

Evaluating Restricted First-Order Counting Properties on Nowhere Dense Classes and Beyond

Daniel Mock joint work with Jan Dreier and Peter Rossmanith ESA 2023, September 5, 2023

Model-Checking

- $\bullet \ \ \text{Graph class} \ \mathcal{C}$
- Logic *L*

 $MC(\mathcal{C}, L)$

Input:	A graph $G \in \mathcal{C}$ and a sentence $arphi \in L$
Problem:	Is $arphi$ true in G? (G $\models arphi$?)
Parameter:	$ \varphi $

Case: First-Order Logic

Complexity on all graphs: $n^{O(|\varphi|)}$

Goal: Find classes C where FO-MC is FPT (time complexity of $f_{\mathcal{C}}(|\varphi|) \cdot n^d$)

Model-Checking of FO

Theorem (Grohe, Kreutzer, Siebertz '11)

FO-model checking on nowhere dense in almost linear FPT time, i.e., $f(|\varphi|, \varepsilon)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

Model-Checking of FO

Theorem (Grohe, Kreutzer, Siebertz '11)

FO-model checking on nowhere dense in almost linear FPT time, i.e., $f(|\varphi|, \varepsilon)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

For monotone graph classes C: FO-model checking fpt on $C \iff C$ is nowhere dense

Model-Checking of FO

Theorem (Grohe, Kreutzer, Siebertz '11)

FO-model checking on nowhere dense in almost linear FPT time, i.e., $f(|\varphi|, \varepsilon)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

For monotone graph classes C: FO-model checking fpt on $C \iff C$ is nowhere dense

Dominating set of size k in FO:

$$\exists x_1 \ldots \exists x_k \forall y (\bigvee_{1 \le i \le k} E(y, x_i) \lor y = x_i)$$

 \implies DOMINATINGSET is FPT on nowhere dense, when parameterized by k

Sparse Graph Classes

3

A class is nowhere dense

if for every depth r, an f(r)-clique is forbidden as r-shallow minor.

Many different characterizations: splitter game, weak coloring numbers, low neighborhood complexity, treedepth colorings, neighborhood covers, uniform quasi-widenes, ...

Monotone + not nowhere dense \Rightarrow dense Robust under:

taking subgraphs+shallow minors, adding apex, lexproduct with small graphs, ...

- Nowhere Dense: limit for tractable FO-MC (for monotone classes)
- FO-expressible problems: limit for tractable problems on nowhere dense?

- Nowhere Dense: limit for tractable FO-MC (for monotone classes)
- FO-expressible problems: limit for tractable problems on nowhere dense?
- Maxcut? Hard!

- Nowhere Dense: limit for tractable FO-MC (for monotone classes)
- FO-expressible problems: limit for tractable problems on nowhere dense?
- Maxcut? Hard!
- Partial Dominating Set? Let's look!

PartDomSet

Input:	A graph G and $k,t\in\mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

PartDomSet

Input:	A graph G and $k,t\in\mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

• DomSet:
$$\exists x_1 \dots x_k \forall y (\bigvee E(y, x_i) \lor y = x_i)$$

• PARTDOMSET cannot be expressed as an short FO-formula (requires $\exists y_1 \dots \exists y_t$)

$\operatorname{PartDomSet}$

Input:	A graph G and $k,t\in\mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

• DomSet:
$$\exists x_1 \dots x_k \forall y (\bigvee E(y, x_i) \lor y = x_i)$$

- PARTDOMSET cannot be expressed as an short FO-formula (requires $\exists y_1 \dots \exists y_t$)
- W[1]-hard for 2-degenerate graphs
- Can be solved on *H*-minor free graphs in time $(g(H)k)^k n^{O(1)}$
- Can be solved on classes C of bounded expansion in time $f_C(k)n$

$\operatorname{PartDomSet}$

Input:	A graph G and $k,t\in\mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

• DomSet:
$$\exists x_1 \dots x_k \forall y (\bigvee E(y, x_i) \lor y = x_i)$$

- PARTDOMSET cannot be expressed as an short FO-formula (requires $\exists y_1 \dots \exists y_t$)
- W[1]-hard for 2-degenerate graphs
- Can be solved on *H*-minor free graphs in time $(g(H)k)^k n^{O(1)}$
- Can be solved on classes C of bounded expansion in time $f_C(k)n$

Open for nowhere dense!

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith '21)

Built recursively using

- $\bullet\,$ the rules of FO
- $\# y \varphi \ge m$ for every $m \in \mathbb{N}$ and $\mathsf{FO}(\{>0\})$ formula φ

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith '21)

Built recursively using

- $\bullet\,$ the rules of FO
- $\# y \varphi \ge m$ for every $m \in \mathbb{N}$ and $\mathsf{FO}(\{>0\})$ formula φ

PARTDOMSET:

$$\exists x_1 \ldots \exists x_k \# y (\bigvee_{1 \le i \le k} E(y, x_i) \lor y = x_i) \ge t$$

(length bounded in k, independent of t)

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith '21)

Built recursively using

- $\bullet\,$ the rules of FO
- $\# y \varphi \ge m$ for every $m \in \mathbb{N}$ and $\mathsf{FO}(\{>0\})$ formula φ

PARTDOMSET:

$$\exists x_1 \ldots \exists x_k \# y (\bigvee_{1 \le i \le k} E(y, x_i) \lor y = x_i) \ge t$$

(length bounded in k, independent of t)

h-index:

$$\# \mathsf{mypaper}\left(\# \mathsf{otherpaper}\operatorname{cite}(\mathsf{mypaper},\mathsf{otherpaper}) \geq h\right) \geq h$$

Exact evaluation is hard on forest of depth 4

Exact evaluation is hard on forest of depth 4

Theorem (Dreier, Rossmanith '21)

On classes of bounded expansion, in linear FPT time

1. $(1 + \varepsilon)$ -approximation of FO($\{>0\}$),

2. Exact evaluation of formulas
$$\exists x_1 \dots \exists x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{FO \ w/o \ \#} \ge m$$

 \Rightarrow PARTDOMSET in time f(k)n on bounded expansion

Theorem From nowhere dense class $G \models \exists x_1 \dots x_k \# y \ \underbrace{\varphi(y, x_1, \dots, x_k)}_{quantifier-free} \ge m$ evaluate in time $f(|\varphi|, \varepsilon) n^{1+\varepsilon}$ for every $\varepsilon > 0$.

 \Rightarrow PARTDOMSET in almost linear FPT time on nowhere dense classes

Our Result B

Almost nowhere dense

- generalizes nowhere dense,
- generalizes graphs of *low degree*
- is somewhere dense.

Theorem

From almost nowhere dense class

$$G \models \exists x_1 \dots x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{quantifier-free} \ge m$$

evaluate in time $f(|\varphi|, \varepsilon)n^{1+\varepsilon}$ with an additive error of n^{ε} for every $\varepsilon > 0$.

 \Rightarrow Approximate PARTDOMSET on almost nowhere dense classes with additive error n^{ε} in almost linear FPT time.

Conclusion

Our results: Model-checking in time $f(|\varphi|, \varepsilon)n^{1+\varepsilon}$ of formulas

$$G \models \exists x_1 \dots x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{\text{quantifier-free}} \ge m$$

- exactly on nowhere dense
- with additive error $\pm n^{\varepsilon}$ on almost nowhere dense

Conclusion

Our results: Model-checking in time $f(|\varphi|, \varepsilon)n^{1+\varepsilon}$ of formulas

$$G \models \exists x_1 \dots x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{\text{quantifier-free}} \geq m$$

- exactly on nowhere dense
- with additive error $\pm n^{\varepsilon}$ on almost nowhere dense

Outlook:

- Extend above to full FO-formulas φ
- $(1 + \varepsilon)$ -approximation for FO($\{>0\}$) on nowhere dense
- Structurally sparse classes

Thank you! mock@cs.rwth-aachen.de

