


Evaluating Restricted First-Order Counting Properties
on Nowhere Dense Classes and Beyond

Daniel Mock
joint work with Jan Dreier and Peter Rossmanith

ESA 2023, September 5, 2023

\( Theoretical
Computer Science



Model-Checking

e Graph class C
e Logic L
MC(C, L)

Input: A graph G € C and a sentence p € L
Problem: Is ¢ true in G? (G [= ¢?)
Parameter: |¢|

Case: First-Order Logic
Complexity on all graphs: n©(¢l)

Goal: Find classes C where FO-MC is FPT (time complexity of fz(|¢]|) - nd)
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Theorem (Grohe, Kreutzer, Siebertz '11)

FO-model checking on nowhere dense in almost linear FPT time, i.e., f(|p|,€)n'*¢

for every € > 0.
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Model-Checking of FO

Theorem (Grohe, Kreutzer, Siebertz '11)

FO-model checking on nowhere dense in almost linear FPT time, i.e., f(|p|,€)n'*¢

for every € > 0.

For monotone graph classes C:

FO-model checking fpt on C <= C is nowhere dense

Dominating set of size k in FO:

Ixg .. 3y ( \/ E(y,xi)Vy = xi)
1<i<k

— DOMINATINGSET is FPT on nowhere dense, when parameterized by k



Sparse Graph Classes
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Classes

A class is nowhere dense
if for every depth r, an f(r)-clique is forbidden as r-shallow minor.

N

~—
Many different characterizations: Monotone + not nowhere dense = dense
splitter game, weak coloring numbers, low Robust under:

neighborhood complexity, treedepth colorings, taking subgraphs+shallow minors, adding apex,
neighborhood covers, uniform quasi-widenes, ... lexproduct with small graphs, ...
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Results for Classes

Nowhere Dense: limit for tractable FO-MC (for monotone classes)

FO-expressible problems: limit for tractable problems on nowhere dense?

Maxcut? Hard!

Partial Dominating Set? Let's look!
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Partial Dominating Set

PARTDOMSET
Input: A graph G and k,t € N
Problem: Are there k vertices dominating > t vertices?

Parameter: k

DomSet: dx; .. .kay(\/ E(y,xi))Vy =x)

PARTDOMSET cannot be expressed as an short FO-formula (requires Jy; ... 3y;)

WI(1]-hard for 2-degenerate graphs

Can be solved on H-minor free graphs in time (g(H)k)*n°®

e Can be solved on classes C of bounded expansion in time fo(k)n

Open for nowhere dense!
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First-Order with Some Counting: FO({>0})

Definition of (Dreier, Rossmanith ’21)

Built recursively using

o the rules of FO
o #yp>m for every m € N and formula ¢

PARTDOMSET:

E|X1...E|Xk#y( \/ E()/>Xi)\/y:Xi)2 t
1<i<k

(length bounded in k, independent of t)
h-index:

#mypaper <#otherpapercite(mypaper, otherpaper) > h) > h
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Known Results for FO({>0})

Exact evaluation is hard on forest of depth 4
Theorem (Dreier, Rossmanith '21)
On classes of bounded expansion, in linear FPT time

1. (1 + €)-approximation of
2. Exact evaluation of formulas 3x; ... 3xk#y p(y, x1,...,Xk) > m
—_———
FO w/o #

= PARTDOMSET in time f(k)n on bounded expansion



Our Result A

Theorem

From nowhere dense class
=
G EIa...xd#ty oy, x1,...,xk) > m
~—_——

quantifier-free

evaluate in time f(|p|,€)n**e for every e > 0.

= PARTDOMSET in almost linear FPT time on nowhere dense classes



Our Result B

Almost nowhere dense

e generalizes nowhere dense,
e generalizes graphs of low degree
e is somewhere dense.

Theorem

From almost nowhere dense class
=~
G EIa...xd#ty oy, x1,...,xk) > m
—_———
quantifier-free

n1+5

evaluate in time f(|g|, €) with an for every e > 0.

= Approximate PARTDOMSET on almost nowhere dense classes with additive error n®

in almost linear FPT time.
10



Conclusion

Our results: Model-checking in time (||, £)n'*¢ of formulas

G |: 3xq .. xkFYy QD(y,Xl,- 2 ¢ 7Xk) >m
—_——
quantifier-free

e exactly on nowhere dense

e with additive error £=n° on almost nowhere dense
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Conclusion

Our results: Model-checking in time (||, £)n'*¢ of formulas

Nowhere dense

G |: 3xq .. xkFYy @(y,Xl,...,Xk) >m
—_—

quantifier-free
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