour in each of these sets.

Recall that Lemma 10 states that a d-degenerate bipartite graph
(A, B, E) cannot contain more than d|A| vertices of degree at least d
in B. Applying this fact to Xξ and Z means that either |Z| 6 2∇0(G) ·
|Xξ | or ξ < 2∇̃0(G). Since the former does not hold due to our choice
of cZ, the latter has to and we have shown the first part of the claim.

Applying Lemma 36 to Xξ and Z \ Xξ we obtain that Z has at most

(2ω(eτ)ω) · |Xξ |
6 (2ω(eτ)ω) · fξ(∇̃2(G)) · k

different twin-classes with respect to Xξ . This term should look famil-
iar, indeed if we divide cZ · k 6 |Z| by it to estimate the size of the
twin-classes we see that

(ω2 + 1)(2ω(eτ)ω) · fξ(∇̃2(G)) · k
(2ω(eτ)ω) · fξ(∇̃2(G)) · k

= ω2 + 1,

from which we deduce that there exists at least one twin-class of size
at least ω2 + 1. Then necessarily ξ < ω: otherwise this twin-class
alongside its neighbourhood in X induces a supergraph of Kω+1,(ω+1)2 ;
which in turn contains Kω+1 has a 1⁄2-shallow topological minor—a
contradiction.

It will be convenient in the following to bound the number of neigh-
bours a vertex in S has inside X. The following lemma shows that we
can enforce this property that by sacrificing a small fraction of S.

Lemma 74. There exists a subset S′ ⊆ S such that

|S′| >
(

g(∇̃2(G))/2τ
)
· |X|

and every vertex x ∈ S′ satisfies |N(x) ∩ X| 6 2τ.

Proof. Note that 2τ > 2∇0(G). By Lemma 10 the bipartite subgraph
(X, S, E(X, S)) contains at most

2∇0(G) · |X| 6 2τ · |X|

vertices in S of degree larger than 2τ. Since by construction |S| >
g(∇̃2(G)) removing the high-degree vertices from S results in the
claimed set S′.

To avoid even further variables we will from now on simply set S := S′.
Since the above is hard to keep in mind, let us summarise the situation:
we have our instance (G, k) alongside vertex sets X,S, and Z, where
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• the domination core Z has size at least cZk,

• X is a Z-dominator of size at most cXk,

• S ⊆ Z \ X is 3-scattered in G \ X with |S| > cSX|X|, and

• |N(v) ∩ X| 6 2τ for every v ∈ S.

The goal is to show that we can remove vertices from Z in a way that
leaves us with new domination core. The picture below summarises
the situation at hand and contains some further sets defined below.

To proceed, let us define the following sets and auxiliary structures:
let R := N(S) \ X be those vertices in G \ X that are not adjacent
to S. Let B be the bipartite graph obtained from G by the following
operation: we remove R from the graph and contract for every x ∈ S
the set N(s) \X onto x (naming the resulting vertex x for convenience)
and then remove all edges between vertices in S and X. Since we do
not keep edges between the vertices of S, the resulting minor is a half-
shallow minor of G. We define N′(s) := NG′(s) in the following.

We will now group the vertices of S and R into equivalence classes
according to how they can be dominated by the set X: let ≡X be
defined via

u ≡X v for u, v ∈ S iff N(u) ∩ X = N(v) ∩ X and N′(u) = N′(v),

x ≡X y for x, y ∈ R iff N(x) ∩ X = N(y) ∩ X,

u 6≡X y otherwise.

Note that S and R are, by construction, disjoint and therefore the above
constraints can be met.

Next we construct an auxiliary graph H called the class graph to cap-
ture the interaction between the equivalence classes. Let KS := S/ ≡X

and KR := R/ ≡X be the equivalence classes of ≡X. Let Γ : KS ∪ KR →
2V(G) be a function defined as

Γ(κ) :=

{⋃
u∈κ N′(u) ∪ κ for κ ∈ KS

κ for κ ∈ KR.
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We define the class graph H to contain the edge κ1κ2 iff the vertex
sets Γ(κ1) and Γ(κ2) are connected by an edge in G, i.e.

κ1κ2 ∈ H ⇐⇒ EG(Γ(κ1), Γ(κ2)) 6= ∅.

The following pictorial representation should give some intuition about
how the edges of the class graph reflect interactions between the equi-
valence classes.

Lemma 75 (Class graph size). The number of classes is bounded by

• |KS| 6 8 · 212ω2(G) ·ω2(G)2 · ∇̃3/2(G)18ω2(G)+1 · |X| and

• |KR| 6 2ω(eτ)ω · |X|,
respectively, where again τ = ∇̃1/2(G) and ω = ω̃1/2(G).

Proof. We invoke in both cases the twin class lemma (Lemma 36). For
the classes KR the bound follows directly: every class corresponds to
exactly one unique neighbourhood set in X from vertices in R. The
number of twin classes in R is hence at most

|KR| 6 2ω(eτ)ω · |X|.

For the classes KS we use the same argument, however, we need to
work in the graph G′. Since G′ is a 1⁄2-shallow minor of G, the number
of twin-classes of S in G′ is by the twin class lemma at most

2ω̃1/2(G′)(e∇̃1/2(G′))ω̃1/2(G′) · |X|
6 2ω2(G)(952 · ∇̃3/2(G)9)ω2(G) · |X|

where we used that (since G′ ∈ GO 1/2)

ω̃1/2(GO 1/2) = ω((GO 1/2) Õ 1/2) 6 ω(GO 2) = ω2(G)

and, using Theorem 13, that

∇̃1/2(GO 1/2) 6 350 · ∇̃1/2(G Õ 1/2)9 = 350 · ∇̃3/2(G)9.

Because every vertex in S has at most 2τ neighbours in X, every set
of vertices in S that share the same direct neighbourhood in X will be
refined into at most 4ω(eτ)ωτ equivalence classes under ≡X. Hence,
we obtain the total bound

|KS| 6 8ω(eτ)ωτ ·ω2(G)(952 · ∇̃3/2(G)9)ω2(G) · |X|
6 8 · 212ω2(G) ·ω2(G)2∇̃3/2(G)18ω2(G)+1 · |X|

and thus have shown the lemma.
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Not only is the size of the graph class only dependent on X and para-
meters related to two-shallow minors of G; it turns out that its grad is
closely related to that of G as well.

Lemma 76 (Class graph grad). There exists a function fH such that for
every half-integer r it holds that ∇̃r(H) 6 fH(∇̃(10r+4)/2(G)). In particular,
we have that

∇̃0(H) 6 (4(2ρ + 1)2∇̃2(G) + 2ρ)9

where ρ is defined as before.

Proof. We show that H is a 2-shallow minor of G · K2ρ+1. Let R̂ ⊆ R
be a minimal set that contains exactly one representative per class KR

and Ŝ ⊆ S an analogous set for S.
Define the bipartite graphs GR̂ := (X ∪ R̂, EG(X, R̂)) and GŜ := (X ∪

Ŝ, EG(X, Ŝ)). Applying Lemma 37, we obtain mappings φR̂ : R̂ → X
and φŜ : Ŝ→ X such that

• xφ(x) ∈ E(GR̂) for x ∈ R

• uφ(u) ∈ E(GŜ) for u ∈ S

• |φ−1
R̂
(v)|, |φ−1

Ŝ
(v)| 6 ρ for every v ∈ X.

Note that for a class κ ∈ KR with representative x = κ ∩ K̂ it holds that
every vertex y ∈ κ is connected to φR(x) in G (the same holds true for
a class in KS with respect to φS).

We combine these two mappings and obtain φ : R̂ ∪ Ŝ → X in the
obvious way. Now we can construct a supergraph H′ of H as fol-
lows: starting with G, we replace every vertex x ∈ X by 2ρ + 1 cop-
ies x1, . . . , x2ρ+1. Note that this graph is a subgraph of G· K2ρ+1. Now
for every class κ ∈ KR ∪ KR we choose a distinct copy xi of the ver-
tex x = φ(κ ∩ (R̂ ∪ Ŝ))—since the mapping φ charges x at most 2ρ

times, each class can choose its own distinct copy—and we contract
the vertex set Γ(κ)∪ {xi} into a single vertex labelled κ. A careful look
at this construction reveals that the graph H′ is a 2-shallow minor
of G · K2ρ+1, using the copies xi, x ∈ X as centres. Therefore we have
for every r ∈N that

∇̃r(H) 6 ∇̃r((G · K2ρ+1)O 2)

6 23312∇̃r((G · K2ρ+1) Õ 2)9 by Theorem 13

6 23312∇̃(10r+4)/2(G · K2ρ+1)
9 by Lemma 16

6 23312(σ∇̃(10r+4)/2(G) + 2ρ
)9 by Proposition 7,

where σ := max{20rρ+8ρ+1, (2ρ+1)2}. By the same argument we
obtain the bound

∇̃0(H) 6 ∇2(G · K2ρ+1)

6 4(4∇̃2(G · K2ρ+1))
9 by Proposition 6

6 4(4(2ρ + 1)2∇̃2(G) + 2ρ)9 by Proposition 7,
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as claimed1.

Having established that H is small and sparse we can now show that
there exists a class in KS whose members do not all need to be in Z.
First, let us show the existence of a class with suitable properties.

Lemma 77 (Large class κ?). There exist a class κ? ∈ KS of size at least

|κ?| > 2τ(degH(κ
?) + 1) + 1.

Proof. Let τ, ω be defined as before. We define the potential func-
tion φ : KS → R as

φ(κ) = |κ| − (2τ(degH(κ) + 1) + 1).

Consider the sum

∑
κ∈KS

φ(κ) = ∑
κ∈KS

|κ| − 2τ ∑
κ∈KS

degH(κ)− (2τ + 1) · |KS|

> |S| − 4τ‖H‖ − 3τ|KS|.

By Lemma 76, we have that

‖H‖ 6 ∇̃0(H) · |H| 6 (4(2ρ + 1)2∇̃2(G) + 2ρ)9|H|
6 (38ρ2∇̃2(G))9|H|,

where ρ is defined as in the proof of Lemma 76. Using the bounds
from Lemma 75 on KS, KR we see that |H| 6 2|KS|. Adding the fact
that |S| > cSX|X| we obtain for the right hand side

|S| − 4τ(38ρ2∇̃2(G))9|H| − 3τ|KS|
> |S| − 14τ(38ρ2∇̃2(G))9|KS|
>
(
cSX − 212ω2(G)+55ρ18 ·ω2(G)2 · ∇̃2(G)18ω2(G)+11) · |X| = 0.

We infer that ∑κ∈KS
φ(κ) > 0, accordingly there exists at least one

class κ? ∈ KS with

φ(κ?) > 0 =⇒ |κ?| > (2τ(degH(κ
?) + 1) + 1).

We finally arrive at a situation in which we can safely decrease the size
of Z by removing some vertices of κ? ⊆ S from it. The important intu-
ition is that the vertices of κ? are necessarily dominated from vertices
in X. Similar to the famous sunflower-reduction, we can prune κ? ∩ Z
without losing this property.

Lemma 78 (Shrinking κ?). Let κ̂? ⊂ κ? be an arbitrary subset with

|κ̂?| = 2∇̃1/2(G)(degH(κ
?) + 1) + 1.

Then the set Z′ := (Z \ κ?) ∪ κ̂? is a domination core of G.

1 Assuming ρ > 1, otherwise the term (2ρ + 1)2 needs to be replaced by 8ρ + 1.
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Proof. Assume D is a minimal Z′-dominator in G, we need to show
that it also is a Z-dominator. Recall that across all vertices v ∈ κ?,
we have that N′(v) and N(v) ∩ X are the same two subsets of X. We
denote these sets by N′(κ?) and N(κ?) ∩ X in the following.

First, assume that D ∩ N′(κ?) is non-empty. Then D dominates all
of κ? and is therefore a Z-dominator. We thus consider the case that
D ∩ N′(κ?) = ∅ and will show a contradiction with respect to the
minimality of D. To that end, let us construct a different set D′ from D
as follows:

1. Remove all vertices contained in Γ(κ?), then

2. for κS ∈ NH [κ
?] ∩ KS, add the vertices N(κS) ∩ X and

3. for κR ∈ NH [κ
?] ∩ KR, add an arbitrary vertex from N(κR) ∩ X (if

such a vertex exists).

Claim. |D′| < |D|.

Since D ∩ N′(κ?) is empty every vertex of κ̂? must be dominated by a
neighbour in G \ X. Since the vertices κ̂? are 3-scattered in G \ X, we
have that |D ∩ Γ(κ̂?)| > |κ̂?|. Hence the first step in the construction
of D′ removes at least |κ?| vertices. The second and third step now add
at most

2∇̃1/2(G)(degH(κ
?) + 1) < |κ̂?|

vertices, hence D′ contains less vertices than D.

Claim. D′ is a Z-dominator.

We show that every vertex x ∈ Z is dominated by distinguishing the
following cases. Note that since X is a Z-dominator, every vertex of Z
is either contained in X or has at least one neighbour in it.

Case 1: x ∈ Γ(κS) for κS ∈ KS. If κS 6∈ NH [κ
?] then x is dominated by

the same vertices that dominated it from D. Otherwise, the second step
in the construction of D′ in particular added the vertices N(κS) ∩ X
to D′. Since every vertex of Γ(κS) ∩ Z has at least one neighbour in X
and hence in N(κS) ∩ X, we conclude that x is dominated by D′.

Case 2: x ∈ Γ(κR) for κR ∈ KR. If κR 6∈ NH [κ
?] then x is dominated

by the same vertices that dominated it from D. Otherwise, the third
step in the construction of D′ added a vertex from N(κR) ∩ X. Since
per definition all vertices of κR have the exact same neighbourhood
in X, we conclude that x is dominated by D′.

Case 3: x ∈ X. The only vertices in X affected by the construction
of D′ are those in N(κ?)∩X. Since this set is added to D′ in the second
step, they are clearly all dominated by D′.

This concludes the proof of the claim and leaves us with a contradic-
tion: D′ is smaller than D and a Z-dominator, contradicting the minim-
ality of D. Therefore Z′ is still a domination core of G, as claimed.
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We can finally prove the main technical contribution of this section.

Proof of Lemma 72. As long as |Z| has size at least cZ · k, we are guaran-
teed by Lemma 73 that the extraction-algorithm from the first phase
results in a decomposition (X, S) with |S| > cSX|X| (glossing over
the minor step applied through Lemma 74). The time needed for this
phase is O(c1ξ · ‖G‖), where ξ = min{2∇0(G), ω} and c1 is the ap-
proximation ratio of the algorithm presented in Lemma 50.

Using the class graph H derived from (X, S) we are guaranteed the
existence of a large equivalence class κ? in S via Lemma 77 as long
as |S| > cSX|X|, from which as per Lemma 78 we can safely remove
vertices. If the resulting set S′ now is smaller or equal to cSX|X|, we
are done. Otherwise we want to identify another large class: to that
end, we simply adapt the class graph H by removing those edges that
are now lost due to the removal of vertices from κ?. Note that the
resulting class graph H′ is a subgraph of H, the upper bounds on |H′|
and ‖H′‖ therefore still apply. We conclude that we can iterate the
procedure until |S| 6 cSX|X|. The time taken here is at most

O(‖G‖ · |H|) = O(‖G‖ · cSX|X|) = O(‖G‖ · cSXcXk)

since we might need to shrink every single class until the resulting
set S is small enough.

After the above procedure is done, we are left with a set Ŝ such
that Ẑ := Ŝ ∪ (X ∩ Z) is a domination core of G. The size of this set is
bounded by

|Ẑ| 6 |X|+ |Ŝ| 6 (cSX + 1)|X|
6 (cSX + 1) · cXk.

as claimed. This concludes the proof.

Having shown the existence of a small domination core, we now pro-
ceed to construct the kernel by reducing the remaining vertices around
the core.

13.2 computing a kernel

We did all the heavy lifting in the previous section: given a graph G
and a parameter k, we can compute a domination core Z of G of size
at most cZ · k where cZ essentially depends on ∇̃2(G) and ω2(G). We
will use the quantities τ, ω, ρ defined in Section 13.1.

Lemma 79 (Reducing dominators). For a graph G and integer k with
domination core Z we can, in linear time, compute an induced subgraph G′

of G such that ds(G′) = ds(G) and further

|G′| 6 (2ω(eτ)ω + 1)|Z|.
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Proof. First, observe that any vertex that has distance two or more to Z
can be safely removed: any optimal Z-dominator will not make use of
such a vertex2. Therefore assume that N[Z] = V(G). Let Y = V(G) \Z.

We construct the auxiliary bipartite graph H = (Z, Y, EG(Z, Y)) and
partition Y into twin-classes γ1, . . . , γp. Using Proposition 1, this is
possible in time O(|H|+ ‖H‖). Note that by Lemma 36, we have that

p 6 (2ω(eτ)ω) · |Z|,

where we used the fact that τ > ∇̃1/2(H) and ω > ω̃1/2(H).
We construct G′ from G by retaining one representative vertex vi

per class γi, i.e. we let G′ = G[Z ∪ {v1, . . . , vp}]. By the above bound
on p we immediately see that |G′| is indeed bounded from above as
claimed. It is left to show that ds(G′) = ds(G).

Claim. It is true that ds(G′) 6 ds(G).

Assume D ⊆ V(G) is a minimal dominating set in G, i.e. |D| = ds(G).
Then D is also a Z-dominator in G and we can easily construct a set D′

as follows: we start out with D′ = D ∩ Z and then add for every twin-
class γi with |γi ∩ D| > 1 its representative vi. Clearly |D′| 6 |D|.
Further, note that D′ is a Z-dominator in G: the vertices of Z that
were formerly dominated by some class γi with non-empty intersec-
tion with D are now dominated by the vertex vi ∈ D′. As such, D′ is
actually a dominating set in G. Now by construction D′ ⊆ V(G′), and
therefore D′ is also a dominating set in the induced subgraph G′. We
conclude that

ds(G′) 6 |D′| 6 |D| = ds(G).

Claim. It is true that ds(G) 6 ds(G′).

Assume D′ ⊆ V(G′) is a minimal dominating set in G′. Therefore, it
dominates Z in G′ and accordingly—by construction—in G. We con-
clude that

ds(G) = ds(G, Z) 6 |D′| = ds(G′).

This concludes the proof of the lemma.

We can finally state and prove the main theorems of this chapter.

Theorem 34. Let G be a hereditary graph class of bounded expansion. Then
Dominating Set parametrised by the solution size admits a linear kernel
in G and the kernel can be computed in time O(‖G‖k).

Proof. We assume that G is infinite since otherwise the result is trivial.
Given an instance (G, k) of Dominating Set with G ∈ G, we invoke
Theorem 33. As a result, we either conclude that ds(G) > k or we ob-
tain a domination core Z ⊆ V(G) of size at most cZ · k. In the previous

2 In our construction of Z such vertices will not exist, but for the sake of generality we
address this possibility here.
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case we output a trivial NO-instance (since G is hereditary and infinite
we have K2 ∈ G and hence can output (K2, 1)). In the latter case, we
invoke Lemma 79 and obtain a subgraph G′ ∈ G with ds(G′) = ds(G)

of size at most

|G′| 6 (2ω(eτ)ω) · |Z|
6 (2ω(eτ)ω) · cZk.

Since G has bounded expansion, we can treat τ, ω, ρ and by exten-
sion cZ as constants and therefore conclude that

O(|G′|+ ‖G′‖) = O(|G′|) = O(k).

Hence, (G′, k) is a linear kernel of (G, k).

Theorem 35. Let G be a nowhere-dense and hereditary graph class. Then
Dominating Set parametrised by the solution size admits a kernel of size
O(k1+ε) for every ε > 0 on G. Moreover, such a kernel can be computed in
time O(‖G‖ log log |G| · k).

Proof. We proceed exactly as in the proof of Theorem 34, up to the
point where we construct the subgraph G′. Again, the size of G′ is
bounded by

|G′| 6 (2ω(eτ)ω) · cZ · k,

however, we cannot simply regard the quantity τ and thus cZ (which
also depends on ∇̃2(G)) as a constant here. By (cf. Theorem 20), we
can, however, choose any ε > 0 and assume that

τ = ∇̃1/2(G) 6 ∇̃2(G) 6 |G|ε

provided that |G| is larger than some threshold Nε depending on G
and ε. The quantities ω and ω2(G), however, are indeed constants
only dependent on G. Recall that cZ was defined as

cZ = (ω2 + 1)(2ω(eτ)ω)

·
(
1 + c1 · 212ω2(G)+55ρ18 ·ω2(G)2 · ∇̃2(G)

18ω2(G)+11)ξ · c1.

where ξ 6 ω. Simplifying the bounds, we see that

|G′| = ∇̃2(G)ω2(G)O(1) · k 6 |G|ε′ · k

where ε′ = ω2(G)O(1)ε can be chosen as small as desired. The final
trick—which I have to credit Michał Pilipczuk for who developed it for
our paper [76]—is to apply the data reduction exhaustively: assume
we construct a sequence of graphs G = G0, G1, . . . where Gi is obtained
from Gi−1 by applying the data reduction. At some point we reach a
stage where Gi = Gi−1; now observe that

|Gi| = O(|Gi−1|ε
′
k) = O(|Gi|ε

′
k) ⇐⇒ |Gi|1−ε′ = O(k).
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Recalling the series expansion for 1/(1− x), we see that

k
1

1−ε′ 6 k1+2ε′

for 0 < ε′ < 1. Thus for any ε′′ we choose ε = ε′′/2(19ω2 + 36ω + 3)
and obtain a kernel of size O(k1+ε′′). The last question is how often we
have to apply the data reduction. Observe that the sizes of the Gi obey

|Gi| = O(|G|ε′
i
· k1+ε′+ε′2+...+ε′ i) = O(|G|ε′

i
· k1+2ε′).

Thus after (log log |G|/−log ε′) iterations, the exponent ε′i becomes

ε′
1

− log ε′ log log |G|
=
(1

e

)log log |G|
=

1
log |G|

which in turns means that the therm |G|ε′
i

turns into a constant. We
conclude that the total time needed to compute a kernel is at most
O(|G| log log |G| · k).

We conclude that Dominating Set can be efficiently preprocessed
in structurally sparse graphs. Recently, Kreutzer, Michał Pilipczuk,
and Siebertz have extended this result and proved a linear kernel
for r-Dominating Set in bounded expansion classes3. I further sus-
pect that all ‘local’ problems should admit polynomial kernels. And
this locality might even be necessary:

Theorem 36 (Drange et al. [76]). There exists a hereditary class G of
bounded expansion such that Connected Dominating Set does not ad-
mit a polynomial kernel when restricted to G, unless NP ⊆ coNP/poly.

However, locality as captured by first-order properties is still to strong.
Note that k-Path is (non-uniformly) first-order expressible, but unless
the polynomial hierarchy collapses to the third level, it does not admit
a polynomial kernel even in sparse classes [22].

Open question 11. Do other domination problem like Double Dom-
ination, or Efficient Dominating Set admit polynomial kernels in
structurally sparse classes?

Open question 12. Is there a characterisation of problems that admit
(almost) linear kernels in structurally sparse classes?

3 Personal communication.





Part IV

C O M P L E X N E T W O R K S A N D
S T R U C T U R A L S PA R S E N E S S

Interstitiality is a theme that is simultaneously genuinely
interesting and potentially quite useful, and also a terrible

cliché, so if you’re going to use it, it helps to be at least
respectfully skeptical about the wilder claims of its

theoretical partisans, I think.
— China Miéville, The City & the City





14
C O M P L E X N E T W O R K S

What they don’t tell you is that it’s impossible to move, to live,
to operate at any level without leaving traces, bits,

seemingly meaningless fragments of personal information.
— William Gibson, Johnny Mnemonic

Graph theory is traced back to Leonard Euler’s musing about the
Königsberger bridges in 1736: in modern parlance, he proved that the
multigraph obtained from the topology of the then-German city does
not contain an Eulerian cycle1. His deep contribution was, obviously,
not the solution to the puzzle but instead his mathematical abstrac-
tion. And while graphs did stay a primarily theoretical topic until just
recently, they did crop up in practical application. Operations research

The most notable examples of ‘real-world’ graphs before the inform-
ation age can be found in two fields: sociology and operations research.
Operations research originated as a field in WWII in an effort to op-
timize British war logistics. Graphs primarily appear as road or tele-
communication networks, as exemplified by the second version of the
Soviet rail network in Figure 2. Despite (or because?) its high-stakes
and fundamentally applied nature, operations research gave rise to in-
dispensable tools like the min-cut max-flow theorem and the simplex
algorithm. Interestingly, already back then the restriction to certain
structurally sparse cases was seen as a viable way of improving al-
gorithmic tractability: Ford and Fulkerson in their seminal work on
flows in networks [105] note that the operations-research inspired ap-
plication of network flows is best seen as a problem in a special type of
planar network, for which they describe a method of finding augment-
ing paths in the residual network. The idea that structural sparseness
improves tractability is certainly all but new. Sociology

In a very different (and more peaceful) line of research, anthropo-
logists and sociologists began as early as the 1930s to systemically
map out the relation between individuals in what we today call social
networks. The following examples are taken from the comprehensive
and extremely interesting book by Freeman about the historical de-
velopment of social network analysis [111]. One of the earliest avail-
able example of a rigorously mapped out social network is the South-
ern Women Data Set collated by Davis, Gardner, Gardner et al. in the
thirties. Their study was conducted in the context of Warner’s “Deep
South” project at Harvard in 1933. The goal of the study was to assess

1 Besides its nationality and name, the city also changed its topology due to its de-
struction in WWII and subsequent rebuilding efforts. It now admits a Eulerican cycle
(pointed out by J. Kåhre on his homepage http://www.matheory.info/).
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Figure 2: A view of the Soviet railway network from 1930 by Tolstoı̆ [238]
and from 1955 by Harris and Ross [138]. Tolstoı̆ provided a table
to optimize a transportation problem from 10 sources to 68 destin-
ations along the network, whereas Harris and Ross (heuristically)
calculated a minimum cut separating the core of the Soviet Union
from allied states in eastern Europe. Figures taken from Schrijver’s
highly interesting historical note [221].
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how class, social status, and race2 shaped social interaction. They ob-
served the social activity of 18 women from Natchez, Mississippi, over
a period of nine months by recording their attendance to 14 social
events. The resulting bipartite graph as well as the original tabulated
data are displayed in Figure 3. While the scale of the data seems mea-
gre compared to what is available today, it has spurned very creative
approaches to extract information about social strata from it (see, e.g.,
Freeman’s survey on the southern women network [110]).

While the Southern Women Study was one of the earliest in which
sociologist embraced a structural approach, that is, they focused on the
interaction instead of the individual, the concept of social networks
is much older. Freeman attests the structural perspective to Auguste
Comte himself, the father of sociology, but further acknowledges that
it seems to be human nature to track relationships between individu-
als [111]. It seems that to a certain degree, we were always curious
about the ties between us. Complex networks

To summarise: the roots of network science (or what one might call
applied graph theory) clearly trace back to the early twentieth century.
What distinguishes this early work from what we now understand as
network science is its narrow scope: the crucial insight that spawned
the explosive growth of the field was that most graphs lifted from the
real world are inherently similar. Whether we look at research collabor-
ation in high-energy physics, user-supplied movie recommendations
on Amazon, or the neural connectome of Drosophila melanogaster; there
are indisputable structural similarities to be found. These observations
crucially relied on better ways to collect, store and organise large sets
of data which explains why these insights occurred only recently: net-
work science could not have existed without the digital revolution.

While there is certainly some hype attached to this still young field,
the urgent need summarised in the adage “drowning in data, yet
starving for information” must ultimately be addressed. Today net-
works are growing around us with every action undertaken. Our com-
munication, friendship, business relations, sexual encounters, physical
locations, and financial transactions are mapped out by various gov-
ernment agencies, banks, and private industries—all in the form of
inter-relating data. The mixture of disciplines found in network sci-
ence certainly has the potential to provide the essential tools to make
sense of the ever-growing heap of data our lives generate. Structural sparseness

In this part of the thesis, we want to demonstrate that the theory
of structurally sparse graphs has a great algorithmic potential for
real-world networks. This claim needs to be dissected in two parts:
first, we need to show that complex networks are structurally sparse
(and define what we mean by that!). Second, we need to demonstrate
that this fact can be exploited to design algorithms for relevant prob-
lems. Demonstrating the second part of the claim is rather difficult:
a concrete implementation that solves a domain-specific problem us-

2 The city of Natchez, Mississippi, in which the study was conducted was segregated.
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Figure 3: The Southern Women data set, both in its original form as pub-
lished by Davis et al. [56] and as a modern representation as a la-
belled bipartite graph. There exist two conflicting data sets, the one
reproduced here seems to be favoured as the probably correct one
(cf. Freeman’s survey [110]).
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ing techniques presented here would be the ultimate confirmation,
but such an endeavour constitutes its own research programme. Con-
sequently, we have to settle for less here: we will demonstrate that
several problems that have been deemed interesting in the network
science literature can be solved efficiently using tools presented earlier.
Since we will demonstrate this for problems of very different flavours
they should serve as a sufficient proxy to support our claim. Efficiency

Finally, we should address what should be considered an ‘efficient
algorithm’ here. Since we are yet at a stage too far removed from ac-
tual applications, the concept of efficiency is necessarily fuzzy: we can
only define its rough outlines by enumerating constraints and try to
design algorithms as defensive as possible. First and foremost, since
network science inherently deals with huge amounts of data, any al-
gorithm with running time worse than n logO(1) n will be useless for a
large portion of interesting data sets. If possible, we prefer algorithms
that are parallelisable, run out-of-core3 or process the data in a stream.
If an algorithm should be applicable in practice, it should not contain
elements that make these approaches impossible. Luckily, the toolkit
provided by structural sparseness are all linear-time algorithms and
seem to lend themselves to parallelisation. Consider, for example, al-
gorithms based on low-treedepth colourings: the colouring-approach
naturally divides the instance into much easier subinstances whose in-
dividual solutions can be combined easily (usually by some inclusion-
exclusion type calculation).

In the following we will first give an basic overview over network
statistics in Section 14.1 and algorithmic questions related to networks
in Section 14.2. Afterwards we will investigate several network models
in Chapter 15, where in Section 15.1 we first define the necessary tools
to talk about structural sparseness of random graph models.

14.1 basic network statistics

The study of networks ultimately relies on observable quantities or
statistics which give us insight into the network’s function. Historic-
ally these statistics are very much derived from the physical sciences,
like percolation theory and the theory of complex systems. As a con-
sequence, the value of these statistics usually has little impact on al-
gorithmic properties of networks. However, statistics are also a valu-
able tool to guide our intuition of networks; given that there is little
chance of visualising networks above a certain size4. In the following
we present some of the most commonly cited statistics. For a much
more complete overview we refer to the survey by Brinkmeier and
Schank [35] and the survey by Newman [195].

Density

3 Meaning the data to be processed is not stored in main memory.
4 Such attempts usually end up in a representations called a ‘hair ball’ of little scientific

value.
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density The probably first statistic one natural considers is the
density. As mentioned several times before, we find that networks are
empirically sparse. The question whether they are structurally sparse
is the main topic of Chapter 15.1 and we will see some good reasons
to believe that they are which will be further substantiated by experi-
ments conducted in Chapter 16.Densification?

Before we begin to make our case, we need to address a claim
regarding network density made by Leskovec, Kleinberg and Falout-
sos [171]. They propose—contrary to wide-spread opinion—that com-
plex networks densify and exhibit a shrinking diameter during their
growth. Specifically, they claim that empirically the number of edges
grows as Θ(n1+α) for some fixed α > 0 depending on the network.

Their claim is only problematic in so far as they insist that the densi-
fication happens infinitely long. This immediately clashes with almost
every imaginable domain: consider the case of a citation network (one
of the three types of networks they analyse). If we direct edges from
a citing paper towards the cited one, it is clear that our network ne-
cessarily has a bounded out-degree—the number of papers cited in a
publication might vary a lot, but there is a technical upper limit to it.
The same holds true for collaboration between scientists or movie act-
ors: as every collaboration holds a finite number of authors5 the total
number of edges in the graph is bounded linearly in the number of
collaborations. Indeed, the heuristic the authors used to establish the
claim has come under criticism [49]:

A common way to probe for power-law behaviour, there-
fore, is to measure the quantity of interest x, construct a
histogram representing its frequency distribution, and plot
that histogram on doubly logarithmic axes. If in so doing
one discovers a distribution that approximately falls on
a straight line, then one can, if one is feeling particularly
bold, assert that the distribution follows a power law, with
a scaling parameter α given by the absolute slope of the
straight line. Typically this slope is extracted by perform-
ing a least-squares linear regression on the logarithm of
the histogram. This procedure dates back to Pareto’s work
on the distribution of wealth at the close of the 19th cen-
tury [ . . . ]. Unfortunately, this method and other variations
on the same theme generate significant systematic errors
under relatively common conditions [ . . . ] and as a con-
sequence the results they give cannot not be trusted.

One further criticism can be voiced by recalling the theorem by Dvořák
and Jian (Theorem 10): if these networks indeed have Θ(n1+α) edges,
then we have to conclude that they contain arbitrarily large shallow
clique-minors. This seems to contradict any notion of efficiency in such
networks: using a large number of disjoint paths to pairwise connect

5 Disregarding papers published by CERN.
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the same set of endpoints, instead of optimising such connections by
introducing a few intermediary nodes.

A simple reconciliation of the densification claim is that networks
have a growth phase in which the number of edges grows superlinear
after which they enter a saturated phase which anneals the number of
edges back to a linear function. This hypothesis is in accordance with
the observation presented in [171]: the presented networks are—with
two exceptions—clearly young and presumably in their growth phase.
For the two exceptions, a movie collaboration networks spanning the
last century and a network derived from patents, one can only specu-
lated at this point. Since the authors fitted linear functions to log-log-
plots of the network densities over times, there is a clear possibility
that a late recede of the growth is hidden by the data transformation.

Without going into this matter further (which warrants and deserves
further research!), we postulate that the claimed densification during
network evolution seems to be an early-stage phenomenon and as
such does not contradict our claim of structural sparseness.

Degree distribution
degrees The second-most accessible statistic is the distribution of
degrees in a network. On a coarse level, we see certain similarity across
networks: first, the maximal possible degree is usually much lower
than n− 1. Second, if one creates a histogram for the degrees occurring
in the network, one sees that this degree distribution tends to be heavily
right-skewed. This has given rise to the claim that real-world networks
are ‘heavy-tailed’ and ‘scale-free’. More specific, a lot of distributions
where said to follow a power law: the fraction of vertices of degree d
in a network would be proportional to d−α, for α usually between two
and three.

These early claims (following the work by Barabási and Albert [18])
need some revision. The heuristics used to detect power laws by log-
log-plots have again generated a lot of false positives (see Chapter 16
for an analysis of the degree distribution of several networks). A more
careful analysis indicates that degree distributions are more diverse
than claimed and very few of them follow a pure power law [49]. And
with good reason: in most domains, network edges attach a real-world
cost to their endpoints, a cost that is deducted from finite resources.
Friendships or business relationships in social networks cost time and
effort; connections in autonomous system networks increase the rout-
ing table size; and synaptic connections between neurons increase en-
ergy consumption [137]. In such situations there needs to be a sharp
limit on the maximum possible degree which is not reflected in a pure
power law distribution. See also the work by Tanaka, Yi, and Doyle
that casts doubt on whether protein interaction data exhibits power
laws [234], and the work by Pržulj, Corneil, and Jurisica that estab-
lishes geometric random graphs as a better model for protein interaction
networks [209].
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In contrast, directed networks in which the cost of a connection is
primarily paid by one of the two endpoints—like followers in the twit-
ter networks or send emails in a company—have potentially vertices
with large indegrees and hence their degree distribution might very
well follow a power law.r-Neighbourhood

A ‘deeper’ variation of the degree of a vertex is the size of Nr(•),
i.e. the number of vertices that have distance at most r from it. The hop
plot P is defined via the r-neighbourhoods as

P(r) = ∑
v∈G
|Nr(v)|

and is applied to reason about information transmission in a network.

Small world property
diameter So far, we have seen only statistics related to rather local
properties of a network which aggregate information of single vertices
or edges. But complex networks also exhibit highly interesting beha-
viour when it comes to questions of connectivity. In particular, most
vertices in a complex network lie rather close together: this is what
we call the small world property. Hungarian writer Frigyes Karinthy
was maybe the first to formulate it on paper in his 1929 story ‘Chain-
Links’ [150]:

One of us suggested performing the following experiment
to prove that the population of the Earth is closer together
now than they have ever been before. We should select any
person from the 1.5 billion inhabitants of the Earth - any-
one, anywhere at all. He bet us that, using no more than
five individuals, one of whom is a personal acquaintance,
he could contact the selected individual using nothing ex-
cept the network of personal acquaintances.

The first rigorous study to quantify this phenomenon—subsequently
popularised as ‘six degrees of separation’—was famously undertaken
by Milgram 1967 [184] and later analysed by Travers and Milgram [239].
The experiment itself used chain-letters to estimate the average path-
length between random individuals and a fixed target in the US.

There are different variations of what constitutes a small world. We
stick to the most basic definition here and say that a network has the
small world property if the diameter of its connected components is
of the order log n or smaller.

Clustering
clustering Watts and Strogatz introduced the clustering coefficient
as a measure of how likely connections between nodes are given the
knowledge that these nodes share a common neighbour [247]. Let τ(v)
denote the number of neighbours of v that are not connected, i.e.

τ(v) =
(

deg(v)
2

)
,
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and let us extends this statistic to graphs via

τ(G) = ∑
v∈G

τ(v).

Similarly, let λ(v) denote the number of triangles incident to v and λ(G)

the total number of triangles in G.
The clustering coefficient C is now defined as

C(G) =
1
|G| ∑

v∈G

λ(v)
τ(v)

.

A similar measure is the transitivity defined by Newman, Strogatz, and
Watts [198] as

T(G) =
3λ(G)

τ(G)
.

There are several subtleties in the above definitions, for example, how
to treat vertices of degree less than two. For the context of this thesis
the high-level idea of clustering is sufficient and we do not have to go
into the differences between the different variations measuring it.

Notably, most real-world networks exhibit a much higher clustering
than random network models. In particular the local clustering coeffi-
cient of a vertex λ(v)/τ(v) has been studied extensively in social sci-
ences (see Newman’s survey for further references).

Centrality indices
centrality One of the, let us say, central questions in the analy-
sis of networks is the relative importance of its members. While in a
specific domain this notion of importance is usually well-defined and
measurable, they question arises whether it can be derived using only
the network structure. This leads to the notion of centrality measures c
which assign either a numerical value to the vertices (or edges) of a
network, with the usual understanding that high values signify higher
importance. The concept itself is often traced back to a paper by Jordan
from 1869 [149]. Degree centrality

The most basic index cD is the degree itself: a node is important if
it has a large degree. While readily available, it uses only very local
information and we cannot expect to conduct a fine-grained analysis
by relying on it. Closeness centrality, harmonic –,

Lin’s –One type of centrality index measures how far a node lies in the
‘middle’ of a network. Sabidussi introduced the closeness centrality [220]

cC(v) =
(

∑
u∈G

d(v, u)
)−1

.

Related indices are the harmonic centrality introduced by Opsahl, Agn-
eessens, and Skvoretz [199]

cH(v) = ∑
u∈G

d(v, u)−1,
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and Lin’s centrality [173]

cL(v) =
|{v | d(v, v) < ∞}|2

∑u∈V(G):d(v,u)<∞ d(v, u)
.

We will revisit these three distance-based indices in the next section.Stress centrality, betweenness –

A different kind of importance arises if one views a network in
terms of communication, as Shimbel did by introducing the stress cent-
rality [227]. Let σst(v) denotes the number of shortest s-t-paths that
contain the vertex v and let σst denote the total number of shortest
s-t-paths. Then the centrality is defined by

cS(v) = ∑
v 6=s,t∈G

σst(v).

Assuming that communication happens along shortest paths in a net-
work and between uniformly random endpoints, the stress centrality
reveals how much communication load a node has to bear. A related
concept is the betweenness centrality introduced by Freeman [109] and
Anthonisse [10]:

cB(v) = ∑
v 6=s,t∈G

σst(v)
σst

.

Eccentricity
The eccentricity of a vertex is defined as e(v) = max{d(u, v)}u∈G, i.e.
the length of the longest shortest path starting at v. It gives rise to the
centrality index cE(v) = e(v)−1 introduced by Hage and Harary [135]
who applied it to a facility-location-type problem and argued that ex-
isting centrality measures (in particular closeness and betweenness)
were not suitable.

There are a host of further measures capturing other notions of im-
portance. We refer to the survey by Koschützki et al. which also con-
tains interesting historical notes [162] and the book by Wasserman and
Faust [246].

In conclusion, there are already a lot of algorithmic questions at-
tached to the basic properties of complex networks. Further, the ef-
ficient computation or approximation of important statistics directly
impacts how well we can research them.

14.2 algorithmic questions

Since this thesis sets out to bring the field of structural graph theory
and network science closer together, we should demonstrate this en-
deavour’s potential pay-off. To this end, we survey several algorithmic
questions related to real-world networks that seem to be solvable—at
least in theory—with the algorithmic toolkit presented earlier.

The first tier of algorithmic question lies simply with network statist-
ics, some of which we presented in the last section. Obviously, we want
to be able to compute these basic measures efficiently and reliably in
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order to reason about large-scale datasets. However, some of these
properties take quadratic or even cubic time to compute—at least in
a naive implementation. Take, for example, the clustering coefficient
and the simple cubic-time algorithm to compute it. If we postulate
that our network is degenerate, suddenly the computation is possible
in linear time! This observation can be extended to arbitrary com-
plete subgraphs; as Eppstein, Löffler, and Strash demonstrated [85].
Their algorithm is superior to the Bron-Kerbosh algorithm in sparse
graphs and consequently should replace it in virtually all practical
applications—that this is not the case is a testimony to the fact that
structural graph theory needs to be promoted more vigorously. Localised closeness

Let us consider another statistic in which our algorithmic toolkit
could improve existing algorithms—assuming that the provided in-
puts are structurally sparse. Closeness centrality and its variants re-
quire knowledge of the distances between all vertex-pairs, a problem
for which the fastest known algorithm runs in time O(n(n + m)) [34].
Even under the sparseness assumption, the known approach therefore
still takes quadratic time. However, as we saw in Chapter 10.4, it is
possible to compute the sizes of all distance r-neighbourhoods around
all vertices in linear time! Hence the following ‘localised’ variants of
distance-based centrality measures can, on structurally sparse inputs,
be computed quickly as stated in Theorem 26.

Measure Definition Localised

Closeness cC(v) =
(

∑
u∈G

d(v, u)
)−1

cr
C(v) =

(
∑

u∈Nr(v)
d(v, u)

)−1

Harmonic cH(v) = ∑
u∈G

d(v, u)−1 cr
H(v) = ∑

u∈Nr(v)
d(v, u)−1

Lin’s cL(v) =
|{v | d(v, v) < ∞}|2

∑u∈G:d(v,u)<∞ d(v, u)
cr

L(v) =
|Nr[v]|2

∑u∈Nr [v] d(v, u)

In these localised variants, we compute the index of a vertex with re-
spect to its rth neighbourhood rather than with respect to the whole
graph. The first natural question is the utility of such localised variants
(and their accuracy in reflecting the global measure). We remark that
Marsden demonstrated that for some networks, calculating the meas-
ure for a vertex v inside its closed neighbourhood G[N[v]] can be used
as a viable substitute for the full measure [178]. In the context of com-
puter networks, Pantazopoulos, Karaliopoulos, and Stavrakakis [202]
consider local variants which lend themselves to distributed comput-
ing and found a close correlation to the full measures on a sample of
networks. We see that in certain applications, local knowledge is either
all that is necessary, or all that is available.

But we can also show experimentally that our variants reliably cap-
ture the top ten percent in (arbitrarily) selected networks of our real-
world corpus (see Chapter 16 for a description of the used networks).
To that end, we compare in Figure 4 the 10% of highest ranking ver-
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Figure 4: Top-10% similarity of localised indices compared with their respect-
ive global variant. The measurements are scaled according to the
networks’ diameter in order to be comparable. The results for close-
ness centrality follow the same trend and is omitted here.

tices, as identified by our localised variants, to those 10 percent iden-
tified by the respective full centrality measure. Specifically, we use the
Jaccard index [143]—defined as |A ∩ B|/|A ∪ B| for two sets A, B—to
measure similarity6. We can conclude that for most of the tested net-
works, already a fifth of the diameter is sufficient to reliably identify
most high-ranked vertices. It seems that the larger the network, the
better this relation becomes: HepTh and CondMat have around 7000
and 16000 vertices, respectively, Netscience around 1500, Cpan-distribu-
tions around 2700 and the other two below 1500. This is probably owed
to the fact that the top 10% set grows with the networks size and there-
fore is simply more stable with respect to the approximate measure.

We conclude that the localised centralities seem—according to this
preliminary study—to be a viable alternative to their non-local coun-
terparts. And using techniques based on structural sparseness, their
computation is, in theory, much more efficient. Note another applic-
ation of Theorem 26: we can also use it to compute hop-plots (intro-

6 Since we compare sets of equal size, the measures precision and recall—and accord-
ingly the F1-score— are all the same. The Jaccard index is better suited for this situ-
ation.
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duced above) more efficiently, as long as we truncate them above a
certain threshold r.

Let us consider a second application of the structural sparseness
toolkit. Recall that by using low-treedepth colourings, we can count
the occurrence of small patterns—be it as subgraphs, induced sub-
graphs, homo- or isomorphisms—in linear time (cf. Theorem 24 and 25).
As it turns out, such counting algorithms could be immensely use-
ful in the area of computational biology. We highlight three domain-
specific applications of calculating the frequency of small fixed pattern
graphs inside a network to make our case. Network motif

A network motif is a subgraph (not necessarily induced and possibly
labelled) that appears with a significantly higher frequency in a real-
world network than one would expect by pure chance. Introduced by
Milo et al. [185] under the hypothesis that such frequently occurring
structures have a functional significance, motifs have been identified in
a plethora of different domains—including protein-protein-interaction
networks [5], brain networks [230] and electronic circuits [141]. We
refer to the surveys of Kaiser, Ribeiro, and Silva [210] and Masoudi-
Nejad, Schreiber, and Kashani [180] for an extensive overview. Graphlets, – degree distribution

Graphlets are a related concept, though their application is in an en-
tirely different scope. While motifs are used to identify and explain
local structure in networks, graphlets are used to ‘fingerprint’ them.
Pržulj introduced the graphlet degree distribution as a way of measuring
network similarity [208]. To compute it, one enumerates all connected
graphs up to a fixed size (five in the original paper) and computes for
each vertex of the target graph how often it appears in a subgraph iso-
morphic to one of those patterns. Since some graphlets exhibit higher
symmetry than others, the computation takes into account all pos-
sible automorphisms. The degree distribution then describes for each
graphlet Gi, how many vertices of the target graph are contained in
0, 1, 2, . . . subgraphs isomorphic to Gi—more precisely, in how many
orbits of the respective automorphism groups it appears in. Note that
if the set of graphlets only contains the single-edge graph this compu-
tation yields exactly the classical degree distribution.

The application of this distribution is two-fold: On the one hand, it
can be used to measure similarity of multiple networks [226], in par-
ticular for networks derived from biological data [139]. On the other
hand, the local structure around a vertex can reveal domain-specific
functions. This is the case for protein-protein interaction networks
where local structure correlates with biological activity [183], which
has been applied to identify cancer genes [182] and construct phylo-
genetic trees [166]. Graphlets have further been used in analysis of
workplace dynamics [236], photo cropping [38] and Denial-of-Service
attack detection [207].

A third application of subgraph counting was given by Ugander,
Backstrom, and Kleinberg et al. [240]: their empirical analysis and sub-
sequent modelling of social networks revealed that there is an inherent
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bias towards the occurrence of certain subgraphs. Thus the frequencies
of small subgraphs seems an important indicator for the social domain,
similar to the role of graphlet frequencies in biological networks.Domination problems

A final important area of algorithmic questions related to complex
networks are domination problems. We saw previously that structurally
sparse classes admit constant-factor approximation of r-Dominating
Set and linear or almost linear kernels for Dominating Set; further,
by the first-order meta-result, we know that r-Dominating Set is
fixed-parameter tractable in nowhere dense classes. Hence bridging
the gap between complex networks and the theory of structurally
sparse graphs provides us with more efficient means to solve dom-
ination-style problems. Dominating sets themselves can be used to
compute efficient sensor placement for disease detection (see, e.g., the
work by Eubank et al. [88]). Partial dominating sets, i.e. those that
maximize the number of dominated vertices, have applications as a
centrality index in social network that identifies important actors who
govern the information-flow [33]. Feng Wang et al. [244] defined posit-
ive dominating sets to model stable influences in networks. A set D is
a positive dominating set if every node of a network has at least half
of its neighbour in D. Finally, connected dominating sets have applic-
ations in wireless routing schemes (see, e.g., the paper by Jie Wu and
Hailan Li [142]).

We conclude that if we are able to demonstrate that real-world net-
works are structurally sparse, then the above mentioned applications
of algorithms designed using the toolkit based on bounded expan-
sion and nowhere dense classes make a strong case for bringing these
techniques into scientific application. In combination with well-tested
heuristical improvements (e.g. [248], [211]) these techniques might be
able to push the boundary of computational feasibility far beyond
where it lies today.
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N E T W O R K M O D E L S

Remember that all models are wrong;
the practical question is how wrong do they have to be to not be useful.

—George E.P. Box

Science has a long history of tackling complicated natural phenomena
by constructing models. The philosophical and scientific theory behind
models is rich and difficult, but their every-day usage in the scientific
endeavour is almost instinctive. Given the byzantine structure of real-
world networks and the recent interest by researchers from Physics
and Complex System Theory, it is not surprising that a plethora of
(often competing) models exist. Generative models

We can categorise modelling of networks into two broad approaches.
The first type of models mimic a simplified evolution of a network,
building it up piece-by-piece. The most common scenario is an ‘at-
tachment model’ in which nodes are successively added to the net-
work and randomly connected to the existing network by a specific
probability distribution. This ‘bottom-up’ approach has great appeal:
not only can we generate artificial networks and match their statistics
against real-world data, at the same time we also obtain an explana-
tion for these statistics—‘the network has a power law degree distri-
bution because members of it attach by a preferential attachment rule’.
Their huge appeal is, however, also a drawback: it is very easy to jump
to conclusion and accept the proposed mechanism as the explanation,
rendering us blind to possible alternatives.

Let us call such models generative (a term borrowed from machine
learning theory and philosophy of science): by introducing a hidden
process—hidden in the sense that we do not know that it really was
this process that is responsible for generating our data in the real
world—we seek to explain the final form. We necessarily expect these
models to replicate or approximate a whole range of statistics, other-
wise we have to call into question the model’s ability to explain net-
work formation. Descriptive models

Polar opposites to generative models are descriptive models. They are
designed to replicate a fixed set of statistics without any claim that
other statistics or even the network’s evolution is reproduced. Such
‘top-down’ approaches have the benefit of being far removed from
intuition and hence bias, but on the flip-side they lack explanatory
power: if they work, they work, but the only explanation we can prof-
fer is that the model replicates the measured statistic well. Random graphs

In essence, network models are simply random graphs and we will
use the tools developed in random graph theory to reason about them.
Since the term ‘random graph’ has become somewhat synonymous

179
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with the Erdős-Rényi model, we adapt the term random graph model in
the following. This term also reminds us that the random graphs we
are working with have a semantic attached to them and are not just
detached mathematical objects.Erdős-Rényi graphs

The classical study of random graphs was initiated by Erdős and
Rényi [86], and Gilbert [123] in 1959. By the available metrics1, how-
ever, their 1960 paper ‘On the evolution of random graphs’ [87] seems
to be the one that sparked the study of random graphs. In hindsight,
their stated motivation seems almost prophetic:

It seems plausible that by considering the random growth
of more complicated structures (e.g. structures consisting
of different sorts of “points” and connections of different
types) one could obtain fairly reasonable models of more
complex real growth processes (e.g. the growth of a com-
plex communication net consisting of different types of
connections, and even of organic structures of living mat-
ter, etc.).

The Erdős-Rényi model was, indeed, for a long while the only real
contender in modelling networks—probably due to the fact that the
statistics it does not replicate well only become obvious if the networks
grow large enough. Even today the model serves as a mathematically
tractable baseline (in contrast to the flurry of other models that so far
have only been analysed empirically).

We will use Gilbert’s model in the following (which is asymptotic-
ally equivalent to the model proposed by Erdős and Rényi): by G(n, p)
we denote the random graph on n vertices obtained by adding every
possible edge independently with probability p. As usual, we allow p
to be function of n.Phase transition

The probably most famous property of Erdős-Rényi graphs is the
behaviour of their connectivity [87]: the graph G(n, p) with np = 1
contains almost surely a connected component of size Ω(n2/3), in the
case of np > 1 even of size Ω(n), but for np < 1 it will almost surely
contain not component of size larger than O(log n). Because the trans-
ition from not exhibiting a property (no large components) to exhibit-
ing it (having a large connected component) is extremely sharp with
respect to the one model parameter p, the term phase transition was
loaned from the physical sciences and has stuck2.Threshold

Most interesting properties seem to follow such a phase transition.
In fact, a property being monotone already suffices to show that such it
must exist. Note that any monotone property Π has the very intuitive
trait that

Pr[G(n, p) ∈ Π] < Pr[G(n, p + ε) ∈ Π]

1 Google scholar attributes a citation index of 3 for [86] and 6391 for [87]. CiteseerX
does not even list [86].

2 With respect to random graphs, the term was already used in 1970 by Stepanov [232].
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for ε > 0 (this can be easily seen by a simple coupling argument). The
threshold of a property Π is a function p0(n) that satisfies

Pr[G(n, p) ∈ Π] −→
{

0 if p ∈ o(p0),

1 if p0 ∈ o(p).

Bollobás and Thomas showed that every monotone graph property
has a threshold [31].

In the context of this thesis we are interested in whether networks
exhibit structural sparseness and we will use (as so often) Erdős-Rényi
graphs as a first-order approximation to that question. Let us first
convince ourselves that stronger notions of sparseness do not apply.

Theorem 37 (Fountoulakis, Kühn, Osthus,[106]). For every µ > 1 there
exists a constant δ such that a.a.s. Kt 4m G(n, µ/n) with δ

√
n 6 t 6 2

√
cn.

Therefore G(n, µ/n) does not exclude any constant-sized graph as a
minor. The question whether they contain arbitrarily dense topological
minors seems to be open. On the positive side, Nešetřil, Ossona de
Mendez, and Wood proved that G(n, µ/n) has bounded expansion
a.a.s. [193]. We extrapolate that bounded expansion seems to be the
most sensible option to show that complex networks exhibit structural
sparseness.

15.1 expansion of random graph models

Before we proceed, we need to clarify what we mean by a random
graph model and what we mean by such a model being structurally
sparse—after all, these terms are defined for deterministic objects. We
will use a conservative approach here that stands on solid historical
ground: a random graph model has a property P if and only if the
asymptotic probability that it generates graphs exhibiting P tends to
one in the limit. Let us first fix the relevant notation. P[•], E[•],Var[•],M[•]

We usually denote random variables by upper-case letters. Prob-
abilities are denoted by P[•], expectation, variance, and median by
E[•], Var[•], M[•], respectively. If we need to clarify which probability
measures we employ, we use subscripts like P[•]M. For a sequence of Convergence in distribution

random variables (Xn)n∈N and a random variable Y, recall that (Xn)

converges in distribution to X if it holds that

∀k lim
n→∞

P[Xn 6 k] = P[X 6 k].

We denote the convergence in distribution with (Xn)
d−→ X. Random graph model

A random graph model is a sequence of random variables (Gn)n∈N

over n-vertex graphs. For simplicity, we fix V(Gn) = [n]. The paramet-
risation of the model is a function ρ : N → Rt that creates a tuple of t
parameters depending on n which in turn determine the probability
distribution of each variable Gn. By G(n, ρ(n)) we denote the random
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variable Gn with the probability distribution prescribed by the model
with parameters ρ(n). In order to distinguish random models we will
introduce superscripts like GCL or GKL.Minors of random graphs

For a random graph model G(n, ρ(n)) and an integer r the notation
G(n, ρ(n)) Õ r denotes a random variable over sets of graphs with at
most n vertices whose probability distribution is given by

Pr[G(n, ρ(n)) Õ r = A] = ∑
G:A=G Õ r

Pr[G(n, ρ(n)) = G],

where A is a set of graphs. With this definition the quantities ∇̃•
and ω̃• are well-defined as rational-valued random variables. As noted
above, we study the properties of random graphs in the limit and
hence define the property of having bounded expansion as follows.Structural density of random

graphs
Definition 28. A graph model G(n, ρ(n)) has bounded expansion asymp-
totically almost surely (a.a.s.) if there exists a function f such that for
all r > 0

lim
n→∞

Pr[∇̃r(G(n, ρ(n))) < f (r)] = 1.

It has bounded expansion with high probability (w.h.p.) if for every c > 1
there exists a function f such that, again for all r > 0,

Pr[∇̃r(G(n, ρ(n))) < f (r)] > 1−O(n−c).

The very same definition is possible to define when a random graph
model is nowhere dense.

Definition 29. A graph model G(n, ρ(n)) is a.a.s. nowhere dense if there
exists a function f such that for all r > 0

lim
n→∞

Pr[ω̃r(G(n, ρ(n))) < f (r)] = 1.

It is nowhere dense w.h.p. if for every c > 1 there exists a function f such
that, again for all r > 0,

Pr[∇̃r(G(n, ρ(n))) < f (r)] > 1−O(n−c).

The following notions are needed to prove negative results about ran-
dom models.

Definition 30. A graph model G(n, ρ(n)) is a.a.s. somewhere dense if
there exists r ∈N such that for all functions f it holds that

lim
n→∞

Pr[ω̃r(G(n, ρ(n))) > f (r)] = 1.

It is not a.a.s. nowhere dense if there exists r ∈ N such that for all func-
tions f it holds that

lim
n→∞

Pr[ω̃r(G(n, ρ(n))) > f (r)] > 0.
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Note that the above definition for random graphs is, in contrast to
the definition of structural sparseness for graph classes, not a dicho-
tomy: we can easily build an artificial random graph model where the
probability that a dense shallow minor exists converges to some value
bounded away from zero and one. This might now just seem like a
technicality, but we will see two examples of random graph models
developed to replicated certain aspects of complex networks that fall
exactly in this category.

We will base our positive proofs on the characterisation of bounded
expansion classes stated in Theorem 21. Let us recall the statement:

Theorem 21 (Nešetřil, Ossona de Mendez, Wood [193]). A graph class G
has bounded expansion if and only if there exist real-valued functions fthresh,
fdeg, f∇̃, fH such that for all G ∈ G the following two conditions hold:

1. For all ε > 0 either |G| 6 fthresh(ε) or it holds that

|{v ∈ V(G) : deg(v) > fdeg(ε)}| 6 ε · |G|.

2. For all r ∈N, all H ⊆ G with ∇̃r(H) > f∇̃(r) satisfy

|H| > fH(r) · |G|.

Finding the first pair of functions fthresh, fdeg is usually straightforward,
the real challenge lies in proving that functions f∇̃, fH exist. Consider
the contra-positive of the second condition: in terms of random graph
models, we want to show that subgraphs that span at most a fH(r)-
fraction of the vertices of G have their (topological) grad bounded
by f∇̃ with high probability.

The following basic lemma will help to simplify the following proofs
by enabling us to work with randomly chosen subgraphs.

Lemma 80. Let X1, . . . , Xn be binary random variables and let S = ∑n
i=1 Xi.

Let further I ∈ [n] be uniformly distributed. Then

Pr[S > 1] 6 n · Pr[XI = 1].

Proof. By Markov’s inequality we have that

Pr[S > 1] 6 E[S] =
n

∑
i=1

Pr[Xi = 1].

Observe that

Pr[XI = 1] =
n

∑
i=1

Pr[I = i] · Pr[Xi = 1] =
1
n

n

∑
i=1

Pr[Xi = 1],

and hence

Pr[S > 1] 6 n · Pr[XI = 1].
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We apply this statement to subgraphs in a random graph and obtain
the following corollary that lies closer to our application.

Corollary 21. Let G(n, ρ(n)) be a random graph model with parametrisa-
tion ρ and Π be a graph property. Then

Pr[∃X ⊆ V(G) : G[X] ∈ Π] 6
n

∑
k=1

(
n
k

)
Pr
[

G[Yk] ∈ Π
]
,

where Yk is a k-vertex subset of V(G) chosen uniformly at random.

15.2 fixed degree distributions

As noted by Newman [195], the observations that the degree distribu-
tion is a qualitative important statistic date back to Rapoport’s treat-
ment of random networks3 in the 1950s (see, e.g., the work of So-
lomonoff and Rapoport on the connectivity of random graphs [229]).
A first improvement of the random graph model, whose degree distri-
bution does not match those observed in real world networks, is there-
fore to prescribe the degree distribution and sample randomly from all
graphs that exhibit that distribution. While this does not solve some
of the other problems associated with the Erdős-Rényi model—other
statistics like the clustering coefficient do also not match empirical
values—it enables us to work with a model which is still mathemat-
ical tractable and at least closer to real-world phenomena.

Before getting into the gory technical details, we should briefly dis-
cuss which degree distributions are commonly observed. Early claims
that all networks follow a power law degree distribution have been
subsequently refuted; as it turns out, distinguishing such functions
from other candidate distributions is an intricate statistical problem [49].
Modern approaches seem to favour a multitude of distributions (see
Table 1 for an overview).

Name Definition f (d) Parameters

Power law d−γ γ > 2

Power law w/ cutoff d−γe−λd γ > 2, λ > 0

Exponential e−λd λ > 0

Stretched exponential dβ−1e−λdβ
λ, β > 0

Gaussian exp(− (d−µ)2

2σ2 ) µ, σ

Log-normal d−1 exp(− (log d−µ)2

2σ2 ) µ, σ

Table 1: A selection of established functions used to model degree-
distributions of complex networks [49]. The functions here are listed
without the necessary normalization factor.

Degree distribution, – sequence

3 He used the term ‘axone density’.
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Let us now formalise the degree distributions and sequences. Given
a graph G, the degree sequence D(G) of G is the sequence (deg(v))v∈G.
We say that two graphs G1 and G2 have the same degree sequence,
if D(G1) = π(D(G2)) for some permutation π. A sequence of n in-
tegers (di)16i6n is a degree sequence if it can be realised by a graph,
i.e. there exists a graph G with D(G) = (di)16i6n. Such sequences are
also called graphical.

To define degree distributions, consider a random variable Dn de-
scribing the degree of a vertex chosen uniformly at random from an
n-vertex graph G. The pmf fn for Dn is then given by

fn(d) =
bn(d)

n
=

1
n ∑

v∈V(G)

Jdeg(v) = dK,

where bn(d) denotes the absolute frequency of degree-d vertices in G.

Definition 31 (Degree distribution). A n-vertex degree distribution is a
random variable D with probability mass function f such that

1. f (d) = 0 for d 6 0 and d > n− 1, and

2. n f (d) ∈N0 for all d ∈N.

We say that a degree sequence (di)16i6n matches an n-vertex degree
distribution Dn with pmf fn if for every 1 6 k 6 n− 1 it holds that

n

∑
i=0

Jdi = kK = n fn(k).

Consequently, a graph G matches a degree distribution Dn if its degree
sequence does. Degree distribution sequence

Since we will consider sequences of random graphs we need to in-
troduce a related notation of sequences of degree distributions.

Definition 32 (Degree distribution sequence, limit, sparse). A degree
distribution sequence is an infinite sequence (Dn) of n-vertex degree

distributions. A random variable D is the limit of (Dn) if (Dn)
d−→ D.

We say that D is sparse if E[D] < ∞ and (E[Dn])n∈N −→ E[D].

To motivate the definition of sparse sequences, note that for a degree
sequence Dn we have that

E[Dn] = ∑
d

d fn(d) =
1
n

n−1

∑
d=1

dbn(d),

thus for a graph G with degree distribution Dn it holds that E[Dn] is
exactly its average degree d(G). The condition of a degree sequence
being sparse will not quite suffice to prove structural sparseness: the
situation parallels how graph class with bounded average degree can
still harbour dense structures. Consider, for example, the degree dis-
tribution sequence of the class Kn[E/1] (the class consisting of all one-
subdivided cliques). While the sequence has constant expectation, the
graphs matching it are certainly not structurally sparse. This observa-
tion motivates the following stronger condition. Tail-bound
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Definition 33 (Tail-bound). A degree distribution sequence (Dn) with
limit D has the function h as its tail-bound if there exists a constant τ >
0 such that for all d > τ it holds that

Pr[D > d] = O
( 1

h(d)

)
.

Referring back to Table 1, all listed function have a tail-bound that is
at least quadratic. This is self-evident for power-laws with γ > 2; for
the other functions we simply note that their second moment exists
and hence by Chebyshev’s inequality satisfy

Pr[D > d] 6
Var[D2]

d2 + E[D2]
= O

( 1
d2

)
.

for d > E[D].

Observation 5. Let (Dn) be a sparse degree distribution sequence with
limit D. Then M[Dn] −→ M[D].

Given a degree distribution sequence D = (Dn)n∈N0 with limit D and
an integer n, we are faced with the task to sample graphs uniformly
at random from the set

{G | G has degree distribution Dn}.

Two methods to accomplish this task—with certain caveats—have been
put forward: the configuration model as described by Bender and Can-
field [19] and the model proposed by Chung and Lu [47, 46]. The latter
is a special case of what has been discussed in the mathematical literat-
ure as inhomogeneous random graphs (see, e.g., the work by Bollobás,
Janson, and Riordan on the phase transition of such graph [27]).Configuration model

To sample a graph according to the configuration model, we pro-
ceed as follows:

1. Build a degree sequence (di)16i6n that matches Dn.

2. Construct a vertex set VC = {v1
i , . . . , vdi

i }16i6n, i.e. create di copies
(called stubs) for what will be the vertex vi in the final graph.

3. Generate an auxiliary graph H with vertex set VC and a random
matching as its edge set.

4. Assemble the multi-graph G′ with vertex set {vi}16i6n and

|E(vi, vj)| = |EH({v1
i , . . . , vdi

i }, {v
1
j , . . . , v

dj
j })|,

that is, we connect the vertices vi and vj with as many edges as
we find between their respective copy-classes in H.

5. Return the graph G derived from G′ by removing all parallel
edges and loops.
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Graphs generate this way will henceforth be denoted by GCF(Dn). The
name stubs derives from the following picture of the process: we affix
to every vertex a number of half-edges, the stubs, that matches its
degree according to the generated degree sequence, and then obtain
the multi-graph by randomly wiring the stubs to each other. Instead of
generating a matching between the stubs, we can instead choose a ran-
dom permutation of them and match them up pair-by-pair according
to that permutation. This view of the process will be beneficial later
on.

It is a priori not clear that this procedure generates graphs with
the correct degree sequence. The intermediate multi-graph G′ trivi-
ally exhibits the degree sequence (di)16i6n and thus has the degree
distribution Dn. The last step, however, might skew the result by re-
moving parallel edges and loops—we therefore need the probability
that G′ contains such offending edges to be reasonably low. The con-
ditions under which this is the case have been proved by Molloy and
Reed [186] and subsequently improved by Janson, whose result we
present here using our own notation.

Theorem 38 (Janson [147]). Let (Dn)n∈N0 be a degree distribution se-
quence. Then we have that

lim inf
n→∞

P[GCF(Dn) is simple] > 0 ⇐⇒ E[D2
n] = O(E[Dn]).

The original formulation of the theorem’s condition is that

∑
d>0

d2bn(d) = O
(

∑
d>0

dbn(d)
)
⇐⇒ lim sup

n→∞

∑d>0 d2bn(d)
∑d>0 dbn(d)

< ∞

⇐⇒ lim sup
n→∞

∑d>0 d2 fn(d)
∑d>0 d fn(d)

< ∞

⇐⇒ lim sup
n→∞

E[D2
n]

E[Dn]
< ∞,

which justifies our reformulation. Note that in the case of sparse de-
gree distribution sequences this condition is equivalent to saying that
Var[D] is finite—this already limits the possible degree distributions
to those that have a finite variance. Luckily, this is the case for all de-
gree distributions listed in Table 1 with the exceptions of the power
law where only for γ > 3 the variance is finite. Chung–Lu model

The second method to sample graphs with a prescribed degree dis-
tribution, the Chung–Lu model, forgoes the above problems by gen-
erating graphs whose expected degree distribution matches the given
one. Given Dn, it constructs a random graph as follows:

1. Build a degree sequence (di)16i6n that matches Dn. We will call di
the weight of the vertex i.

2. Create a graph on n vertices v1, . . . vn and connect each pair of
vertices vi, vj with probability didj/m where m = ∑n

k=0 dk.
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Random graphs generated according to this procedure will henceforth
be denoted by GCL(Dn). The model ensures that the expected degree
of a vertex matches the degree we assigned it in the degree sequence.
While it is unclear how close the degree distribution is matched, the
models’ simplicity makes it both easy to analyse and implement. It is
noteworthy that similar models have been proposed to generate scale-
free networks in cases where preferential attachment (presented in the
next section) is an implausible mechanism [40].Generalised random graphs

A variation of the above model was introduced by van der Hof-
stad [241] under the name generalised random graphs. He cites it as
an important special case of the more general inhomogeneous random
graphs introduced by Bollobás, Janson, and Riordan [27]. We denote
the model by GGRG(Dn) here. The only difference to the Chung–Lu
model lies in how the edge-probability is computed from the weights:
for vertices i, j with weights di, dj the edge ij is present in the graph
with probability didj/(m + didj). Again m = ∑n

k=0 dk is the total sum
of weights.

Van der Hofstad proved that the Chung–Lu model is essentially
equivalent to generalised random graphs if the degree distribution
has a certain shape:

Theorem 39 (van der Hofstad [241, Theorem 6.19]). The random graphs
GCL(Dn) and GGRG(Dn) are asymptotically equivalent if E[D3

n] = o(
√

n).

Since the Chung–Lu model is slightly easier to handle we will not
work directly with generalised random graphs but instead use the
above theorem to carry results over.Household structure

As network models, both the configuration and the Chung–Lu model
suffer from some shortcomings. While they, by design, generate graphs
with the correct degree-distribution and small diameter, other statist-
ics found in complex networks are not replicated. In particular, both
models have a vanishing clustering-coefficient (see, e.g., Newman’s
survey [195]).

Since this statistic is critical in e.g. disease propagation research,
methods to ‘fix’ these models have been put forward. A notable ex-
ample is the configuration model with household structure as defined by
Ball, Sirl, and Trapman [16]. For this variant, one samples a graph
with a prescribed degree sequence and then replaces every vertex by
a constant-sized ‘household’-graph (for example a clique), distribut-
ing the edges incident to a household uniformly to the vertices that
comprise it. The resulting graph has provably a constant clustering
coefficient.Hybrid models

A different approach proposed by Chung and Lu is to take two
graphs, one with the small-world property, the other with ‘high local
connectivity’ and combine them into a hybrid graph [48] (another vari-
ation is proposed in [8]). They claim that the resulting graph has both
the small-world property and high clustering, however, their defini-
tion of clustering remains rather vague. It is in particular unclear what
the clustering coefficient of the resulting graph is.
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15.3 degree distributions , tails and expansion

The main goal of this section will be the proof of the following theor-
ems. To this end, we will first show the behaviour of the Chung–Lu
random graphs with respect to ∇̃0 and ω. By an appropriate coup-
ling arguments, we can then relate the statistics ∇̃r and ω̃r of differ-
ent graph models to these base cases. As it turns out, the structural
sparseness of the Chung–Lu and the configuration model is entirely
determined by the tail of the prescribed degree distribution:

Theorem 40. Let (Dn) be a sparse degree distribution sequence with tail h(d).
Both the configuration model GCF(Dn) and the Chung–Lu model GCL(Dn),
with high probability,

• have bounded expansion for h(d) = Ω(d3+ε),

• are nowhere dense (with unbounded expansion) for h(d) = Θ(d3+o(1)),

• and are somewhere dense for h(d) = O(d3−ε).

Since we can emulate household structures (cf. Section 15.2) by simply
taking the lexicographic product with some constant-size clique and
then taking a subgraph, Theorem 40 immediately implies the same for
those variants.

Corollary 22. Let (Dn) be a sparse degree distribution sequence. Then the
configuration model GCF(Dn) as well as the Chung–Lu model GCL(Dn) with
households have bounded expansion w.h.p. if the sequence has a supercubic
tail-bound and nowhere dense w.h.p. if it has a cubic tail-bound.

By Theorem 39, the random graphs GCL(Dn) and GGRG(Dn) are asymp-
totically equivalent when E[D3

n] = o(
√

n). Taken together with The-
orem 40, we obtain:

Corollary 23. Let (Dn) be a sparse degree distribution sequence with tail h(d).
Then the generalised random graphs GGRG(Dn), asymptotically almost surely,

• have bounded expansion for h(d) = Ω(d3+ε), and

• are nowhere dense (with unbounded expansion) for h(d) = Θ(d3+o(1)).

In both the Chung–Lu and the configuration model, the first phase
consist of assigning weights to vertices according to a degree dis-
tribution Dn. This random experiment chooses degrees without re-
placement, therefore we need to ensure that the important properties
of Dn carry over even if a fraction of the vertices have been uncovered
already, that is, we know their weight and hence cannot assume they
are randomly distributed.

Since in the following proofs low weights are always preferable, we
consider a ‘worst-case’ variable describing the degree of a vertex after
at most n/c other vertices have been assigned the lowest available
degrees. Luckily, sparse degree distributions are robust under trunca-
tion up to the median. Using this idea, the following lemma shows
that we can, up to a point, assume that the vertex degrees are drawn
independently according to a modified distribution.
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Lemma 81. Let (Dn) be a sparse degree distribution sequence with limit D
and a tail-bound h. Let µ1/2 = M[D] be the median of D. Then the se-
quence (D̂n) defined via

Pr[D̂n = d] = Pr[Dn = d | Dn > µ1/2]

is sparse and has tail-bound h.

Proof. Let D̂ be defined as the conditioned random variable D | D > τ.
Then we have that

E[D̂] = ∑
d>0

d Pr[D = d | D > µ1/2] = ∑
d>µ1/2

d · Pr[D = d]
Pr[D > µ1/2]

=
E[D]

Pr[D > µ1/2]
6

E[D]

2
.

Hence E[D̂] is finite and (D̂n) is sparse.
Let τ be the constant such that for d > τ it holds that Pr[D > d] =

O(1/h(d)). To see that the same holds for (D̂n), note that

Pr[D̂ > d] = Pr[D > d | D > µ1/2] =
Pr[D > max{d, µ1/2}]

Pr[D > µ1/2]
.

Hence for τ̂ > max{τ, µ1/2} for all d > τ̂ the bound

Pr[D̂ > d] = O
( 1

h(d)
)

holds, as claimed.

In the remainder of this section, we work towards a proof of The-
orem 40. Ultimately, our approach couples the density of shallow mi-
nors for graphs with degree distribution D to the density of subgraphs
of a random graph with distribution ηD, where η is an appropriate
scaling factor. This factor ultimately traces back to the value of the
sum ∑∆

d=1
1

dγ−2 which is a constant for γ > 3, roughly log ∆ for γ = 3
and around ∆3−γ for γ < 3.

15.3.1 The supercubic regime

We begin our investigation by considering degree distributions whose
tail is bounded by a supercubic function. As discussed earlier, most
real-world degree distributions seem to fall into this pattern since they
exhibit a sharp exponential cut-off.

Lemma 82. Consider vertices {vi}i∈[k] with associated weights {di}d∈[∆],
for some ∆ ∈ N. Let G be a random graph on these vertices where each
edge vivj is independently present with probability 6 βdidj/n. Then

Pr[ ‖G‖ > ξk ] 6
( eβD2

2nξkeD2/2n

)ξk

if D := ∑i di satisfies βD2 6 2nξk.
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Proof. We associate a random variable Xij with every edge vivj. The
expected number of edges is then

E[∑
ij

Xij ] = ∑
ij

E[ Xij ] 6∑
ij

βdidj

n
=

β

2n
(
∑

i
di
)2

=
βD2

2n
.

We apply the Chernoff-bound

Pr[∑
ij

Xij > (1 + δ)
βD2

2n
] 6

( eδ

(1 + δ)1+δ

)βD2/2n

choosing δ = 2nξk
βD2 − 1 and obtain

Pr[∑
ij

Xij > ξk ] 6
eξk−βD2/2nξk

( 2nξk
βD2 )ξk

=
( eβD2

2nξkeD2/2n

)ξk
,

as claimed.

The first important puzzle piece is that the assumed tail-bound en-
sures the presence of only few high-weight vertices:

Lemma 83. Let (Dn) be a sparse degree distribution sequence with limit D
and with a polynomial tail-bound h(d) = dα+1, α > 1. Then for every
graph G that realises Dn and any set X ⊆ V(G) of k vertices, the sum-
of-degrees of X is at most

∑
v∈X

degG(v) 6
√

2n1/αkα−1/α.

Proof. Let ∆ = h−1(n) = n1/α+1 be the maximal realizable degree. To
maximize the sum-of-degrees we obviously need to pick the k vertices
of highest degree. Hence we want the largest threshold δ such that

∆

∑
d=δ

n
dα+1 > k.

Bounding the sum by integrals, we see that

∆

∑
d=δ

n
dα+1 ∼

n
αδα

=⇒ δ ∼
( n

αk
)1/α.

Given δ, the maximal possible sum-of-degrees is at most

∆

∑
d=δ

n
dα+1 · d =

∆

∑
d=δ

n
dα
∼ n

(α− 1)δα−1

=
α(α−1)/α

α− 1
· nk(α−1)/α

n(α−1)/α
6
√

2n1/αkα−1/α,

as claimed.
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Using this property, we can now show that Chung–Lu graphs gen-
erated with degree distributions that have a supercubic tail will not
contain dense subgraphs. Afterwards we will related the general case
back to this basic case by coupling.

Lemma 84. Let (Dn) be a sparse degree distribution sequence with limit D
with a polynomial tail-bound h(d) = dα+1, α > 2. Then there exists a func-
tion f such that for every ξ > 4ae2, every c > 4e and every n > f (ξ, α) it
holds that

Pr[∃H ⊆ GCL(Dn)) : |H| 6 n/c and ∇0(H) > ξ] 6
1
nξ

.

Proof. Using Lemma 80, we can bound the probability that a dense
subgraph on k vertices exists by considering the probability that k
randomly chosen vertices form a dense subgraph. Taking the union
bound of all possible k (note that we need at least 2ξ + 1 vertices for a
subgraph of density ξ, we simplify this lower bound to 2ξ), the prob-
ability of the aforementioned event is at most

n/c

∑
k=2ξ

(
n
k

)
Pr[‖GCL(Dn)[Xk])‖ > kξ],

where Xk is a set of k vertices chosen uniformly at random.
By applying Lemma 82 to the random subgraph GCL(Dn)[Xk], we

can bound the above probability by

n/c

∑
k=2ξ

(
n
k

) k∆

∑
d=k

(
ecd2

2nξked2/2n

)ξk

Pr[Dk = d]

6
n/c

∑
k=2ξ

nkek

kk

(
ec

2nξk

)ξk k∆

∑
d=k

d2ξk

eξkd2/2n
Pr[Dk = d],

where Dk denotes the degree-sum of k vertices chosen from Dn.
By Lemma 83 we know that for a degree-distribution with tail-

bound h(d) = dα+1 the degree-sum of k vertices cannot exceed D̂k :=√
2n1/αkα−1/α. Since

D̂k

∑
d=k

d2ξk 6 D̂2ξk+1
k =

(√
2n1/αkα−1/α

)2ξk+1,

we can upper-bound every term of the above sum by

nkek

kk

(
ec

2nξk

)ξk (√
2n1/αkα−1/α

)2ξk+1

6
(2ec)(ξ+1)k

(2ξ)ξk · n
1
α 2ξk+1k

α−1
α (2ξk+1)

n(ξ−1)kk(ξ+1)k
.

Choosing ξ > large enough, the first factor can be decreased below
one (in particular, this is true for ξ > 4e2). Hence, we focus on the
second factor:

n
1
α (2ξk+1)k

α−1
α (2ξk+1)

n(ξ−1)k
=

k(
α−1

α 2ξ−ξ−1)k+ α−1
α

n(ξ− 1
α 2ξ−1)k− 1

α

=
k(

α−2
α ξ−1)k+ α−1

α

n( α−2
α ξ−1)k− 1

α

.
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Therefore the probability that a subgraph of density at least ξ exists is
at most

n/c

∑
k=2ξ

k(
α−2

α ξ−1)k+ α−1
α

n( α−2
α ξ−1)k− 1

α

.

Consider the ratio of two consecutive terms: we see that

(k− 1)(
α−2

α ξ−1)(k−1)+ α−1
α

n( α−2
α ξ−1)(k−1)− 1

α

· n( α−2
α ξ−1)k− 1

α

k(
α−2

α ξ−1)k+ α−1
α

=
(n

k

) α−2
α ξ−1

·
(

1− 1
k

)( α−2
α ξ−1)(k−1)+ α−1

α

>
(n

k

) α−2
α ξ−1(1

e

) α−2
α ξ−1(1

2

) α−1
α

.

Since k is at most n/c, this ratio is at least

c
α−2

α ξ−1

e
α−2

α ξ−12
α−1

α

>
( c

2e

) α−2
α ξ−1

,

where the last simplification holds for ξ > 4e2 > 2 α−1
α−2 . We conclude

that for c > 4e the whole ratio is at least 2; and accordingly the bound

n/c

∑
k=2ξ

k(
α−2

α ξ−1)k+ α−1
α

n( α−2
α ξ−1)k− 1

α

6 2
(2ξ)(

α−2
α ξ−1)2ξ+ α−1

α

n( α−2
α ξ−1)2ξ− 1

α

6
1
nξ

.

holds, where the last inequality follows for large enough n (depending
only on α, ξ).

EX
ξ,r

We pair the above lemma and Theorem 21 with a coupling argument
to arrive at the following result. For simplicity, we define EX

ξ,r as the
event that a random graph contains an r-shallow topological minor of
density at least ξ whose embedding φV maps into X.

Lemma 85. Let GR(n) be a random graph model with the following prop-
erty: for every r there exists a sparse degree distribution (Dn) with tail-
bound h(d) = dα+1, α > 2 such that for every ξ > 4ae2 it holds that

Pr[EX
ξ,r] 6 Pr[∇0(GCL(Dn)[X]) > ξ],

where X is a random set of at most n/4e(rξ + 1) vertices. Then GR(n) has
bounded expansion with high probability.

Proof. Note that if the event EX
ξ,r occurs, it already occurs in a subgraph

of size |X|+ rξ|X|. Therefore the maximal size of X that needs to be
considered in order to apply Theorem 21 is

|X|+ rξ|X| 6 n
4e
⇐⇒ |X| 6 n

4e(rξ + 1)
.

Exchanging the probability Pr[EX
ξ,r] by Pr[∇̃r(GR(n)[X]) > ξ] in the

proof of Lemma 84 immediately shows that

n/4e(rξ+1)

∑
k=2ξ

(
n
k

)
Pr[EX

ξ,r] 6
1
nξ
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for suitably large n. By Lemma 80, therefore the probability that any
set of at most n/4e vertices form the nails of a dense r-shallow minor
is at most n−ξ . Accordingly, setting f∇̃ = ξ and fH = 1/4e, the second
condition of Theorem 21 holds with probability at least 1− n−ξ . It is
left to show that functions fthresh, fdeg exist.

Claim. Let ( fn) be the pmfs and D the limit of (Dn). Then every graph
matching (Dn) satisfies Condition 1 of Theorem 21.

Recall that Condition 1 states that there exist functions fthresh, fdeg such
that for all ε we either have |G| 6 fthresh(ε) or it holds that

|{v ∈ V(G) : deg(v) > fdeg(ε)}| 6 ε · |G|.

This translates to Dn as follows: for every ε > 0 there exists an in-
teger 0 6 d 6 n− 1 such that

n
n−1

∑
k=d

fn(k) 6 εn ⇐⇒
n−1

∑
k=d

fn(k) 6 ε.

We apply Markov’s inequality to find that

n−1

∑
k=d

fn(k) = Pr[Dn > d] 6
E[Dn]

d
.

Since E[Dn] −→ E[D] and E[D] is finite, the right hand side can be made
small enough by choosing fdeg(ε) = d = E[Dn]/ε and n large enough.
This proves the existence of appropriate functions fthresh and fdeg and
the claim.

Hence, we conclude that Theorem 21 is applicable to GR(n) with
probability at least (1− n−ξ) and the claim follows.

Having shown the supercubic coupling lemma, we proceed to the next
range of distributions.

15.3.2 The cubic regime

As before, we will work towards a coupling argument which trans-
lates probabilities for events on shallow topological minors to events
on subgraphs. Starting at the bottom, we begin our investigation by
proving an analogue of Lemma 84 for degree distributions that are
scaled by a factor of logΘ(1) n.

Lemma 86. Let (Dn) be a sparse degree distribution sequence with limit D
and tail-bound h(d) = Θ(d3+o(1)). Then for ξ > 9 it holds that

Pr[ω(GCL(logΘ(1) nDn)) > ξ] = O(n−ξ).

Proof. Let G = GCL(logΘ(1) nDn). Using Lemma 80, we can bound
the probability that a clique on k vertices exists by considering the
probability that k randomly chosen vertices form a clique. Taking the
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union bound of all possible k, the probability of the aforementioned
event is at most

n

∑
k=ξ

(
n
k

)
Pr[ω(G[Xk]) > k],

where Xk is a set of k vertices chosen uniformly at random. In the
following, we will talk about the vertex weights assigned in the cre-
ation of the Chung–Lu random graph G by factoring out the com-
mon logΘ(1) n-factor: a vertex v has weight dv logΘ(1) n.

An edge uv exists in G with probability dudv logΘ(1) n/µn, where
again µ = E[Dn]. For k vertices of weights d1, . . . , dk, the probability
that they form a complete graph is therefore at most

∏
i<j

didj logΘ(1) n
µn

=
( logΘ(1) n

µn

) k(k−1)
2
(

∏
i

di

)k−1
.

Note that the tail-bound H of logΘ(1) nDn is

H(d) = h
( d

logΘ(1) n

)
=
( d

logΘ(1) n

)3+o(1)
,

hence the maximal degree is ∆ = H−1(n) = n1/(3+o(1))) logΘ(1) n.
Taking the union bound of all possible products D of weight k, we

obtain the bound

n

∑
k=ξ

(
n
k

)
Pr[ω(G[Xk]) > k] 6

n

∑
k=ξ

(
n
k

)( logΘ(1) n
µn

) k(k−1)
2

∆k

∑
D=k

Dk−1

6
n

∑
k=ξ

nkek

kk

( logΘ(1) n
µn

) k(k−1)
2

∆k2
.

It is easy to check that this sum is supergeometric, hence we can es-
timate its value by twice its largest term. This results in

n

∑
k=ξ

(
n
k

)
Pr[ω(G[Xk]) > k] 6 2

nξeξ

ξξ

( logΘ(1) n
µn

) ξ(ξ−1)
2

∆ξ2

=
2eξ

(ξµ)ξ

(logΘ(1) n)
3
2 ξ2− 1

2 ξ

n(1/2−1/(3+o(1)))ξ2− 3
2 ξ

.

Since this last term is, for ξ > 9 and large enough n, lies in O(n−ξ),
the claim follows.

KX
r

Let in the following KX
r denote the event that the vertices of X form the

nails of an r-subdivision of a complete graph. Then we can rephrase
the above lemma as follows:

Corollary 24. Let GR(n) be a random graph model with the following prop-
erty: for every r there exists a sparse degree distribution (Dn) with tail-
bound h(d) = Θ(d3+o(1)) and ξ > 9 such that

Pr[KX
r ] 6 Pr[GCL(logΘ(1) nDn)[X] ' K|X|],
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where X is a random set of at most ξ vertices. Then GR(n) is nowhere dense
with high probability.

The above lemma will later provide the positive statement, namely,
that large shallow clique-minors are improbable due to a coupling
to the occurrence to large cliques in the above setting. However, The-
orem 40 also states that the cubic degree distribution do not result in
graphs with bounded expansion. The following lemma provides us
with the necessary negative statement.

Lemma 87. Let (Dn) be a sparse degree distribution sequence with tail-
bound h(d) = Θ(d3+o(1)). Then

∇̃1/2(GCL(Dn)) = Ω(log n)

with high probability.

Proof. Consider the log n vertices Vh of highest weight in GCL(Dn).
Then the minimum weight δ of these vertices can be estimated by
seeing that (using again the bound from Lemma 83)

N =
∆

∑
d=δ

n
d3+o(1)

∼ n
(2 + o(1))δ2+o(1)

=⇒ δ ∼
( n
(2 + o(1)) log n

)1/(2+o(1))
.

We will show that there exists a dense 1/2-shallow topological minor
with Vh as its nails. Note that at most log2 n vertices can participate
as subdivision-vertices in this minor. By assuming that only the n −
(log n + log2 n) vertices of lowest weight can be used as branch ver-
tices, we can simulate the density of the minor in a simpler random
graph: we connect vertices s, t ∈ Vh independently at random with
probability p such that

p 6 Pr[∃w ∈ V(G) \Vh : sw, st ∈ GCL(Dn)].

Clearly, the surrogate graph’s density is (stochastically) smaller than
the minor’s density.

First, let us estimate the maximal available vertex weight according
to our worst-case assumptions: we need a value η that satisfies

n
(2 + o(1))η2+o(1)

> log n + log2 n

=⇒ η 6
( n
(2 + o(1))(log n + log2 n)

)1/(2+o(1))
.

For simplicity, we choose η = (n/4log2n)1/(2+o(1)) which satisfies the
above constraint for large enough n. Now the probability that two
nails are both connected to a branch vertex is at least

p :=
η

∑
d=1

n
d3+o(1)

· δ2d2

µ2n2 =
δ2

n

η

∑
d=1

1
d1+o(1)

∼ δ2 log η

µ2n
>

log n− log(4 log2 n)

10µ2no(1) log1+o(1) n
.
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For large enough n, we therefore have that p is bounded from below
by a constant. Hence the expected number of edges in the minor is
Ω(log2 n) and its density Ω(log n). Since these surrogate edges are
independent, their number and hence the lower-bound for the minor’s
density are sharply concentrated around the mean: the probability of
falling below a factor of (1 − t) log n density is only O(n−t2/2). We
conclude that the minor has density Ω(log n) with high probability.

Having fully characterised the near-cubic regime, we proceed to the
final range; degree distributions with a subcubic tail.

15.3.3 The subcubic regime

As it turns out, the ‘phase transition’ from the nowhere-dense regime
at d3 is very sharp: a degree distribution with a tail lower-bounded
by d3−ε for any ε > 0 will result in the presence of shallow dense
clique minors of arbitrary size. Since we can leverage the powerful
Theorem 10, the proof is quite straightforward.

Lemma 88. Let (Dn) be a sparse degree distribution sequence with a tail
lower-bounded by h(d) = O(d3−ε) for some ε > 0. Then GCL(Dn) is some-
where dense with high probability.

Proof. Consider the N vertices of highest degree, where N will be fixed
later. Let γ = 3− ε. Then the minimum weight δ of these vertices can
be estimated by seeing that (using the same bound as in Lemma 83)

N =
∆

∑
d=δ

n
dγ
∼ n

(γ− 1)δγ−1 =⇒ δ ∼
( n
(γ− 1)N

)1/(γ−1)
.

Hence the expected number of edges within these N vertices is at least

N2 1
µn

( n
(γ− 1)N

)2/(γ−1)
= N

2(γ−2)
γ−1 n

3−γ
γ−1 µ

2
γ−1 (γ− 1)−

2
γ−1 .

Our goal is to show that for a suitable choice of N depending on n,
the number of expected edges is N1+ε′ for some ε′ > 0. This condition
yields:

N
2(γ−2)

γ−1 n
3−γ
γ−1 µ

2
γ−1 (γ− 1)−

2
γ−1 > N1+ε′

⇐⇒ n
3−γ
γ−1 µ

2
γ−1 (γ− 1)−

2
γ−1 > N

3−γ
γ−1+ε′ .

Choosing, for example, ε′ = (3− γ)/(γ− 1) we can let N = O(
√

n).
Now by Theorem 10, this implies that for every p the graph GCL(Dn)

contains a cε′-subdivision of Kp if we find at least the expected num-
ber of edges between the O(

√
n) vertices of highest degree. By the

Chernoff bound, this does not happen only with probability

Pr[EN 6 (1− t)nε′/2] 6 exp
(
− nε′/2t2

2

)
= exp

(
− nε/(4−2ε))t2

2

)
,

hence the claim follows.
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15.3.4 The proof of Theorem 40

We begin with the proof for the Chung–Lu model since the coupling
arguments are straightforward. Afterwards, we will show how they
can be adapted to extend the proof to the configuration model. The
important puzzle piece for the coupling is expressed in the following
lemma: the probability that a short path exists in GCL(Dn) crucially
depends on the weight of its endpoints and the shape of the degree
distribution’s tail.

Lemma 89. Let (Dn) be a sparse degree-distribution whose tail is bounded
by h for degrees above τ. Let s, t be vertices in GCL(Dn). Then for every
integer r it holds that

Pr[∃Pst ⊆ GCL(Dn), |Pst| = r | ds, dt, F] =
dsdt

n
O(E[D2

n]
r−1)

and this bound still holds if up to n/2 weights have been uncovered.

Proof. Consider the probability that a fixed path Pst := s, v1, . . . , vr−1, t
is realised in G := GCL(Dn) if the assigned vertex weights are, respect-
ively, ds, d1, . . . , dr−1, dt: this probability is given by

Pr[Pst ⊆ G | ds, dv1 , . . . , dvr−1, dt] =
dsdt ∏i d2

i
µrnr ,

where µ = E[Dn] is independent of n.
Since only a fraction of the vertex weights have been uncovered,

instead of choosing weights without replacement, we can use D̂n from
Lemma 81 to sample weights independently. Accordingly, we let the
variables D̂1,n, . . . , D̂r−1,n be independent copies of Dn.

Recall that (D̂n) has the same tail-bound h as (Dn). Note now that

E[D2
n] =

τ−1

∑
d=1

Pr[Dn = d] · d2 +
∆

∑
d=τ

d2

h(d)
= Θ(E[D̂2

n]).

Since the Di,n are independent, we can estimate the union-bound over
all weights

∑
d1,...,dr−1

∏
i

d2
i · Pr[D̂i,n = di] = ∏

d1,...,dr−1

∑
i

d2
i · Pr[D̂i,n = di]

= ∏
d1,...,dr−1

E[D̂2
i,n]

= Θ(E[D2
n]

r−1).

We arrive at the upper bound

Pr[Pst ⊆ G | ds, dt, F] =
dsdt

µrnr Θ(E[D2
n]

r−1).

Since a path of length r has r− 1 internal vertices, the probability that
some s-t-paths of length r exists is (implicitly using Lemma 80) then
bounded by

Pr[∃Pst ⊆ G | ds, dt] =
dsdt

n
O(E[D2

n]
r−1),

as claimed.
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We finally have all the ingredients for the main proof. Proof for GCL(Dn)

Proof of Theorem 40 for GCL(Dn). First consider a sparse degree distri-
bution sequence (Dn) with tail-bound h(d) = Ω(d3+ε) for some ε >

0. By Lemma 89, the probability of an s-t-path of length r existing
in G := GCL(Dn) is

Pr[∃Pst ⊆ G] 6 Pr[st ∈ GCL(Θ
(√

E[D2
n]

r−1
)

Dn)]

6 Pr[st ∈ GCL(Θ(Dn))]

and this relation is still true if conditioned by the knowledge of up
to n/4e vertex-weights. Hence for any random set X of at most n/4e
vertices we have that

Pr[EX
ξ,r]GCL(Dn) 6 Pr[∇0(GCL(

√
crDn)[X])) > ξ].

Thus by Lemma 85 and the fact that Θ(Dn) is sparse and has the same
tail-bound as Dn, the model GCL(Dn) has bounded expansion with
high probability.

Next, assume (Dn) has a tail h(d) = Θ(d3+o(1)). By Lemma 89, the
probability of an s-t-path of length r existing in G := GCL(Dn) is

Pr[∃Pst ⊆ G] 6 Pr[st ∈ GCL(Θ
(√

E[D2
n]

r−1
)

Dn)]

6 Pr[st ∈ GCL(Θ(logΘ(1) nDn))]

and this relation is still true if conditioned by the knowledge of up
to n/4e vertex-weights. Let again KX

r denote the event that an r-sub-
division of a complete subgraph with nails X exists in G. Since the
graph G is sparse with high probability, we focus on the case r > 1.
Now for any random set X of at most

√
n/4er vertices we have that

Pr[KX
r ]GCL(Dn) 6 Pr[GCL(logΘ(1) Dn)[X]) ' K|X|].

and thus by Corollary 24 it follows that GCL(Dn) is nowhere dense
with high probability. By Lemma 87, we further have that already the
measure ∇̃1/2(G) grows at a rate of at least Ω(log n), hence GCL(Dn)

has unbounded expansion.
Finally, assume (Dn) has a tail-bound h(d) = O(d3−ε) for some ε > 0.

By Lemma 88 we already have that GCL(Dn) is somewhere dense with
high probability.

This proof can be extended to the configuration model, the main diffi-
culty here is that edges are not sampled independently of each other.
We first prove a variant of Lemma 89. The bound proved here cru-
cially depends on the number of unmatched stubs: recall that we can,
instead of matching up stubs by choosing a random matching, match
them up pair-by-pair. From this perspective, we can stop the process
at any point and express the probabilities at this stage in terms of the
remaining number of stubs.
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Lemma 90. Let (Dn) be a sparse degree-distribution whose tail is bounded
by h for degrees above τ. Let s, t be vertices in GCF(Dn). Then for every r ∈
N it holds that

Pr[∃Pst ⊆ GCF(Dn), |Pst| = r | ds, dt] =
dsdt

m
O(E[D2

n]
r−1).

where m is the number of unmatched stubs.

Proof. Let G = GCF(Dn). By M(n) := (n− 1)!! we denote the number
of matchings on n vertices, where !! denotes the double factorial:

n!! :=


n · (n− 2) · . . . · 5 · 3 · 1 for n > 0 odd,

n · (n− 2) · . . . · 6 · 4 · 2 for n > 0 even, and

1 n ∈ {0,−1}.

We will need the following bound for k < n:

M(n− k)
M(n)

6
( (2e)k(n− k)n−k

nn

)1/2

6
(2e

n

)k/2
.

The number of available stubs decreases with each edge added to the
graph and hence the probability of an edge crucially depends on the
number m of remaining stubs.

Fix a path Pst of length r and let d1, . . . , dr−1 denote the weights of its
internal vertices. The probability of this path existing in G, conditioned
on the weight of its endpoints, is bounded by

Pr[Pst ⊆ G | ds, dt] 6 dsdt
M(m− 2r)

M(m) ∑
d1,...,dr−1

r−1

∏
i=1

d2
i Pr[D̂n = di]

6
dsdt

mr O(E[D2
n]

r−1).

Therefore the probability that some s-t-path of length r exists is

Pr[∃Pst ⊆ G | ds, dt] 6
dsdt

m
O(E[D2

n]
r−1),

as claimed.
Proof for GCF(Dn)

Proof of Theorem 40 for GCF(Dn). By Lemma 90, the probability of an s-
t-path of length r existing in G := GCF(Dn) is

Pr[∃Pst ⊆ GCF(Dn), |Pst| = r | ds, dt] =
dsdt

m
O(E[D2

n]
r−1).

Note that this probability looks almost identical to the one given by
Lemma 89, provided that the number of remaining stubs m is Θ(n).
Since we want to estimate the probability of the event EX

r,ξ , only up
to rξ|X| edges need to be considered at once; meaning that at least

m̂− 2rξ|X| > 2µn− 2rξn/4e(rξ + 1) > (µ− 1)2n
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stubs remain (again we let µ = E[Dn]). By coupling we see that

Pr[EX
r,ξ ]GCF(Dn) 6 Pr[EX

r,ξ ]GCL(Θ(Dn))

and we conclude that GCF(Dn) has bounded expansion for distribu-
tions with tail-bound Ω(d3+ε). Similarly, the event KX

r for any set of
vertices |X| 6

√
n/4er concerns at most n/4e edges and hence the

number of stubs left is m = Θ(n). Thus

Pr[KX
r ]GCF(Dn) 6 Pr[KX

r ]GCL(Θ(Dn))

and therefore GCF(Dn) is nowhere dense for distributions with a tail
that is in Θ(d3+o(1)). The lower bounds provided by Lemma 87 and
Lemma 88 can be easily adapted in a similar way to apply to the
configuration model.

15.4 random graphs and perturbations

An interesting application of the well-understood Erdős-Rényi ran-
dom graphs is as a perturbation of some n-vertex base graph G?. We
will use the notation G = G? ∪G(n, µ/n) to denote the graph obtained
from G? by adding in every possible edge not already contained in G?

independently with probability µ/n. Obviously, the graph G? itself
might be a random graph itself.

Uniform perturbation can be seen as the baseline for more com-
plicated models, like the small-world model by Kleinberg (described
below), models used in percolation theory (e.g. [20]) and the hybrid
model by Chung and Lu [48] (described above). The central question
is: what graph classes are still structurally sparse after the addition of
few random edges?

Theorem 41. Let G be a class of bounded-degree graphs and µ a constant.
Then the composite model GU(G) + G(n, µ/n) has bounded expansion with
high probability.

Note that this theorem in particular applies to G(n, µ/n) itself. The
result carries over to the stochastic block model, if the parameters in-
volved are small enough. This model was first studied in mathematical
sociology by Holland, Laskey, and Leinhardt in 1983 [140] and exten-
ded by Wang and Wong to directed graphs [245]. We will supplement
the above result by demonstrating that there exist very sparse graph
classes of unbounded degree for which such a perturbation results in
dense clique minors.

The following technical lemma subsumes Theorem 41.

Lemma 91. Let G be a class of graphs with the following properties:

• G has bounded expansion, and

• for G ∈ G and every r ∈ N the distribution of |Nr| has a tail-bound h
with h(d) = Ω(d3+ε) for some ε > 0.
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Then G + G(n, µ/n) has bounded expansion with high probability.

Proof. Let G∇ ∈ G, G̃ = G(n, µ/n) and let G = G∇ + G̃. Assume H is
an r-shallow topological minor of G and consider an embedding φV ,
φE of H witnessing this fact. Since ∇̃r(G∇) is a constant, most of H’s
density must depend on random edges, i.e.

|{e ∈ H | φE(e) ∩ E(G̃) = ∅}| 6 ∇̃r(G∇)|H|.

Therefore it suffices to bound the density of topological minors whose
embedding use at least one edge of G̃ for each edge of the minor.
Consider a path P of length r in G that uses at least one edge of G̃:
each component in K(P \ E(G̃)) is contained in a subgraph G∇[Nr(v)]
for some vertex v. Let N1, N2, . . . , Np be these subgraphs of the path P:
then we can bound the probability that P exists by considering the
probability that there exist at least one edge between Ni and Ni+1 in G̃,
for 1 6 i 6 p− 1.

Define the random variable Dr,G with distribution given by

Pr[Dr,G = d] =
|{v ∈ G : |Nr(v)| = d}|

|G| .

Since the probability that two r-neighbourhoods Nr(u), Nr(v) in G∇
are connected by an edge in G̃ is at most

µ|Nr(u)||Nr(v)|
n

we can couple the occurrence of r-paths in G to the occurrence of edges
in GCL(Dr,G). Hence we have that

∇̃r(G)− ∇̃rG∇ 6 ∇̃r(GCL(Dr,G))

in the stochastic sense. Since the latter has bounded expansion with
high probability by Theorem 40, we conclude that G + G(n, µ/n) does
as well.

The same proof can be applied to nowhere dense classes by repla-
cing ∇̃r with ω̃r and a slightly different condition on the ‘neighbour-
hood-statistic’ |Nr|.

Lemma 92. Let G be a class of graphs with the following properties:

• G is nowhere dense, and

• for G ∈ G and every r ∈ N the distribution of |Nr| has a tail h(d) =
Ω(d3+o(1)).

Then G + G(n, µ/n) is nowhere dense with high probability.
An obstruction

The above poses the question: are there structurally sparse classes
which do not stay sparse under perturbation? The answer is yes: con-
sider the class of graphs consisting of Θ(

√
n) copies of S√n. The prob-

ability that two such stars will be connected by a randomly added
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edge is lower-bounded by some constant, hence the minor obtain by
contracting the former stars has density Θ(n) (while only having

√
n

vertices). Hence, the perturbed class is actually somewhere dense with
high probability.

This example can be easily generalised: the presence of nα vertices X
to which we can assign at least nβ of their respective r-neighbours (not
assigning any neighbour to more than on vertex of X), for some con-
stant r, will yield an r-shallow minor whose density is concentrated
around n3α+β−1. Hence for all α, β that satisfy 3α + β > 2, the per-
turbed class is somewhere dense with high probability.

Open question 13. The ‘Bernoulli-noise’ we used above is only the
most simple case of a graph perturbation. The noise can easily be
defined to depend on the graph to which it is added—in fact, the
Kleinberg model discussed below could be seen as using a distance-
dependant perturbation to a grid. Which structurally sparse classes
retain their sparseness under such different notions of perturbations?

15.5 evolutionary and attachment models

The side of network model research treated in the previous chapter has
focused on how to extend random graphs—which come with a rich
mathematical foundation to stand on—in order to turn them into de-
scriptive models for complex networks. In essence, the random graph
models are simply tweaked until their output looks more ‘network-
like’. An orthogonal approach popular with researchers coming from
a statistical mechanics background are models that try to emulate the
process of network formation, the generative models. These models are
usually much harder to analyse theoretically and often our knowledge
of them rests on empirical evidence. Barabási-Albert

One of the most popular papers by Barabási and Albert [18] that
undoubtedly helped catalyse the steady growth of the network sci-
ence field put forward preferential attachment as a network formation
process that results in a power law degree-distribution. The claims of
universality made in the paper are controversial today. In particular
the widely-cited power law distribution of ‘the internet’ and its al-
leged consequences for attack-resilience and susceptibility to epidem-
ics seem to be founded on faulty data—see the rather damning article
by Willinger, Andernson, and Doyle [250]. Nonetheless, the appeal-
ingly simple model (which essentially can already be found in Yule’s
model of evolutionary processes from 1925 [251]) helped to popularise
network science as a field. And at least in some domains, the proposed
mechanism seems a plausible approximation for network formation.

To generate a graph using the Barabási-Albert model, one fixes a
constant initial graph G0 and an integer k. The graph Gi is constructed
from Gi−1 by attaching a new vertex vi and connected it to k vertices
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of the graph Gi−1, where the probability that a vertex is chosen is
proportional to its degree in Gi−1.

Barabási and Albert suggested that such a network asymptotically
displays a power law degree distribution, i.e. the fraction of nodes of
degree d is proportional to d−γ. They observed experimentally that
γ = 2.9 ± 0.1 and suggested that γ is actually 3. This model was
rigorously analysed by Bollobás, Riordan, Spencer, and Tusnády [30]
who proved that γ = 3. Later Bollobás and Riordan showed [28] that
the diameter of the graphs generated by this model is asymptotically
log n/ log log n. The same authors later showed that the clustering

coefficient is asymptotically k−1
8

log2 n
n [29]. This value differs greatly

from the often-reported experimental coefficient of n−3/4. In any case,
the clustering coefficient vanishes for large n.

The graphs generated by the model are frequently called scale-free
graphs in the literature. This terminology is problematic since graphs
exhibiting a power law degree distribution can be generated any num-
ber of ways, of which the preferential-attachment kind might only be
a small subset.Forest fire

A variant of preferential attachment that achieves the ‘rich-get-richer’
effect without explicitly modelling it is the so-called forest fire model
by Leskovec, Kleinberg, and Faloutsos [171]. The attachment process
is governed by two parameters p, r and works as follows. Given the
directed graph Gi, the directed graph Gi+1 is constructed by adding a
new vertex v and attaching it to Gi as follows:

1. We choose an ambassador vertex w uniformly at random from Gi
and add the arc vw.

2. We select ko out-neighbours and ki in-neighbours of w, where
ko is randomly selected with geometric distribution around the
mean p/(1− p) and ki around the mean rp/(1− rp). If ki, ko are
larger than the available number of neighbours we select as many
as possible.

3. For all vertices selected in the previous step, we apply the above
process recursively using that node as the ambassador (in partic-
ular, we add an arc from v to the node). Nodes that were visited
by the process earlier are not re-visited.

The model generates, for suitable choices of p, r, graphs that densify
according to a power-law m = Θ(n1+α), with α > 0. The densification
does crucially depend on the choice of p, r and in other regimes we
obtain sparse graphs.

Despite the issue of whether densification can really be observed
in networks, the model constitutes an interesting approach: the ‘burn-
ing’ process provides a natural explanation of the rich-get-richer effect
(since high-degree nodes are likely to be discovered via their large
neighbourhood). Furthermore, other statistics of the model—like the
occurrence of a community-like structure and small diameter—are
claimed to reflect those of real-world networks.
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15.5.1 The aberration of attachment

We would like to see where attachment models fall in the sparseness-
dichotomy. However, the following lemma shows that there cannot be
a satisfying answer in the current framework:

Lemma 93. Let (Gi) be a sequence of graphs generated by an attachment
process that

• attaches a new vertex by at least two edges, and

• has a non-zero attachment probability for all vertices.

Then for every t > 1, Gn contains a one-subdivision of Kt with probability at
least f (t) > 0, for some function f that depends on the model.

Proof. Fix some t and consider the graph Gt+1. By our assumption on
the model, the vertex vt+1 added in this step has a non-zero probability
to select the vertices v1, v2 as its neighbours. Similarly, the vertex vt+2

in Gt+2 has a non-zero probability to select v1 and v3. Hence the prob-
ability that the vertices vt+1 to v(t

2)
all connect to a unique pair of the

first t vertices and thus generate a graph containing Kt is some func-
tion of t and as a result bounded away from zero.

An immediate consequence of the above lemma is that every attach-
ment model discussed is somewhere dense with non-vanishing prob-
ability. This limbo-state is rather unsatisfactory and we cannot reas-
onably conclude that the graphs generated by such models are struc-
turally dense or sparse. We can only resolve this situation by either
changing the models (while preserving their intended properties) or
our definition of how we determine the sparseness of random graphs.

Open question 14. Is there a useful relaxation of what it means for a
random graph model to be structurally sparse that can be applied to
attachment models?

15.6 small world models

Watts-Strogatz model
Two notable models have arisen in researching the small world phe-
nomenon. Watts and Strogatz proposed the following model [247]
with parameters n, k > log n and a probability p: We start with a
cycle Cn and connect every vertex on the ring to all vertices in its kth

neighbourhood. The resulting graph is equivalent to (Cn)log k/2. Then
for every vertex v, we rewire each of its edges with probability p, that
is, we chose a different endpoint uniformly at random from all n− 1
other vertices.

Their original description leaves out some details of this process,
for example it is not clear whether an edge can be rewired more than
once—however, it seems plausible that these details do not influence
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the outcome too much. A more rigorous analysis for a slightly differ-
ent model was later supplied by Newman and Watts [197] and it con-
firmed the original findings. Depending on the rewiring probability p,
this model generate graphs with average clustering coefficient C(p)
and average diameter D(p) with C(0) ∼ 3/4 and D(0) ∼ n/2k on the
one end of the spectrum, and C(1) ∼ k/n and D(1) ∼ log(n− k) on
the other end4. Hence one can trade off, via the parameter p, a small
diameter against a small clustering and vice-versa.Kleinberg model

A refinement of the above small-world model was proposed by
Kleinberg [158] in his work on small-world routing: while the small-
world property of networks explains why an experiment like Mil-
gram’s can succeed, if falls short of explaining it entirely. We are miss-
ing the algorithmic nature of the experiment! Every participant of the
experiment has only local knowledge, and still, the routing strategy
of selecting the neighbour geographically (or socially) closest to the
target succeeded with very few steps.Greedy routing

Kleinberg’s model is designed to approximate the setting of the ex-
periment and explain not only why the network has a small diameter,
but also why the greedy routing strategy is successful in finding short
paths. The model itself has parameter n, p, q ∈ N and γ ∈ R from
which a graph is generated as follows: starting out with n× n vertices
arranged in the plane, where the vertex vi,j has coordinates (i, j), we
connect every vertex to all neighbouring vertices within distance p,
using the Manhattan-distance

distM(vx1,y1 , vx2,y2) = ‖(x1, y2)− (x2, y2)‖1.

Next, we add to every vertex u a total of q outgoing long-range arcs,
where a vertex v is chosen as the endpoint of the arc with probability
proportional to distM(u, v)−γ.

The parameters p, q have relatively little effect on the model. The
parameter r, however, is crucial for the small-world property and the
success of greedy routing. When γ = 0, the long-range contacts are
uniformly distributed throughout the grid, and one can show that
there exist paths between every pair of nodes of length bounded by
logO(1) n. Kleinberg showed that in the range 0 6 γ < 2, the expected
delivery time of every decentralised algorithm (one that uses only local
information) is Ω(n2/3). When γ = 2, then short paths exist and there
is a decentralised algorithm to transmit a message that takes O(log2 n)
time in expectation between any two randomly chosen points. For a
value γ > 2, the delivery time is Ω(n(γ−2)/(γ−1)).

The intuitive explanation given by Kleinberg for why the number
two has this special property is that since the number of nodes within
distance d grows quadratic with d, the distribution of the length of
long-range edges is uniform. Therefore at every step of the routing

4 To be precise, Newman and Watts determined the expected value of these statistics
and claim that it approximates the average value well.
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Figure 5: Degree distribution of several small-world graph models compared
to that of a collaboration network of High Energy Physics [171]. The
model’s parameter were chosen to reflect the size and density of the
network and averaged over ten iterations.

process, the probability that one can use a long-range arc to make
progress is high.

Both the Watts-Strogatz and the Kleinberg model were created to
explain specific statistics of networks. For this reason, they are not
‘general- purpose’ models that can be used domain-independent. For
example, the degree-distribution of both is atypical (cf. Figure 5). In
case of Watts-Strogatz, the useful range of parameters furthermore
generates rather dense graphs with Θ(n log n) edges. Extensions

The question of efficient routing has subsequently been researched
in several variations of Kleinberg’s model. Franceschetti and Meester
extended the result to continuous objects, again confirming that the
parameter γ = 2 is the precise point at which greedy routing is pos-
sible [108]. Draief and Ganesh proved very similar results for graphs
generated through a Poisson process in the plane [75]. Coppersmith,
Gamarnik, and Sviridenko [50] considered a d-dimensional lattice and
showed that the diameter of the resulting graph is Θ(log n/ log log n)
for γ = d and at least polynomial for γ > 2d. In the range d < γ < 2d
the diameter e is logΘ(1)n. The routing properties of this extension
seem to be unresolved. Notable is also the work by Fraigniaud who
showed that greedy routing schemes exist in graphs of small treewidth
and treelength5 [107].

5 Although he formulated it via the chordality of the graph which in particular bounds
its treelength.
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15.7 kleinberg’s model : dense when useful

Let us continue by considering Kleinberg’s model and the relation
of γ to the structural sparseness. Recall that γ governs the probability
of long-range edges in the second phase of the model and that γ = 2
is the ‘sweet-spot’ for greedy routing. From the construction it is clear
that the model is sparse: the total number of edges is (p + q)n2 (keep
in mind that the number of vertices is n2, not n). And the superficial
similarity of the model to a perturbation of a grid graphs, which by
Theorem 41 has bounded expansion, might tempt us to conclude that
Kleinberg’s model should be structurally sparse. The answer is, as so
often, a little bit more complicated.

The parameters p and q of the model do not influence the asymp-
totic density, hence we will usually assume them to be one. We de-
note by Γp

n the n × n grid embedded on a torus such that a vertex
is connect to all vertices within distance p. For the second phase of
the model, let Λγ,q

n be the n × n random graph (with the same em-
bedding as Γp

n) with the long-range arcs added. The final graph then
is GKL(n, p, q, γ) = Γp

n + Λγ,q
n .Normalisation

We begin by estimating the normalisation constant cγ: recall that
the probability that a vertex u chooses a vertex v as its long-range
neighbour is

Pr[uv ∈ Λγ,q
n ] =

1
cγ · distM(u, v)γ

,

where dist(u, v)M denote the Manhattan distance between u and v in
the embedding. For the vertex u, the normalisation will be

cγ(u) = ∑
u 6=v∈G

1
distM(u, v)γ

.

Since we used a torus for our embedding, the normalisation constant
is the same for every vertex (which is not true for embeddings in the
plane) and we can compute it alternatively as

cγ =
n−1

∑
d=1

f (d)
dγ

,

where f (d) counts the number of vertices at distance exactly d from
any vertex of Γp

n. It is easy to verify that

f (d) =

{
Θ(d) for d 6 n/2,

Θ(n− d) for d > n/2.

We obtain that

cγ =
n/2−1

∑
d=1

Θ(d)
dγ

+
n−1

∑
d=n/2

Θ(n− d)
dγ

.
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Accordingly, the normalisation is

cγ =


Θ(n2−γ) for 1 6 γ < 2,

Θ(log n) for γ = 2, and

Θ(1) for γ > 2.

Let us first investigate the ‘useful’ regime of γ = 2. As it turns out, the
model contains clique-minors of arbitrary size with almost certainty!

Lemma 94. For any p, q > 1 the model GKL(n, p, q, 2) is somewhere dense
with high probability.

Proof. We prove the statement for q = 1, clearly the cases for q > 1
follow from that. Consider a 2 log log n× 2 log log n subgrid of Γp

n. Fix
any set VK of log log n vertices and log log2 n edges EK whose end-
points are mutually disjoint inside this subgrid, along with a map-
ping φ : EK → VK ×VK. We want to find a lower-bound for the probab-
ility that the vertices in an edge st ∈ EK select endpoints (u, v) = φ(st)
for their long-range arc—in which case we have a two-subdivision
of Klog log n in the graph.

For a single pair of u, v vertices inside the subgrid, note that u
chooses v as its long-range neighbour with probability

Θ
( 1

log n distM(u, v)2

)
> Θ

( 1
log n

)
.

and therefore an edge st ∈ EK chooses the ‘correct’ long-range neigh-
bours φ(st) with probability at least Ω(log−2 n). The probability that
all edges EK choose the neighbours a prescribed by φ is therefore at
least Ω(log−2 log log2 n n).

We can partition the n× n grid into n2/4 log log2 n subgrids of size
2 log log n× 2 log log n. Hence the probability that in none of these sub-
grids the above event occurs is at most

(
1−Ω(log−2 log log2 n n)

) n2

4 log log2 n = exp
(
−Ω

( n2

log2 log log2 n n

))
.

We conclude that GKL(n, p, 1, 2) and thus GKL(n, p, q, 2) for any q > 2
contains a two-subdivision of Klog log n with high probability.

The above proof can be easily extended to higher dimensional lattices.
What about the other ranges of γ? For the regime γ > 2 we run

into the same problem as for the attachment models: the probability
that Θ(t)× Θ(t) subgrid contains Kt as an r-shallow minor is only a
function of t and r:

Observation 6. For any p, q > 1 and γ > 2 the model GKL(n, p, q, γ)

contains a one-subdivision of Kt with probability at least f (t) > 0, for some
function f .
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As with the attachment models, the research of the regime γ > 2 there-
fore needs to take place under a different framework then asymptotic
convergence to zero or one. For γ = 1 the model degenerates to a per-
turbation of the grid Γp

n, which by Theorem 41 has bounded expansion
with high probability.

Open question 15. Is the Kleinberg-model structurally sparse for the
parametric range 1 < γ < 2?

15.8 other models

The network literature is full of models and keeping up with them
is often hopeless. The above selection of models constitutes a solid
baseline on which we can build further results. We mention some more
well-known models here and try to relate them to the above results.Random intersection graphs

Karónski and Singer-Cohen [228, 151] introduced random intersec-
tion graphs. They are formed by drawing a random bipartite graph
between n objects and m attributes and projecting the attribute-connec-
tions into the objects (i.e. two objects are connected in the final graph
if they share a common attribute). Among other uses, the model has
applications in network epidemiology [36, 17] and cybersecurity [21].

The model has a tunable parameter α which determines the num-
ber of attributes relative to the number of objects as well as the edge
probability p in the bipartite graph: we have that m = Θ(nα) and p =

Θ(n−(α+1)/2 (the hidden constants in the Landau notation are further
parameters not important for this discussion).

The graph model is generally denoted by G(n, m, p) and we ob-
tained the following result with respect to its structural sparseness:

Theorem 42 ([89]). Fix a constant α > 0. Let m = Θ(nα) and p =

Θ(n−(α+1)/2. Then, with high probability, it holds that the model G(n, m, p)

• is somewhere dense and has degeneracy Ω(n(1−α)/2) for α < 1,

• is somewhere dense and has degeneracy Ω(log n/ log log n) for α = 1,

• and it has bounded expansion for α > 1.

That random intersection graphs are ultimately spare is not too sur-
prising: a result by Fill, Scheinerman, Singer-Cohen shows that for
α > 6, the model is asymptotically equivalent to sparse Erdős-Rényi
graphs [95]. They conjecture that this could already be true for α > 3,
based on similarities of several phase-transitions in both models.Geometric random graphs

At least in some domains, like protein interaction networks [209],
geometric random graphs seem to be a viable baseline model. Such a
graph is generated using a Poisson point process: in a fixed metric space,
usually [0, 1]2, vertices are randomly placed and connected to all neigh-
bours within some fixed distance r. Such graphs have a degree dis-
tribution that converges towards a Poisson distribution. Appel and
Russo showed [11] that in such a graph, the probability that any two
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vertices are connected is at most (2r− r2)2. Therefore, for small radii
(around r = n−4) we know that the resulting graphs are structurally
sparse, since their density can be stochastically bounded by the dens-
ity of a sparse Erdős-Rényi graph. For large r on the other hand, these
graphs are essentially cliques. It is an interesting question at what
point the phase transition of its structural density lies and how this
point compares to the parameters used in network modelling. RMAT, Kronecker networks

There is a another line of network models based on matrix products
that has received significant attention. Based on the earlier recursive
matrix model (RMAT [41]), Leskovec and Faloutsos devised Stochastic
Kronecker graphs as fast, parallelisable descriptive network models6. In
a nutshell, the model generates a graph by iteratively adding edges
to it, where the selection of the edges’ endpoints follows a stochastic
process that implicitly uses Kronecker-product matrix derived from
a small (usually two-by-two) seed matrix. Stochastic Kronecker net-
works are not only widely used as a baseline network model that can
be fitted to the statistics of a given network, they are also part of the
Graph 500 supercomputer benchmark7. The model is, however, not
without critics. Seshadhri, Pinar, and Kolda empirically and theoretic-
ally established [224] that the degree distribution of graphs generated
using this process contains some very large oscillations not found
in real-world networks. The same set of authors also demonstrated
earlier that graphs generated via the Chung–Lu model behave almost
identical to Stochastic Kronecker graphs [223]—without the expens-
ive fitting procedure needed to estimate the latter model’s parameters.
Moreover, they prove that if the parameters obey certain constraints,
the two models are simply equivalent.

Since these matrix-based models are quite hard to analyse, we can-
not consider them in the scope of this thesis. If the recently noted
similarity to the Chung–Lu model is any indication, we should expect
these graphs to follow a very similar dynamic as the characterisation
provided by Theorem 40: if the tail-bounds of the resulting degree dis-
tributions are sufficiently strong, we should expect these graphs to be
structurally sparse.

Open question 16. For which range of the parameter r are geometric
random graphs structurally sparse and for which structurally dense?

Open question 17. Assume we are given two random graph mod-
els GR

1 ,GR
2 with respective parametrisations ρ1,ρ2, and assume that

both models have bounded expansion a.a.s. Under what circumstances
does the joint model

GR
1 (n, ρ1(n)) ∪ GR

2 (n, ρ2(n))

again have bounded expansion?

6 The classification of descriptive and generative is a little blurry here since one could
potentially argue that some kind of generative process is modelled.

7 See http://www.graph500.org/.

http://www.graph500.org/
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T H E G R A D O F R E A L - W O R L D G R A P H S

Determining the grad of a given graph exactly turns out to be rather
difficult: enumerating all possible minor models is certainly infeasible,
even for 1/2-shallow topological minors, and so far no better algorithm
exists. While finding fixed graphs as minors or topological minors is
possible in polynomial time, in the context of structural sparseness we
are not interested in a fixed shallow minors; we are interested in their
density. In particular, we do not know whether the densest shallow
minor will be tiny or span the whole host graph! Therefore, we need
a good proxy to estimate the structural sparseness (or lack thereof);
that is, we need one of the parametrised graph measures introduced
in Chapter 3 that can be used to define graphs of bounded expansion. Classes vs. instances

The second problem is that we are working with single instances
here; and all ‘flexible’ notions of sparseness (excluding a minor, hav-
ing bounded degree, bounded expansion, etc.) are difficult to apply.
We will begin by presenting a possible solution to this problem: a com-
parison of a graph’s structural properties to random baseline model
from which we know that it (asymptotically) generates sparse or dense
instances. We introduce a special type of plot that lets us reason, and
sometimes conclude, whether a network should be considered struc-
turally sparse or dense. On the way, we will introduce the different
data sets used in our experiments.

16.1 augmentation indegrees and aug-aug plots

As demonstrated in Chapter 7, the maximum indegree of dtf-augment-
ations constitutes an alternative definition for classes with bounded
expansion. Moreover, the computation of these augmentations is re-
latively fast and feasible for even large networks. To normalise the
resulting data, we compare it to graphs generated with the configur-
ation model (alternatively the Chung–Lu model) replicating the de-
gree distribution of the target network: With Theorem 40 as a solid
theoretical backdrop, we know whether or not to expect structurally
sparse graphs depending on the tail of the degree distribution. This
shifts the problem into a well-studied area of statistical analysis and
we can build on previous work (and implementations!) to come to a
conclusion. The detailed procedure looks as follows. Choose a preci- Aug-aug plots

sion parameter N ∈N and execute these four steps:

1. Generate dtf-augmentations ~G1, ~G2, . . . of the network until no
further arc can be added.

213
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2. Generate dtf-augmentations ~Hi
1, ~Hi

2, . . . of a random graph Hi =

GCF replicating the degree distribution of G for 1 6 i 6 N. Again,
we augment until no further arc can be added.

3. Compute the sequence st := ∆−(Gt)/ M[(∆−(Hi
t))16i6N ], i.e. di-

vide the indegrees of the network’s augmentation by the median
of the random graphs’ indegrees.

4. Normalise the sequence (st)t∈N such that maxt st = 1.

Note that by Corollary 4, computing dtf-augmentations until no fur-
ther arc is added is enough: if ~Gd+1 = ~Gd, then necessarily ~G>d = ~Gd.

With the above measurement, we then create the aug-aug plot by
plotting (st). To compare the densities of the network and the random
baseline, we compare the plot to the 45◦-line. If (st) lies above it, we
conclude that the network has higher structural density than a random
graph with the same degree sequence. If (st) lies below, it has less.
The decision of whether G is structurally sparse or not then depends
on whether the random graph is structurally sparse. This decision, in
turn, can be made using Theorem 40 and known techniques: if the tail
of the degree distribution of G is best described by cubic or supercubic
function, the random graphs generated from it are structurally sparse.
If the tail is subcubic, they are structurally dense.Estimating tails

Let us begin at the last step: the shape of the degree distributions.
Luckily, the theoretical work by Clauset, Shalizi, and Newman [49]
has subsequently been turned into a user-friendly python package by
Alstott, Bullmore, and Plenz [7]. For a given data set it provides fitting
for all distributions in Table 1 (except Gaussian) and enables us to
pairwise compare likelihood-ratios for these fittings. The fact that we
are interesting in the shape of the tail gives us some leeway; we do
not have to decide which distribution shape matches best but only in
which regime (subcubic, cubic, supercubic) the tail of the distribution
resides. Note that for all distributions except power laws, all higher
moments exists and therefore, by Chebyshev’s inequality for higher
moments, we have arbitrarily strong polynomial tail-bounds.

We devise the following statistical test: given the likelihood ratios
R(D1, D2) for all distribution-pairs D1, D2, we sum up the positive val-
ues for all distributions. For example, if R(D1, D2) = 0.5, we add 0.5 to
the total weight of the distribution D1. In the case R(D1, D2) = −0.3,
we would add 0.3 to the total weight of D2. If the total weights then
favour exponential or stretched exponential distributions we can im-
mediately conclude that the degree distribution is best described to
have a superpolynomial—and therefore supercubic—tail. We then ex-
pect by Theorem 40 that graphs generated from this distribution are
structurally sparse. If the total weights favour truncated power laws
or lognormal distributions we need to consider the fitted paramet-
ers: if the truncated power law distribution has a reasonable cutoff-
parameter we can still conclude that the distribution has cubic or su-
percubic tail-bounds. We can conclude the same if the lognormal fit is
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not degenerate (i.e. it has reasonable parameters µ, σ). In all other cases
we consider the fitted power-law exponent and decided on whether it
lies below three, is exactly three or lies above three.

In the following sections, we review our findings for our corpus of
real-world networks using the above methodology. Additionally, we
give references and short descriptions of the networks. For better read-
ability, we have partitioned the networks into four sets depending on
their respective number of vertices. The small networks contain up
to 115 vertices, the medium-sized ones between 235 and 839, the large
networks between 1419 and 4941, and the huge networks between 6474
and 58228. The corpus contains a mixture of domains, ranging from
neural networks (Drosophila, C.Elegans) over protein-protein interac-
tion networks (Yeast) to social (Twittercrawl, Bergen) and co-authorship
networks (HepTh,CondMat). Calibrating the tail estimation

Before we begin to assess real-world data, let us test our methodo-
logy in order to get a feeling for the margin of error we have to expect.
We know that the Barabási-Albert preferential attachment model gen-
erates graphs whose degree distribution follow a power law with expo-
nent γ = 3. Hence, our statistical test should be able to clearly identify
the power law in these graphs. In the following table, we summar-
ised the results for graphs generated according to the Barabási-Albert
model, using a parameter of d = 5 (each newly added vertex attaches
to five vertices in the already existing graph).
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γ λ

100 6.22 6.44 4.92 3.63 0.00 3.10 3 · 10−4

500 3.76 5.38 3.70 3.29 0.00 3.05 4 · 10−3

1000 7.66 7.87 11.72 5.57 0.00 2.98 3 · 10−3

5000 9.11 9.11 11.39 6.72 0.00 3.05 6 · 10−7

10000 10.58 10.51 10.49 7.26 0.00 3.09 3 · 10−7

The column γ denotes the proposed pure power law coefficient, the
column λ the proposed exponent for the truncated power law. Note
that the power law coefficient for the truncated power law usually
differs from γ; but we will not need it in the following analysis.

We see that the identified power law coefficient is in all cases close
to the theoretical value of 3 and that the test identifies the distribu-
tion with highest confidence in power law, truncated power law and
lognormal. The difficulty to distinguish between a lognormal distribu-
tion and a power law is well-known. Accordingly, we should favour
the hypothesis of a subcubic tail over that of a supercubic tail in the
following cases:

1. The power law distribution clearly attains the highest score and
the power law-coefficient is γ is below 3.2;



216 16 the grad of real-world graphs

2. or the highest scores are attained by the distributions power law,
truncated power law and lognormal, the proposed power law
coefficient is below 3.2 and the exponential cutoff λ for the trun-
cated power law is on the order of 10−3 or smaller.

We chose the threshold 3.2 to err on the side of caution, informed by
the above calibration with the Barabási-Albert model. In the follow-
ing tables we will, for reasons of space, not display the truncation-
parameter λ for every network, but mention it in the subsequent text
if the need arises.Calibrating aug-aug-plots

Now in order to verify that aug-aug plots are a useful tool to asses
structural sparseness, we need to verify that they can reliably detect
dense substructures—that this is the case in theory is clear, but in prac-
tice the signal-to-noise ratio might be to low. To this end, we generate
the complete graph K50 and subdivided it r times, for r ∈ {0, 1, 5, 10}.
We expect to see a sudden jump in the plot at the augmentation ~Gr+1;
the point where the augmentations ‘discover’ the dense substructure
hidden in the graph. Note that the corresponding random graphs are
relatively sparse since the average vertex degree is quite low (except
for r = 0). We expect to see the significant difference in structural
density to be reflected in the plot.

Figure 6: Aug-aug plot for r-subdivisions of K50.

And indeed, we see that the plots reflect our expectations. For r =

0, the generated graph is simply K50 and the corresponding random
graph is very similar (since we are using the configuration model, it
might be missing a few edges). For r > 0 we see a jump in the aug-aug
plot after precisely r augmentations, that is, in the graph ~Gr+1.

With these two calibrations we can be confident that our assessment
of the structural density of real-world network data is well-founded
both theoretically and empirically. We begin our programme with the
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smallest networks in the corpus and work our way up to the very large
ones.

16.2 small networks

karate The famous network collated by Zachary in 1977 from a
university karate club [252]. The 34 vertices represent members of the
club and the edges personal ties between them.

bergen A network of the University of Bergen’s algorithm group
and their first neighbourhood according to the dblp database. Edges
represent co-authorship of a paper listed in dblp. The data was collec-
ted by Pål Grønås Drange.

dolphins Lusseau et al. [176] observed 62 bottle-nose dolphins
near Doubtful Sounds, New Zealand, during the years 1994–2001. By
observing which dolphins appeared in a school together, they mapped
out the relationship graph. According to the authors the group com-
position of the dolphins was extremely stable due to geographical
factors, and this stability is reflected in the statistics of the network.

lesmiserables This network, created by Knuth [160], contains
77 characters from Victor Hugo’s Les Misérables. The (weighted) edges
represent co-occurrence in the same chapter.

polbooks Valdis Krebs regularly surveyed the political publish-
ing landscape of the US. He started with political books listed on
best-seller lists and then expanded the network using Amazon’s re-
commendation system (which is based on user preferences). The data
consists of 105 books that share an edge if Amazon customers who
bought both books. This network represents his findings in 2004 [163].
In particular, he saw a clear distinction into a conservative and a liberal
cluster, only bridged by two books1.

word-adjacencies In his work on community detection using
eigenvectors, Newman tested his approach using a word-adjacency
network derived from Charles Dickens’ David Copperfield [196]. The
network contains 112 vertices, derived from the 60 most common
nouns and the 60 most common adjectives. A connection between
them indicates that they occur in direct succession in the text (eight
words with degree zero were excluded). Since adjectives are most com-
monly succeeded by nouns in the English language, the graph should
fall into two ‘anti-communities’, that is, an approximately bipartite
graph.

1 See also the article by the New York Times about this network:
http://www.nytimes.com/2004/03/13/arts/13BOOK.html

http://www.nytimes.com/2004/03/13/arts/13BOOK.html
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football Girvan and Newman proposed a community-detection
algorithm [124] based around the ideas of centrality indices. One of
the data sets they collated in order to test their approach is based on
American football teams competing in the 2000 season of Division I.
The 115 vertices represent university teams and an edge corresponds
to a played match. The graph exhibits some natural community struc-
ture due to the set-up of the league.

The following table contains the data resulting from our statistical
analysis of the small network’s degree-distribution. Some of the data
sets are quite small and the tail-estimation needs to be taken with a
grain of salt, in particular in case the result is close to a tie.
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Karate 1.57 3.02 1.52 1.50 0.00 2.87

Bergen 0.00 3.68 0.63 1.72 0.56 3.08

Dolphins 0.00 2.84 0.44 1.03 1.12 5.13

Lesmiserables 2.21 2.22 4.55 1.42 0.00 4.68

Polbooks 1.23 7.83 1.79 2.15 0.00 2.92

Word-adjacencies 3.17 3.17 3.54 2.06 0.00 4.00

Football 11.50 75.70

According to this analysis, we should consider the tails of all except
two small networks as supercubic: the exceptions are Karate, whose
power-law exponent lies far below three (and, not pictured, the trun-
cated power law damping factor is negligible small), and Polbooks. The
latter network’s degree distribution seems to be best described by the
truncated power law d−2.34e−0.04d (excluding the normalisation factor).
Since the exponential damping is quite small and the network contains
only 105 vertices, it is probably better to state that the distribution is
subcubic, but we cannot conclude this with certainty. Finally, Football
caused the power law package to fail with divide-by-zeros and the
above value cannot be taken seriously. A manual inspection of the de-
gree distribution shows that almost half of the vertices have degree
eleven and a quarter of them ten; with a maximal degree of twelve.
This hardly looks like a power law distribution and we have to dis-
miss the above data on this network.
Moving over to the aug-aug plot in Figure 7, we can conclude that the
networks Bergen, Lesmiserables and Word-adjacencies are structurally
sparse: their degree distribution generate structurally sparse graphs
and the aug-aug plot shows that the indegree of their dtf-augment-
ations grows slower than that of those random graphs. The degree
distribution of Karate has a subcubic tail, but the aug-aug plot shows
it way below the 45◦-degree line. We cannot judge with certainty the
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Figure 7: Aug-aug plot of small networks (less than 115 nodes). The networks
are sorted from bottom to top according to largest value of their
respective plot.

density of this network. The same holds for Polbooks, since here even
the degree distribution did not clearly fall into any category.

Finally, Dolphins and Football fall above the 45◦-degree line: they are
structurally denser than the graphs generate from their respective de-
gree distribution. For both networks we cannot make a judgement on
their structural density.

16.3 medium-sized networks

airlines The origin of this network is illusive: its was part of the
example datasets provided with the Gephi graph visualisation soft-
ware, but the corresponding web page claims an ‘unknown origin’.

It contains 235 US airports (with geographical meta-data) and it is
reasonable to assume that the edges represent direct flights.
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sp-data-school Stehlé et al. collected data on face-to-face inter-
actions between 228 students and 10 teachers of a French primary
school using RFID badges. The network used here is the resulting
data set for the second day [231].

c.elegans This network represents the nervous system (the ‘con-
nectome’) of the worm Caenorhabditis Elegans, a small nematode worm
living in soil. The original data was collected by White et al. [249]
and compiled by Watts and Strogatz for their work on small-world
networks [247]. The network has 297 vertices and 2148 edges. It is not
quite clear what synaptic connections the edges represent, the primary
source (Watts’ homepage) is unavailable and the total number of edges
is only 75% of what other sources would indicate2.

codeminer Another network from the Gephi package [1], this net-
work represents the call-graph of Java program. It consists of 724 ver-
tices representing packages (one vertex), classes (79 vertices), fields
(175 vertices), and methods (469 vertices). Arcs between the vertices
represent calls (from method to method) and containments (packages
to classes, between classes, and classes to methods).

cpan-authors This network is a snapshot of the relationship
between Perl developers in the Comprehensive Perl Archiver Network
(CPAN). Two developers are connected by an edge if they use the same
module in their code. The data is part of the Gephi package [1].

The following table contains the data resulting from our statistical
analysis of the medium-sized network’s degree-distribution.
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Airlines 5.17 5.55 9.46 4.06 0.00 2.72

Sp-data-school 0.00 1.11 1.40 2.22 1.40 31.60

C.Elegans 3.50 3.50 6.58 2.43 0.00 3.54

Codeminer 0.97 3.08 1.20 1.15 0.00 3.24

Cpan-authors 7.87 8.12 6.79 4.78 0.00 2.27

We see that the networks Sp-data-school, C.Elegans and Codeminer are
best described as having a degree distribution with a supercubic tail.
Airlines seem to follow a lognormal distribution and Cpan-authors a
truncated power law. However, the proposed parameters for the trun-
cation (λ ≈ 10−5) is so small that we should err on the side of caution
and conclude the degree distribution of Cpan-authors might follow a
power law with exponent around 2.27—clearly in the subcubic regime.

2 See, for example, the worm atlas http://www.wormatlas.org.

http://www.wormatlas.org
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Figure 8: Aug-aug plot of medium-sized networks (between 235 and 839
nodes). The networks are sorted from bottom to top according to
largest value of their respective plot.

We can see from the plot in Figure 8 that the networks Sp-data-school,
Airlines and Cpan-authors are structurally sparser than random net-
works with the same degree distribution. We therefore conclude that
the former two can be called structurally sparse; for Cpan-authors we
cannot make a solid statement. The networks C.Elegans and Codeminer
appear to be slightly denser than their random counterparts, hence
we strictly speaking cannot conclude anything. However, since their
fitted power-law exponent lies way above 3.3, and their plots lie only
slightly above the 45◦-line we can carefully suggest that it is likely that
they are structurally sparse.

16.4 large networks

diseasome Goh et al. [125] created a bipartite graph containing
1777 genes and 1284 genetic disorders listed by OMIM3. An edge
between a gene and a disease indicates a known correlation between
the expression of the gene and the disease. The network data itself was
obtained from the Gephi package and contains 1419 vertices and 2738
edges. It is unclear why the network is smaller than described in the
original paper, potentially it is simply the largest connected compon-
ent.

polblogs Adamic and Glance surveyed the link-patterns between
American bloggers just before the US presidential election 2004 [2].

3 Online Mendelian Inheritance in Man. http://www.omim.org/

http://www.omim.org/


222 16 the grad of real-world graphs

The 1224 blogs clearly fall into a left-vs-right pattern. The above em-
bedding was obtained with a simple force-layout, yet it reflects the
political leanings contained in the original data (light grey indicates
leaning towards Democrats, dark towards Republicans) incredibly well.

netscience Another data set collated by Newman [196] which
reflects the co-authorship of researchers in the networks science field.
The whole network contains 1461 researchers, but the largest connec-
ted component contains only 379 of them.

drosophila In their work on the motion-detection of Drosophila
melanogaster, Takemura et al. map out the connectome of a certain sub-
system contained within the medulla neuropolis of the optic lobe [233].
The resulting network contains 1781 of these subsystems with a total
of 8911 connections between them.

yeast Bu et al. collected protein-protein interaction data of Sacchar-
omyces cerevisiae (Brewer’s yeast) and examined the resulting network
for dense patterns [37]. Such dense patterns, the authors conclude,
seem to correlate well with biologically similar functions and they use
this graph-theoretic approach to predict the function of uncharacter-
ised proteins. The network contains 2361 vertices with 7182 edges, of
which 536 are loops.

cpan-distributions Similar to the ealier described Cpan-authors,
this network is based on the CPAN network [1]. Instead of connecting
authors through packages, this network contains the dependencies of
the 2719 software packages themselves.

twittercrawl Another network from the Gephi package [1],
this network maps out retweets and mentions between twitter users.
Unless other social networks, this network is particularly dense. With
3656 users and 154824, the average degree is almost 85. This can prob-
ably be attributed to the fast-paced nature of the twitter platform.
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power Watts and Strogatz obtained a network representation of
the western US power grid from Phadke and Thorp, who used the
data in their book on computer-controlled relays in power substa-
tions [203]. The network contains 4941 power stations connected by
a total of 6594 in, as expected, a single connected component. Already
the network’s density marks it as an outlier in our corpus; moreover,
the network is—for obvious reasons—close to being planar.

The following table contains the data resulting from our statistical
analysis of the large network’s degree-distribution.
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Diseasome 5.24 5.23 7.78 3.59 0.00 3.39

Polblogs 0.78 4.81 2.01 3.03 0.00 3.69

Netscience 6.88 6.88 15.55 4.70 0.00 4.17

Drosophila 2.08 2.08 4.21 1.35 0.00 3.97

Yeast 1.85 11.85 3.22 3.96 0.00 3.46

Cpan-distr. 25.46 25.39 19.01 8.86 0.00 3.67

Twittercrawl 3.55 3.55 8.22 2.38 0.00 5.75

Power 4.70 4.67 6.66 2.58 0.00 10.44

According to this data, we postulate that all listed network have degree
distributions whose tail is best described by a supercubic function.
This might seem surprising for Twitter, but a subjectively high average
does not imply the presence of dense structures.
The aug-aug plot for large networks in Figure 9 clearly shows that
Power, Diseasome, Netscience, Drosophila and Polblogs are sparse. The
interesting behaviour of the Power-plot is probably due to it being
close to a planar graph and having a comparatively high diameter
(around 46). For such networks the comparison to GCF is probably not
a good choice since its statistics, other than the degree-distribution,
are not well-replicated. However, we can use our domain-knowledge
to make a judgement: since the power network will certainly only have
a small number of crossings per edge in its real-world embedding, we
can conclude that it has bounded expansion [193].

The plots of Yeast and Cpan-distributions lie slightly above the 45◦-
line. We therefore cannot assess the structural properties of these net-
works with finality, but since the plots do not diverge drastically and
the networks’ degree distributions are supercubic by a comfortable
margin, we suggest that it is more likely that they are structurally
sparse than dense.
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Figure 9: Aug-aug plot of large networks (between 1419 and 4941 nodes). For
the networks Power, Polblogs and Drosophila only the first twelve
augmentations were computed.

16.5 huge networks

as jan 2000 Autonomous systems are logical subunits of the inter-
net, networks controlled by a single administrative entity. The Route
Views project4 by the University of Oregon regularly provides rout-
ing information. As part of the Border Gateway Protocol (BGP), each
router of an AS facing the outside world maintains a list of peers
with which it exchanges routing information. This peer-relationship
between 6474 autonomous systems forms, aggregated for over one
month, the network. The network is part of the Stanford Network
Analysis Project (SNAP) collection [172].

hepth In his work on scientific collaboration networks, Newman
collected several data sets from four databases [194]. The HepTh net-
work consists of 7610 scientists from the field of theoretical high-energy
physics. An edge between scientists indicates a co-authored paper
within a five year window (1995–1999). The average number of collab-
orations is around four and the largest connected component contains
roughly 76% of all nodes.

gnutella Gnutella is a peer-to-peer file sharing network that, as
many other such networks, was established in the early 2000s. Ripeanu,
Iamnitchi, and Foster used a crawler in August 2002 to measure the
growth, traffic, and topology of the Gnutella network [212]. In total

4 http://www.routeviews.org/

http://www.routeviews.org/
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there exist nine snapshots of the network, the one used here is from
August 4th. The network consists of 10876 nodes connected by al-
most 40000 edges.

ca-hepph Similar to HepTh, this network contains the collabora-
tion data of 12008 scientist conducting phenomenology research in
high-energy physics (the more applied part of that field). Below is an
excerpt of the network, the largest connected component of its 6-core.

Its average number of collaborations is much higher (almost 20) than
in the theoretical field, probably testimony to either a different collab-
oration culture or larger author-sets per paper5. The data was obtained
from the Snap corpus [172].

condmat A second collaboration network for scientist working
in condensed-matter physics, collated by Newman [194]. The average
number of collaborations is slightly higher than in high-energy phys-
ics (5.9) and the network itself is with 16264 vertices more than twice
as large. The largest connected component contains 85% of all vertices.

enron In October 2001 a huge scandal about fraudulent practices
of the American energy company Enron came to light, ultimately lead-
ing to its bankruptcy. The Federal Energy Regulatory Commission in-
vestigated the company and acquired email data of 158 employees.
Subsequently, Andrew McCallum bought the database and made it
publicly available. Klimt and Yang presented a cleaned-up version of
the data [159] and finally the network was created for the Snap cor-
pus [172]. The network contains 36692 email addresses and the 183831

5 For example, the complete subgraph in the upper left corner of the figure is probably
due to a single workshop paper [9].
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edges represent communication between them (and edges exists if at
least one email was sent from one address to the other).

brightkite Brightkite was a location-based social network, mean-
ing that users could ‘check-in’ at certain locations (usually restaurants,
cafes etc.). Cho, Myers, and Leskovec collected the social network data
alongside these check-ins; providing not only social but also geograph-
ical information [44]. With 36692 users connected by 183831 friend-
ships (an average of 10 friends per user) this network is the largest
one in our test corpus.

The following table contains the data resulting from our statistical
analysis of the huge network’s degree-distribution.
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AS Jan 2000 6.05 6.82 8.18 4.42 0.00 2.17

HepTh 0.30 15.86 3.26 5.94 0.00 3.78

Gnutella 18.92 18.92 19.88 10.43 0.00 5.40

ca-HepPh 8.57 44.20 18.78 27.51 0.00 2.11

CondMat 3.85 10.61 5.33 4.66 0.00 3.80

ca-CondMat 2.81 8.42 4.42 4.58 0.00 3.58

Enron 53.43 62.62 47.66 32.81 0.00 2.11

Brightkite 7.65 16.90 12.00 14.45 0.00 2.56

We can immediately conclude that the degree distribution of HepTh,
Gnutella, CondMat, and ca-CondMat is best described by a function
with a supercubic tail. The network AS Jan 2000 seems to best fol-
low a lognormal distribution for which we could conclude the same,
however, the statistical evidence of this distribution over a low-degree
power law is not extremely high. A similarly fuzzy picture is presented
by ca-HepPh: the evidence for a truncated power law seems extremely
high, however, the truncation parameter is quite small (λ ≈ 0.003),
while proposed power law coefficient is below two (for the truncated
case it is α = 1.64). Similarly, we find an very small cutoff parameter
(γ ≈ 0.004) for the Enron network and we suggest that it is best de-
scribed by a function with a subcubic tail, although we stress that the
evidence is not conclusive. Brightkite poses a similar problem and we
cannot conclude with absolute certainty how its degree distribution
should be described.
The aug-aug plot in Figure 10 suggests that all networks except Gnu-
tella appear to be sparser than the corresponding random graphs.

Considering the collaboration networks HepTh, Condmat, ca-HepPh,
and ca-CondMat, it seems reasonable to conclude that they are struc-
turally sparse—we see that this is clearly true for HepTh and there is
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no reason to believe that the further augmentations of the other three
networks behave differently. While variating densities due to differ-
ent publishing cultures (in particular the typical number of authors
on a publication) is plausible, a variating structural density is not: the
underlying processes generating these networks are too similar.

Note that HepTh shows the same trend in the first three augment-
ations as Condmat, ca-HepPh, and ca-CondMat (it is hard to make out
due to scaling for HepTh). We can see a similar trend in smaller net-
works, but it is undeniably pronounced in the very large ones—-and
from what is known about complex networks, we should expect it!
Since real-world data often shows high clustering, which is not rep-
licated in random graphs generated with the configuration or the
Chung–Lu model, the local density of the real data should be higher
than its artificial replicate. We will discuss this issue further in this
chapter’s conclusion.

We are left with the two largest networks of our corpus, Enron and
Brightkite. If the other large networks are any indication, we should ex-
pect these two networks to be sparser than their random counterparts.
But since we could only compute the first five augmentations, this can
only be a preliminary assessment.

16.6 a verdict

In this chapter we tried to answer the question whether real-world
networks are structurally sparse empirically, using the results from

(a) Full (b) Truncated

Figure 10: Aug-aug plot of huge networks (between 6474 and 58228 nodes).
The plots on the left were computed for the full set of augment-
ation, the plots on the right had to be truncated due to memory
and time consumption. For Brightkite and Enron we computed the
first five augmentations, for ca-HepPh and ca-CondMat the first six
and for CondMat the first eight.
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Chapter 15 as the theoretical foundation. The convenient statistical as-
sessment available through the power law package made it, in most
cases, easy to decide how the degree distribution of a network should
be classified; and the juxtaposition of real-world structural density
with that of corresponding random data in the aug-aug plots gave
us the means to extend this classification to our network corpus. In
summary, we decided that the networks Bergen, Lesmiserables, Word-
adjacencies, Sp-data-school, Airlines, Diseasome, Polblogs, Netscience, Dro-
sophila, Power, HepTh, ca-HepPh, CondMat, and ca-CondMat are struc-
turally sparse. We suggest that the networks Celegans, Codeminer, Cpan-
authors, Yeast, Cpan-distributions, Enron, and Brightkite are structurally
sparse but cannot conclude it with certainty due to either missing data
or an unclear assessment of their degree distribution. Finally, for the
networks Karate, Dolphins, Poolbooks, and Football our framework fails
and we cannot provide any answer.

While it would be more satisfying to have a full judgement on every
single network presented here, note that what we did not find: not a
single network in the corpus presented clear evidence of being struc-
turally dense. The emerging picture is clear: complex networks are
structurally sparse.
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C O M P U T I N G L O W T R E E D E P T H C O L O U R I N G S

One of the most versatile tools developed in the structural sparse-
ness programme by Nešetřil and Ossona de Mendez are the low-
treedepth colourings: These colourings are the closest we have to a
decomposition of sparse graphs. However, the algorithms presented
so far [189, 192] to compute such colourings turn out to be impractical.
Recall that the basic idea is to stepwise augment a directed version of
the target graph with fraternal and transitive edges, for a total f (p)
number of steps. Any proper colouring of the resulting graph ~G f (p)
then is a p-centred colouring of the original graph.

In practice, however, the number of augmentation needed is far less
than the theoretical bound f (p) (which grows faster than exponential
in p). Hence it makes sense to interleave the augmentation process by
a routine which colours the graph and checks whether the colouring is
already p-centred. To implement such a check efficiently is a challenge
in itself. Moreover, what colouring heuristic should one use? Since the
augmentations have provably bounded degeneracy if the target graph
has bounded expansion, we could simply use the colouring number
of the augmentations. Again, in practice colouring heuristics improve
that theoretical bound by a wide margin. The orientation of fraternal
edges (which for theoretical purposes one simply does by choosing the
acyclic orientation available due to bounded degeneracy) is another
subtle component that might benefit from heuristical tweaking.

As a result of all these uncertainties, we created a framework which
allowed us to easily exchange the different modules of the algorithm
and to test different configurations. Kevin Jasik deserves credit for
implementing most of the framework.

Our experiments showed that the choice of colouring routine and
orientation strategy has an influence on the resulting number of col-
ours, the effect is however not consistent enough across the tested
instance to determine a universally superior combination. Three other
improvements of the algorithm did, however, show remarkable im-
provements:

1. Using dtf-augmentations
The dtf-augmentations introduced in Chapter 7 do not only al-
low slightly better theoretical bounds on the number of aug-
mentations necessary, they also solve an inherent problem of tf-
augmentations. Namely, that transitive arcs added at step t tend
to span much larger distances than fraternal arcs. The introduc-
tion of distances in the dtf-augmentations forces both types of
arcs to ‘grow’ at a similar rate.

229
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2. Removing high-degree vertices
By simply assigning the top k vertices of highest degree a unique
colour, we can remove them from the graph and use the algorithm
to obtain a p-centred colouring for the remainder. Since networks
are very heterogeneous, this heuristic both improves the running
time and the number of colours significantly. By trying some val-
ues for k, one can hone in on a good value from below, until
either the colouring number does not decrease any more or the
running time grows too large.

3. Postprocessing
Given a p-centred colouring c and a routine that verifies that
property, it is straightforward to test whether any two colour
classes can be merged to obtain a colouring c′ with less colours.

17.1 the small network benchmark

In order to assess what components of the tf-framework work best,
we tested different configuration on a set of small networks. Since the
number of total configuration is prohibitively large, we variate only
a single component at a time. There is the remote possibility that a
weird combination of otherwise inferior components work incredibly
well together. We deem, however, this possibility unlikely enough to
forgo the brute-force testing of all variations.Choice of augmentation

tf-augmentations vs . dtf-augmentations We settle the fun-
damental question first: do dtf-augmentations help our case?

p

Network 2 3 4 5 6

Bergen 22 27 27 27 27

Dolphins 13 34 34 41 41

Karate 10 15 15 15 15

Lesmis. 23 23 29 29 29

Polbooks 21 37 60 60 60

(a) Tf-augmentations

p

2 3 4 5 6

22 26 26 26 26

13 26 32 32 32

10 15 15 15 15

23 23 28 28 28

21 30 45 45 59

(b) Dtf-augmentations

Table 2: Comparison of colouring numbers on small networks using tf- and
dtf-augmentations. The colouring heuristic used was ’Greedy’ and
no postprocessing for colour reduction was applied.

The above table clearly shows that it does in our benchmark setting.
All other components kept equal, the number of colours decreases in
almost all cases, sometimes significantly. It is to be expected that ulti-
mately, the two should roughly arrive at the same number. However,
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the slower growth makes dtf-augmentations clearly the better practical
choice. Colouring

colouring heuristics Within the tf-framework, we tested four
well-known colouring heuristics. First, the Greedy heuristic iterates
through the vertices in an arbitrary order and assigns a vertex v the
lowest1 colour that does not appear in its neighbourhood. The Max-
imum Degree heuristic iteratively chooses the next uncoloured vertex
of highest degree and colours it by the lowest available colour. The
heuristics Minimum Degree, Maximum Indegree and Minimum Indegree
work accordingly, where the latter two take into account the directed
nature of the augmentations. Finally, the Degree Saturation heuristic
chooses that vertex that sees the largest number of colours in its neigh-
bourhood and again colours it by the next available colour.

Bergen
Dolphins

Karate
Lesmis.

Polbooks

DSatur Greedy MaxDeg

2 3 4 5 6

Bergen
Dolphins

Karate
Lesmis.

Polbooks

MaxInDeg

2 3 4 5 6

MinDeg

2 3 4 5 6

MinInDeg

Figure 11: Relative performance of six colouring heuristics on five small net-
work instances. The horizontal axis denotes the colouring num-
ber χp for 2 6 p 6 6. A white square indicates that the heuristic
provided the minimum number of colours among all heuristics.
The darker the square, the higher the number of colours.

The benchmark results are visualised in Figure 11. The Degree Satur-
ation seems to be favourable in three of five instances and might be
well complemented by Maximum Indegree and Minimum Degree. Since
the variation is not incredibly large for these latter three and Degree
Saturation performs well across all instances, we chose it as the colour-
ing heuristic in the sequel. Orientation

orientation heuristic When we proved the bounds on the
growth of dtf-augmentations in Chapter 7, orienting the fraternal edges
in an acyclic fashion was an important ingredient of the proof. Since

1 We consider colours as ordered.
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our goal is to bound the maximum indegree of the resulting orient-
ation, we can improve this orientation strategy by taking into con-
sideration the already present indegree of vertices. To be more pre-
cise: in the dth dtf-augmentation, i.e. building the graph ~Gd from ~Gd−1,
let F be the set of fraternal edges. In the unweighted strategy (the one
used in the proof of Lemma 34), we compute an acyclic orientation
of G[V(F)], using its degeneracy-order, to choose the orientation for F.
In the weighted strategy we adjust the computation of the degeneracy-
order as follows: let S ⊆ G[V(F)] be the vertices already removed from
the graph. Instead of choosing the vertex v ∈ G[V(F) \ S] of minimal
degree next, we choose that vertex v that minimises the quantity

d−~Gd−1
(v) + degG[V(F)\S](v).

Again, we compared the two strategies using our benchmark networks.

2 3 4 5 6

Bergen

Dolphins

Karate

Lesmis.

Polbooks

Weighted

2 3 4 5 6

Unweighted

Figure 12: Relative performance of the two orientation strategies on five
small network instances. The horizontal axis denotes the colour-
ing number χp for 2 6 p 6 6. A white square indicates that the
strategy provided the minimum number of colours colours among
all heuristics. The darker the square, the higher the number of col-
ours.

The result are visualised in Figure 12. The absolute difference in per-
formance, i.e. the number of colours, is not very high. The weighted
strategy seems to perform better for higher colouring numbers, but in
conclusion the orientation strategy seems to have far less of an impact
than the colouring heuristic employed.

17.2 testing centred colourings efficiently

As alluded to before, the one expensive and recurrent task which
makes heuristical improvements even possible is an efficient algorithm
that tests whether a given colouring is p-centred. The benchmark here
is not simply the asymptotic complexity of such an algorithm (we of
course demand that it is reasonable), but rather whether it performs
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well in the given task. Let us start our with a simple, efficient algorithm
and engineer it towards an applicable one. The basic algorithm

In order to test whether a colouring c of a graph G is p-centred, we
need to proceed as follows: for every subset C ⊆ c(G) with |C| < p,
we test whether c is a centred colouring for the subgraph G[C] , i.e.
every connected subgraph of G[C] contains a centre. Testing inductively

The first obvious improvement is using induction over the colour
sets. Assume we have verified that all colour sets with a most i colours
induce centred subgraphs. Testing a colour set C of cardinality i + 1
then reduces to testing whether G[c−1(C)] contains a centre. To see
that, observe that if a ∈ C is the colour of a centre of G[c−1(C)], then
the components of

G[c−1(C \ {a})] = G[c−1(C) \ c−1(a)]

each receive at most i colours. By induction, the colouring c is centred
in these components, and therefore the same holds for G[C]. Testing by connectivity

If we stick with the inductive approach, another improvement re-
veals itself: assume we have verified that a set C ⊆ c(G) induces a
centred subgraph in G. Let a ∈ c(G) \ C be a colour not contained
in C. Then verifying that G[C ∪ {a}] is centred boils down to the fol-
lowing basic question: if a vertex v coloured a connects several con-
nected components of G[C], is the colouring still centred? If no other
vertex coloured a connects to any of these components, the answer is—
by induction—yes. If on the other hand more vertices coloured a are
connected to them, then clearly a is not the centre colour. But to de-
termine whether the resulting connected component of G[C∪ {a}] has
a centre, it is enough to know the frequency of each colour in mem-
bers of K(G[C]). In fact, it is enough to know whether the frequency
is zero, one or above one.

Let us define a data structure D with the following semantic: for
a colour set C ⊆ c(G) and a vertex v ∈ c−1(C), KC[v] contains the
connected component of v in G[c−1(C)], i.e.

KC[v] = KC[w] ⇐⇒ v, w are connected in G[c−1(C)].

Additionally, for each component in KC, we store the corresponding
colour frequencies F. Let b ∈ C be a colour, then

FC[KC[v]][b] = |c−1(b) ∩ KC[v]|.

With the help of these data structures we can implement the following
algorithm (listed as Algorithm 3) to test p-centred colourings: by using
a traversal of the p-sized subsets of c(G) that before listing a set C
will always list some subset with C′ = C ∪ {a}, we can compute KC
from KC′ using very efficient union-find operations. If at any point we
find that FC[KC[v]], for some vertex v, contains no colour of frequency
one, then c is not p-centred.

Instead of storing the actual frequencies, we can simply truncate all
values in FC above 2 and use only two bits per counter. Furthermore,
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because we use the above described traversal of the colours, only p
data structures K, F need to be kept in memory at a time. Kevin Jasik
implemented Algorithm 3 which made it possible to compute reason-
able colouring in the first place.

Input: A graph G with vertex-colouring c, and integer p.
Output: True iff c is a p-centred colouring of G.
Let c(G) = [`]

C ← [1]
while C 6= ∅ do

for v ∈ c−1(C) do
if @b : FC[KC[v]][b] = 1 then

return false

if |C| < p and C[0] < ` then
a← C[0] + 1
FC+a, KC+a ← merge(FC, KC, a)
C ← [a] + C

else
while |C| > 0 and C[0] = ` do

C ← C \ C[0]

if |C| > 0 then
C[0]← C[0] + 1

return true

function merge(FC, KC, a)
KC+a ← KC
KC+a[v]← v and FC+a[KC+a[v]][a]← 1 for v ∈ c−1(a)
FC+a[KC+a[v]][b]← 0 for v ∈ c−1(a), b ∈ C
for v ∈ c−1(a) do

for u ∈ N(v) ∩ c−1(C) do
for b ∈ C ∪ {a} do

FC+a[KC+a[v]][b]← FC+a[KC[u]][b]

KC+a[u]← KC+a[v]

return FC+a, KC+a

Algorithm 3: Efficient verification of a p-centred colouring.

17.3 colouring the corpus

With the above mentioned improvements and heuristics, we applied
the resulting algorithm to the previously described networks. A lot of
the work was done by hand—although it could easily be automated.
This includes the choice for how many high-degree vertices have been
removed from the network before the colouring algorithm was applied
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and how long the subsequent colouring-improvement routing was al-
lowed to run.

In Table 3 we have summarised our findings. We computed, if pos-
sible, the first six centred colouring numbers, where the column p = 2
simply contains the size of a proper colouring and p = 6 a six-centred
colouring, meaning that up to five colours induce a graph of low
treedepth. We further, using an implementation Tobias Räderscheidt
based on an algorithm by Fernando Sánchez Villaamil, computed an
upper-bound for the treedepth of the network.

The results of our colouring look mixed. Some networks have a de-
cently low colouring numbers (sometimes even very low treedepth
as in the case of Netscience). We can expect that algorithms based on
these colourings have little trouble to run on instances like Codeminer,
Cpan-authors, Diseasome, Netscience, Cpan-distributions, and Power.

For those networks with high colouring number, there are several is-
sues to keep in mind. Some networks (e.g. Twittercrawl, Sp-data-school)
already have a large colouring number (the column p = 2): we es-
tablished that they are structurally sparse, but the constants involved
might doom any attempt at applying our toolkit in practice to fail.
For others, like Gnutella, CondMat, ca-CondMat, Enron, and Brightkite,
there is still hope that our algorithm is simply not specialised enough.
Note also that the post-processing step is rather efficient if the colour-
ing already contains few colours (and in that case, often reduces the
number of colours by a sizeable fraction), but absolutely fails in case
of many colours. This bias increases the gap between low and high
values and might skew the results significantly. Future improvements

Finally, note that our algorithm sometimes (cf. the result on Polbooks,
Netscience, Yeast, CondMat) uses more colours than the treedepth of
the respective network. This clearly shows that there is potential for
improvement since it holds that χp(G) 6 td(G) for all p ∈ N. It
remains an intriguing open question whether this can be achieved
by a different colouring routine, a different orientation heuristic, or
whether an entirely different type of algorithm is needed.
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Figure 13: A five-centred colouring (using 21 colours) of Netscience (largest
connected component shown). The right half is restricted to a a
subgraph formed by four colour classes. Below, the correspond-
ing representation by graphs of treedepth at most four (with
multiplicities noted).
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p

Network Nodes Edges 2 3 4 5 6 ∞

Karate 35 78 6 7 9 9 10 8

Bergen 53 272 17 19 20 20 20 22

Dolphins 62 159 7 11 17 18 19 24

Lesmiserables 77 254 10 15 16 16 16 16

Polbooks 105 441 8 16 22 29 31 30

Word-adj. 112 425 8 18 27 35 41 48

Football 115 613 9 22 33 49 62 69

Airlines 235 1297 11 28 39 47 55 64

Sp-data-school 238 5539 23 100 138 157 168 171

C.Elegans 306 2148 8 36 74 83 118 153

Codeminer 724 1017 5 10 15 17 23 51

Cpan-authors 839 2212 9 24 34 43 47 224

Polblogs 1224 16715 30 118 286 354 392 603

Diseasome 1419 2738 12 17 22 25 30 30

Netscience 1589 2742 20 20 20 21 24 20

Drosophila 1781 8911 12 65 137 188 263 395

Yeast 2284 6646 12 38 178 254 431 408

Cpan-distr. 2719 5016 5 14 32 42 56 224

Twittercrawl 3656 154824 89 561 1206 1285 1341 –

Power 4941 6594 6 12 20 21 34 95

AS Jan 2000 6474 13895 12 29 70 102 151 357

HepTh 7610 15751 24 25 104 328 360 558

Gnutella 10876 39994 8 43 626 – – –

ca-HepPh 12008 118489 239 296 1002 – – –

CondMat 16264 47594 18 47 255 1839 – 1310

ca-CondMat 23133 93497 26 89 665 – – –

Enron 36692 183831 27 214 1428 – – –

Brightkite 58228 214078 39 193 1421 – – –

Table 3: Number of colours in p-centred colourings computed on real world
networks and upper bounds of their respective treedepth.





Part V

C O N C L U S I O N

But just because something does not have an ending
doesn’t mean it doesn’t have a conclusion.

— Iain M. Banks, Use of Weapons
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S T R U C T U R A L S PA R S E N E S S A N D C O M P L E X
N E T W O R K S

We motivated the programme of this thesis by observing that the
rising popularity of network science, a field fundamentally involved
with sparse graphs, currently does not translate into a rising pop-
ularity of the theory of structurally sparse graphs. Our explanatory
attempts left us with the conclusion that a primary factor in this issue
is lacking evidence of this theory being applicable to network science.
Accordingly, we framed this issue in the programmatic question

“Can the algorithmic tools derived from the theory of
structurally sparse graphs be applied to real-world data?”.

And now, having thoroughly treated several different aspects of this
question, we can formulate an answer: Yes, the overall indications to-
wards the applicability of such algorithmic tools are positive. The ‘right’ notion of sparseness

Nowhere dense and bounded expansion classes turned out to be the
points at which the magisteria of structural graph theory and network
science overlap: we have seen both theoretically and empirically that
network data exhibits these notions of sparseness. We can be reason-
ably certain that no stricter notion of sparseness holds in these half-
organised, half-disorganised data sets: the innate robustness provided
through the Nešetřil-Ossona de Mendez dichotomy, which is in partic-
ular exhibited through invariance under minor-flavours and algebraic
stability, is simply missing from other frameworks. Algorithmic aspects

The existence of broad algorithmic meta-theorems—in form of first-
order model checking and our improvements of the meta-kernelisation
framework—clearly show that structural sparseness can even in its
most general form be successfully exploited to improve algorithmic
tractability. While these results are purely theoretical, they provide
the umbrella under which further research into more applicable al-
gorithms can flourish—not unlike the graph minor theorem and Cour-
celle’s theorem did for parametrised complexity. And hand-crafted al-
gorithms, like Dvořák’s approximation for r-Dominating Set and our
routine to compute r-neighbourhood sizes, demonstrate that such ap-
plicable algorithms are within reach.

We further saw how the restrictions imposed by working with these
most general notions resulted in a kernelisation for Dominating Set
that has a decent chance of being actually applicable, since it does not
rely on practically infeasible decomposition theorems1—provided that

1 As Dániel Marx put it once: “If the constants in the Roberston-Seymour theorem are
your friends, you don’t need enemies.”

241
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our worst-case estimates are not actually met in practice, a reasonable
assumption.

The algorithmic toolkit that exploits structural sparseness has great
potential in the area of big-data graph analysis: not only run the
provided tools in linear time, they also seem to favour parallel im-
plementations due to their inherently local nature. And this is before
we engineer the algorithms further to factor in network-specific prop-
erties like the small-world property or the skewed degree distribution.
As our colouring experiments showed, real-world networks are much
more tractable than our pessimistic worst-case estimates derived from
the bounded expansion property would let us believe.Questions related to complex

networks Several of the presented results from structural graph theory can,
through the connection to complex networks presented here, be turned
around to ask intriguing questions. The aforementioned claim of dens-
ification [171] is irreconcilable with our claim of structural sparseness,
unless we posit that densification is an early-stage phenomenon that
subsides during a networks’ evolution. Since domain-specific consid-
erations stand in stark contradiction with densification and the em-
ployed methodology of detecting power laws has noted flaws, further
research into when a network’s early-stage development undergoes a
transition into a steady-state evolution is warranted.

The very unsatisfactory state of attachment models with respect to
our framework highlights a flaw in how we treat properties of random
graphs; we need to certainly go beyond the all-or-nothing asymptotics
in order to evaluate structural density of models in practical settings.
On the other hand, this also highlights a flaw in the models: with some
non-vanishing probability, they generate extremely degenerate cases.
Our case—the appearance of an arbitrarily large one-subdivided com-
plete subgraph—is only one possible manifestation of this aberration;
one could think of any possible scenario involving shallow minors
and find that the probability of it occurring will be bounded away
from zero, resulting in the generation of atypical instances.

Finally, our application of dtf-augmentations to our network cor-
pus has uncovered an interesting fact: the first augmentation of a net-
work has usually a higher maximum indegree than the randomly gen-
erated baseline networks, while the subsequent augmentations have
a lower maximum indegree. This ties in beautifully with the known
drawback of the configuration model and the Chung–Lu model: they
do not replicate clustering, which is exactly the distance-two anom-
aly seen in the aug-aug-plots. These plots might therefore provide a
viable tool to assess a model’s ability, when fitted to real-world data,
to replicate structural sparseness and clustering. More refined analysis
could take into consideration the average degree of dtf-augmentation;
or even how the augmentations’ degree distribution evolves in order
to characterise a network’s structural properties at different depths.
Such variations might provide valuable new statistics that capture the
meso-scale properties of complex networks.The question of applicability
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The programme is not at its completion. We made great headway,
settling the fundamental questions to assess whether attempts at solv-
ing real-world problems using the presented tools and techniques are
feasible. Knowing that this is indeed the case, that the framework of
structural sparseness is excellently suited to improve algorithmic tract-
ability, we can promote our tools as viable solutions and seek applic-
ations that benefit from them. Our initial results on the p-centred col-
ouring numbers of real-world networks stresses that such applications
are within reach, but also highlight that much more engineering has
to be applied in order to tailor the framework as closely as possible to
complex networks. Certainly, the intersection between the algorithmic
theory of structurally sparse graphs and network science promises to
be a fruitful area for future research.
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[86] P. Erdős and A. Rényi. On random graphs I. Publicationes Math-
ematicae Debrecen, 6:290–297, 1959.
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Õ, 14
ω̃r(•), 48
tw(G), 19
tw∆

t (G), 12
], 9
vc(G), 12
ξΠ

min(•), 120
uPv, 10

269



P R O B L E M I N D E X

H-Packing, 103
Π-k-Vertex Exchange, 103
F -Deletion, 105, 120, 141, 272
F -Packing, 120, 272
H-Minor Deletion, 119, 146, 149,

272
H-Minor Packing, 119, 273
P-Deletion, 12, 273
min -Π-Vertex Exchange, 102
wm-w-Deletion, 117, 118, 273
k-Cycle, 117, 123, 272
k-Path, 23, 35, 117, 121–123, 147,

161, 272
r-Centre, 102
r-Dominating Set, 7, 24, 35, 38,

45, 49 93, 102, 106, 116,
117, 150, 161, 178, 241

(k, r)-Centre, 24, 34

Branchwidth, 117, 124

Chordal Vertex Deletion, ix,
116, 117, 139 271

Chromatic Number, 121, 122
Cograph Vertex Deletion, 116
Connected Dominating Set, 33,

38, 40, 116, 117, 149 161
Connected Feedback Vertex Set,
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Connected Vertex Cover, 38,

116, 117

Dominating Set, x, xi, 7, 8, 22,
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117 149, 150, 159–161, 178,
241

Double Domination, 161

Edge Dominating Set, 35, 38,
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Efficient Dominating Set, 117,
161

Exact s, t-Path, 117, 123, 272

Exact Cycle, 117, 123, 272
Exact Path, 272

Feedback Vertex Set, x, 12, 23,
37, 38, 116, 117 139, 140,
149, 271

Hamiltonian Cycle, 116, 117
Hamiltonian Path, 116, 117

Independent Dominating Set,
121, 146, 271

Independent Set, 22, 34, 35, 116,
117, 149 271

Induced d-Degree Subgraph, 117
Induced Matching, 117
Induced-F -Deletion, 105, 272
Interval Vertex Deletion, 116

Max Full Degree Spanning Tree,
117

Max-Cut, 102
Maximum Clique, 22
Maximum Leaf Spanning Tree,

38
Min Leaf Spanning Tree, 117
Min-Bisection, 102
Multiway Cut, 36

Odd Cycle Transversal, 12, 102,
117, 271

Partial Dominating Set, 24, 34
Pathwidth, 23, 117, 124
Proper Interval Vertex Dele-

tion, 116

QBF Satisfiability, 25

Set Cover, 38
Steiner Forest, 36
Steiner Tree, 36
Subgraph Isomorphism, 34, 35,
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Treedepth, 121
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Treedepth-t-Deletion, 12, 146
see wm-w-Deletion

Treewidth, 23, 117, 124
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Vertex Cover, 12, 23, 34, 35, 38,
39, 102, 119, 139 271
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Weighted Π-k-Vertex Exchange,
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p-centred colouring, 73, 86–93
linear, 71

accessible, 97
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k-admissibility, 97
almost wide, 98
ancestor, 10
aug-aug plot, 214

backconnectivity, 97
bags, 19
basis, 17
boundaried graph, 15, 118–128

induced, 16
replacement, 16

boundary, 15
bounded expansion, 43

a.a.s./ w.h.p., 182
locally, 45

branchwidth, 21, 124

centrality measures, 173
centre, 65
p-centred colouring, 65
charging lemma, 84, 155
child, 10
Chung–Lu model, 189–199, 213
class graph, 153
clique, 10
clique number, 10
cliquewidth, 21
closeness centrality, 173

localised, 175
clustering coefficient, 172

local, 173
CMSO, 119

-definable, 118
colouring, 9

cardinality, 9
proper, 9
refinement, 10

k-colouring number, 97

complete graph, 10
complete join, 15
configuration model, 186, 189,

199, 213
convergence in distribution, 181
k-core, 33
∇̃r-critical, 53

decision problem, 22
degenerate, 31
degree bound, 95
degree centrality, 173
degree distribution, 171
degree sequence, 185

matching, 185
depth, 10

stable minor, 56
descendant, 10
descriptive model, 179
dissolution, 16
dominating set, 24

connected, 178
partial, 178
positive, 178

r-dominating set, 24
domination core, 150
domination number, 24

relative, 23
Z-dominator, 24
dtf-augmentation, 66

eccentricity, 174
embedding, 13
EMSO, 25
excision, 16
extended model, 56

f.i., see finite index
f.i.i., see finite integer index
finite index, 118
finite integer index, 118, 118–146
first-order certifiable, 102
first-order definable, 25
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first-order logic, 24
fixed parameter tractable, 22
forest, see tree
forest fire, 204
FPT, 22
fpt, see fixed parameter tractable
fpt-algorithm, 22

non-uniform, 22
uniform, 22

fraternal, 66

generalised random graphs, 188
generative model, 179
geometric random graphs, 210
gluing, 15
grad

topological, 43
graph class, 12

truncation, 12
graph measure, 21

parametrised, 21
polynomially related, 22
supremum, 21

graph parameter
degree bound, 95
monotone, 95
strongly topological, 95

graph problem, 22
graph property, 12
graphlet, 177

degree distribution, 177
greedy routing, 206

harmonic centrality, 173
localised, 175

height, 10

ideal, 17
increasing pair, 17
induced edge set, 9
inhomogeneous random graphs,

188

kernel, 23

labelling, 15
laminar, 90
language, see decision problem
least common ancestor, 11

closure, 11
lexicographic product, 15
Lin’s centrality, 174

localised, 175
low-treedepth colourings, 65
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depth, 14
embedding, 13
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stable, 56

model, 24
model checking, 25
modulator, 12
monadic second-order logic, see

MSO
monotone, 95
motif, 177
MSO, 25, 119

natural index, 9
neighbourhood, 9
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neighbourhood complexity, 83,

86–93
nowhere dense, 47, 48

a.a.s./ w.h.p., 182
locally, 49

out-apex, 68

parametrisation, 22
parametrised problem, 22
parent, 10

relationship, 10
partition refinement, 12
path decomposition, 19
pathwidth, 19, 124
protrusion, 128

adhesion, 128
boundary, 128
replacement, 128
size, 128
width, 128

protrusion decomposition, 131
core, 131
low-adhesion, 131

quasi-wide, 98
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random graph model, 180, 181
parametrisation, 181

random intersection graph, 210
rankwidth, 21
redundant vertex, 120
representative set, 124, 126

canonical, 124
monotone, 124
order-preserving, 124

RMAT, 211
root path, 10

sequential, 66
siblings, 10
signature, 86

proper, 86
small world property, 172
somewhere dense, 47
Stochastic Kronecker graphs, 211
stress centrality, 174
strongly monotone, 119
strongly topological, 95
stubs, 186
subdivision, 16

tail-bound, 186
tf-augmentation, 66
topological minor, 14

depth, 14
embedding, 14
shallow, 14
stable, 55
weighted, 61

tournament, 10, 127
transitivity, 173
tree

closure, 11
rooted, 10
rooted subtree, 11

tree decomposition, 18
nice, 19
rooted, 19

treedepth, 19
decomposition, 19
nice decomposition, 19

treewidth, 19, 124
locally bounded, 35

Trémaux tree, 19, 56

twin class lemma, 83, 141, 142,
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twin classes, 12
twin vertices, 12
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underlying graph, 15

weak k-colouring number, 97
well quasi order (wqo), 17, 124
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A
I M P O RTA N T P R O B L E M S

Input: A graph G and an integer k.

Problem: Is there a subset X ⊆ V(G) with at least k vertices
such that G \ X is edgeless?

Vertex Cover parametrised by k

Input: A graph G and an integer k.

Problem: Is there a subset X ⊆ V(G) with at least k vertices
such that G[X] is edgeless?

Independent Set parametrised by k

If we further ask that X is a dominating set then the above becomes
Independent Dominating Set.

Input: A graph G and an integer k.

Problem: Is there a subset X ⊆ V(G) with at most k vertices
such that G \ X is a forest?

Feedback Vertex Set parametrised by k

If we further ask that G[X] is connected then the above becomes Con-
nected Feedback Vertex Set.

Input: A graph G and an integer k.

Problem: Is there a subset X ⊆ V(G) with at most k vertices
such that G \ X is bipartite?

Odd Cycle Transversal parametrised by k

Input: A graph G and an integer k.

Problem: Is there a subset X ⊆ V(G) with at most k vertices
such that G \ X is chordal?

Chordal Vertex Deletion parametrised by k
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Input: A graph G and an integer k.

Problem: Does G contain a path of length at least k?

k-Path parametrised by k

Input: A graph G and an integer k.

Problem: Does G contain a path of length at least k?

k-Cycle parametrised by k

If we ask for the above problems that the cycle or path has exactly
length k, we obtain the problems Exact Path and Exact Cycle. If we
further specify two vertices s, t and require them to be the endpoints
of the path of length k, we obtain Exact s, t-Path.

Input: A graph G and integer k.

Problem: Does G have a set X of size at most k such that G \X
does not contain an graph from F as subgraph?

F -Deletion parametrised by k

Input: A graph G and integer k.

Problem: Does G have a set X of size at most k such that G \X
does not contain an graph from F as an induced
subgraph?

Induced-F -Deletion parametrised by k

Input: A graph G and an integer k.

Problem: Does G contain k vertex-disjoint subgraphs that each
contain a subgraph isomorphic to a graph in F?

F -Packing parametrised by k

Input: A graph G and an integer k.

Problem: Is there a set X ⊆ V(G) of at most k vertices such
that G \ X does not contain any graph of H as a
minor?

H-Minor Deletion parametrised by k
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Input: A graph G and an integer k.

Problem: Does G contain k vertex-disjoint subgraphs that each
contain some graph of H as a minor?

H-Minor Packing parametrised by k

Input: A graph G and an integer k.

Problem: Does G contain as set X ⊆ V(G) of size at most k
such that wm(G \ X) 6 w?

wm-w-Deletion parametrised by k

Input: A graph G and an integer k.

Problem: Does G contain as set X ⊆ V(G) of size at most k
such that G \ X ∈ P?

P-Deletion parametrised by k

Input: Graphs G and H.

Problem: Does G contain a subgraph that is isomorphic to H?

Subgraph Isomorphism parametrised by |H|
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