Solving a Family of
 Multivariate Optimization and Decision Problems on Classes of Bounded Expansion

Daniel Mock
Joint work with Peter Rossmanith
AlgoOpt 2023, November 14, Aachen

Theoretical Computer Science

Algorithms For...

Max Partial Vertex Cover

Problem: How many edges can be covered by set of k vertices?

Red Blue Partial Dominating Set

Problem: Are there k vertices dominating $\geq t_{\text {red }}$
red and $\geq t_{\text {blue }}$ blue vertices?

Fair Dominating Matching

Problem: Is there a matching of size k that dominates twice as many red as blue vertices?

Half Triangle Deletion

Problem: Can we destroy half of the triangles and squares by deleting k vertices?

Algorithms For...

Max Partial Vertex Cover

Problem: How many edges can be covered by set of k vertices?

Red Blue Partial Dominating Set

Problem: Are there k vertices dominating $\geq t_{\text {red }}$

 red and $\geq t_{\text {blue }}$ blue vertices?
Fair Dominating Matching

Problem: Is there a matching of size k that dominates twice as many red as blue vertices?

Half Triangle Deletion

Problem: Can we destroy half of the triangles and squares by deleting k vertices?

On graph classes

- Of bounded treewidth
- Of bounded degree
- Planar Graphs

We give one algorithm for that!

We give one meta-algorithm for that!

Algorithmic Meta-Theorems

"Every problem expressible in logic L can be solved efficiently on graph class \mathcal{C}."

Algorithmic Meta-Theorems

"Every problem expressible in logic L can be solved efficiently on graph class \mathcal{C}."

Model-Checking

```
MC(L,C)
    Input: A graph }G\in\mathcal{C}\mathrm{ and a sentence }\varphi\in
    Problem: Is }\varphi\mathrm{ true in G? (G}\models\varphi\mathrm{ ?)
    Parameter: | }
```

$M C(F O, \mathcal{G})$ is hard (PSPACE-hard and AW[*]-hard)

Goal: Find classes \mathcal{C} and logic L where $M C(L, \mathcal{C})$ is FPT (time complexity of $\left.f_{\mathcal{C}}(|\varphi|) n^{d}\right)$

Model-Checking

$M C(L, \mathcal{C})$

Input: \quad A graph $G \in \mathcal{C}$ and a sentence $\varphi \in L$
Problem: Is φ true in G ? $(G \models \varphi$?)
Parameter: $|\varphi|$
$M C(F O, \mathcal{G})$ is hard (PSPACE-hard and AW[*]-hard)
Goal: Find classes \mathcal{C} and logic L where $M C(L, \mathcal{C})$ is FPT (time complexity of $\left.f_{\mathcal{C}}(|\varphi|) n^{d}\right)$

Sparse Graph Classes

Bounded Expansion

Class has bounded expansion if: there is a function f s.t.

$$
\begin{aligned}
& \frac{|E|}{|V|} \leq f(r) \\
& \text { for every } r \text {-shallow minor } \\
& \text { of every graph in } \mathcal{C}
\end{aligned}
$$

Bounded Expansion

Class has bounded expansion if: there is a function f s.t.
$|E|$
$\frac{\mid \overline{|V|}}{\mid v f(r)}$
for every r-shallow minor of every graph in \mathcal{C}

Many other characterizations: copwidth game, weak coloring numbers, neighborhood complexity, treedepth colorings, neighborhood covers, ...

First-Order with Some Counting: $\operatorname{FO}(\{>0\})$

Definition of FO $(\{>0\})$ (Dreier, Rossmanith, '21)

Built recursively using

- the rules of FO
- $\# y \varphi\left(y, x_{1}, \ldots, x_{k}\right) \geq m \quad$ for every $m \in \mathbb{N}$ and $\operatorname{FO}(\{>0\})$ formula φ

Fragment of $\mathrm{FO}(\mathbb{P})$ and $\operatorname{FOC}(\mathbb{P})$ (Kuske, Schweikardt '17)

First-Order with Some Counting: $\operatorname{FO}(\{>0\})$

Definition of FO $(\{>0\})$ (Dreier, Rossmanith, '21)

Built recursively using

- the rules of FO
- $\# y \varphi\left(y, x_{1}, \ldots, x_{k}\right) \geq m \quad$ for every $m \in \mathbb{N}$ and $\mathrm{FO}(\{>0\})$ formula φ

Fragment of $\mathrm{FO}(\mathbb{P})$ and $\mathrm{FOC}(\mathbb{P})$ (Kuske, Schweikardt '17)

PartDomSet:

$$
\exists x_{1} \ldots \exists x_{k} \# y\left(\bigvee_{1 \leq i \leq k} E\left(y, x_{i}\right) \vee y=x_{i}\right) \geq t
$$

First-Order with Some Counting: $\operatorname{FO}(\{>0\})$

Definition of FO $(\{>0\})$ (Dreier, Rossmanith, '21)

Built recursively using

- the rules of FO
- $\# y \varphi\left(y, x_{1}, \ldots, x_{k}\right) \geq m \quad$ for every $m \in \mathbb{N}$ and $\mathrm{FO}(\{>0\})$ formula φ

Fragment of $\mathrm{FO}(\mathbb{P})$ and $\mathrm{FOC}(\mathbb{P})$ (Kuske, Schweikardt '17)

PartDomSet:

$$
\exists x_{1} \ldots \exists x_{k} \# y\left(\bigvee_{1 \leq i \leq k} E\left(y, x_{i}\right) \vee y=x_{i}\right) \geq t
$$

h-index:

$$
\text { \#mypaper }(\text { \#otherpaper cite(mypaper, otherpaper) } \geq h) \geq h
$$

Known Results for $\mathrm{FO}(\{>0\})$

Model-checking of $\mathrm{FO}(\{>0\})$ is hard on forests of depth 4

Known Results for $\mathrm{FO}(\{>0\})$
Model-checking of $\mathrm{FO}(\{>0\})$ is hard on forests of depth 4
Theorem (Dreier, Rossmanith '21)
On classes of bounded expansion, in linear FPT time

1. $(1+\varepsilon)$-approximation of $\mathrm{FO}(\{>0\})$,
2. Exact evaluation of formulas $\exists x_{1} \ldots \exists x_{k} \# y \underbrace{\varphi\left(y, x_{1}, \ldots, x_{k}\right)}_{\text {FO w/o } \#} \geq m$

Known Results for $\mathrm{FO}(\{>0\})$

Model-checking of $\mathrm{FO}(\{>0\})$ is hard on forests of depth 4

Theorem (Dreier, Rossmanith '21)

On classes of bounded expansion, in linear FPT time

1. $(1+\varepsilon)$-approximation of $\mathrm{FO}(\{>0\})$,
2. Exact evaluation of formulas $\exists x_{1} \ldots \exists x_{k} \# y \underbrace{\varphi\left(y, x_{1}, \ldots, x_{k}\right)}_{\text {FO } w / o \#} \geq m$

Theorem (Dreier, M., Rossmanith '23)

On nowhere dense classes, in almost linear FPT time:
Exact evaluation of formulas $\exists x_{1} \ldots \exists x_{k} \# y \underbrace{\varphi\left(y, x_{1}, \ldots, x_{k}\right)}_{\text {quantifier-free }} \geq m$
\Rightarrow PartDomSet in (almost) linear FPT time on bounded expansion \& nowhere dense

Other variants

Red Blue Partial Dominating Set

Input: \quad A graph G and $k, t_{\text {red }}, t_{\text {blue }} \in \mathbb{N}$
Problem: Are there k vertices dominating $\geq t_{\text {red }}$ red and $\geq t_{\text {blue }}$ blue vertices? Parameter: k

Other variants

Red Blue Partial Dominating Set

Input: \quad a graph G and $k, t_{\text {red }}, t_{\text {blue }} \in \mathbb{N}$
Problem: Are there k vertices dominating $\geq t_{\text {red }}$ red and $\geq t_{\text {blue }}$ blue vertices? Parameter: k

Exact Partial Dominating Set

Problem: Are there k vertices dominating exactly t vertices?

Other variants

Red Blue Partial Dominating Set

Input: \quad A graph G and $k, t_{\text {red }}, t_{\text {blue }} \in \mathbb{N}$
Problem: Are there k vertices dominating $\geq t_{\text {red }}$ red and $\geq t_{\text {blue }}$ blue vertices? Parameter: k
$G \models \exists x_{1} \ldots \exists x_{k} \# y \operatorname{Red}(y) \wedge \operatorname{dom}(y, \bar{x}) \geq t_{\text {red }} \wedge \# y \operatorname{Blue}(y) \wedge \operatorname{dom}(y, \bar{x}) \geq t_{\text {blue }}$

Exact Partial Dominating Set

Problem: Are there k vertices dominating exactly t vertices?
$G \models \exists x_{1} \ldots \exists x_{k} \# y \operatorname{dom}\left(y, x_{1}, \ldots, x_{k}\right)=t$

Other variants

Red Blue Partial Dominating Set

Input: $\quad A$ graph G and $k, t_{\text {red }}, t_{\text {blue }} \in \mathbb{N}$
Problem: Are there k vertices dominating $\geq t_{\text {red }}$ red and $\geq t_{\text {blue }}$ blue vertices? Parameter: k
$G \models \exists x_{1} \ldots \exists x_{k} \# y \operatorname{Red}(y) \wedge \operatorname{dom}(y, \bar{x}) \geq t_{\text {red }} \wedge \# y \operatorname{Blue}(y) \wedge \operatorname{dom}(y, \bar{x}) \geq t_{\text {blue }}$

Exact Partial Dominating Set

Problem: Are there k vertices dominating exactly t vertices?
$G \models \exists x_{1} \ldots \exists x_{k} \# y \operatorname{dom}\left(y, x_{1}, \ldots, x_{k}\right)=t$
Cannot be expressed as $\exists x_{1} \ldots \exists x_{k} \# y \underbrace{\varphi\left(y, x_{1}, \ldots, x_{k}\right)}_{\text {FO w/o } \#} \geq m$

Other variants

Red Blue Partial Dominating Set

Input: $\quad A$ graph G and $k, t_{\text {red }}, t_{\text {blue }} \in \mathbb{N}$
Problem: \quad Are there k vertices dominating $\geq t_{\text {red }}$ red and $\geq t_{\text {blue }}$ blue vertices? Parameter: k
$G \models \exists x_{1} \ldots \exists x_{k} \# y \operatorname{Red}(y) \wedge \operatorname{dom}(y, \bar{x}) \geq t_{\text {red }} \wedge \# y \operatorname{Blue}(y) \wedge \operatorname{dom}(y, \bar{x}) \geq t_{\text {blue }}$

Exact Partial Dominating Set

Problem: Are there k vertices dominating exactly t vertices?
$G \models \exists x_{1} \ldots \exists x_{k} \# y \operatorname{dom}\left(y, x_{1}, \ldots, x_{k}\right)=t$
Our goal: Lift result to $\exists x_{1} \ldots \exists x_{k} \bigvee \bigwedge\left(\# y \varphi_{i}(y \bar{x}) \geq m_{i}\right)$
boolean combination of ℓ counting terms

Our Results

Algorithmic Result

Theorem (Our Positive Result)

On classes of bounded expansion, we can decide in time $f(k, \ell) n^{\ell+1}$ polylog n whether

$$
G \models \exists x_{1} \ldots \exists x_{k} \mathbf{P}(\# y \underbrace{\varphi_{1}(y \bar{x})}_{F O \text { w/o } \#}, \ldots, \# y \varphi_{\ell}(y \bar{x}))
$$

where \mathbf{P} is some efficiently computable predicate over \mathbb{N}^{ℓ}.
Moreover, we can count the number of such solutions.

Algorithmic Result

Theorem (Our Positive Result)

On classes of bounded expansion, we can decide in time $f(k, \ell) n^{\ell+1}$ polylog n whether

$$
G \models \exists x_{1} \ldots \exists x_{k} \mathbf{P}(\# y \underbrace{\varphi_{1}(y \bar{x})}_{F O \text { w/o } \#}, \ldots, \# y \varphi_{\ell}(y \bar{x}))
$$

where \mathbf{P} is some efficiently computable predicate over \mathbb{N}^{ℓ}.
Moreover, we can count the number of such solutions.
\Longrightarrow Exact Partial Dominating Set in time $f(k) n^{2}$ on bounded expansion.
\Longrightarrow Red Blue Partial Dominating Set in time $f(k) n^{3}$ on bounded expansion (can be improved to $f(k) n^{2}$).

From k-Sum to Lower Bounds

k-Sum Problem: given m numbers x_{1}, \ldots, x_{m}; target T
Find k numbers that add up to exactly T
Algorithms known for k-SUM: $\bullet \widetilde{O}(T m) \bullet O\left(m^{\lceil k / 2\rceil}\right)$

From k-Sum to Lower Bounds

k-Sum Problem: given m numbers x_{1}, \ldots, x_{m}; target T
Find k numbers that add up to exactly T
Algorithms known for k-SUM: • $\widetilde{O}(T m) \bullet O\left(m^{\lceil k / 2\rceil}\right)$
Theorem (Abboud et al. '21)
For every $\varepsilon>0, k$-SUM is not in time $T^{1-\varepsilon} m^{o(k)}$ (under SETH).

From k-Sum to Lower Bounds

k-Sum Problem: given m numbers x_{1}, \ldots, x_{m}; target T
Find k numbers that add up to exactly T
Algorithms known for k-SUM: • $\widetilde{O}(T m) \bullet O\left(m^{\lceil k / 2\rceil}\right)$

Theorem (Abboud et al. '21)

For every $\varepsilon>0, k$-SUM is not in time $T^{1-\varepsilon} m^{o(k)}$ (under SETH).

Theorem (Our Lower Bound)

On star forests, for formulas of the form
$\exists x_{1} \ldots \exists x_{k}\left(\# y \varphi_{1}\left(y, x_{1} \ldots x_{k}\right)=t_{1} \wedge \cdots \wedge \# y \varphi_{\ell}\left(y, x_{1} \ldots x_{k}\right)=t_{\ell}\right)$
there is no model-checking algorithm in time $f(k, \ell) n^{\ell-\varepsilon}$, for any function f or $\varepsilon>0$.

Reduction

Example: $T=100 ; k=3$
$x_{1}=32$,
$x_{2}=42$,
$x_{3}=53$,
$x_{4}=15$.

Reduction to model-checking of our fragment (on star forests):

Reduction

Example: $T=100 ; k=3$
$x_{1}=32$,

$$
x_{2}=42
$$

$$
x_{3}=53,
$$

$$
x_{4}=15 .
$$

Reduction to model-checking of our fragment (on star forests):

Reduction

Example: $T=100 ; k=3$
$x_{1}=32$,
$x_{2}=42$,
$x_{3}=53$,
$x_{4}=15$.

Reduction to model-checking of our fragment (on star forests):

$G \models \exists x_{1} \exists x_{2} \exists x_{3} \# y \operatorname{Red}(y) \wedge \operatorname{dom}(y, \bar{x})=9 \wedge \# y \operatorname{Blue}(y) \wedge \operatorname{dom}(y, \bar{x})=10$

Conclusion

Our results: Model-checking of $\mathrm{FO}(\mathbb{P})$ formulas

$$
G \vDash \exists x_{1} \ldots \exists x_{k} \mathbf{P}(\# y \underbrace{\varphi_{1}(y \bar{x})}_{\text {first-order }}, \ldots, \# y \varphi_{\ell}(y \bar{x}))
$$

on classes of bounded expansion

- in time $f(k, \ell) n^{\ell+1}$ polylog n
- not in time $f(k, \ell) n^{\ell-\varepsilon}$ for all $\varepsilon>0$ under SETH

Outlook:

- Close the gaps
- Lift to (structurally) nowhere dense classes

Appendix

Partial Dominating Set

PartDomset

Input: \quad A graph G and $k, t \in \mathbb{N}$
Problem: Are there k vertices dominating $\geq t$ vertices?
Parameter: k

Partial Dominating Set

PartDomSet

Input: \quad A graph G and $k, t \in \mathbb{N}$
Problem: Are there k vertices dominating $\geq t$ vertices?
Parameter: k

- DomSet: $\exists x_{1} \ldots x_{k} \forall y\left(\bigvee E\left(y, x_{i}\right) \vee y=x_{i}\right)$
- PartDomSet cannot be expressed as an short FO-formula (requires $\exists y_{1} \ldots \exists y_{t}$)

Partial Dominating Set

PartDomSet

Input: \quad A graph G and $k, t \in \mathbb{N}$
Problem: Are there k vertices dominating $\geq t$ vertices?
Parameter: k

- DomSet: $\exists x_{1} \ldots x_{k} \forall y\left(\bigvee E\left(y, x_{i}\right) \vee y=x_{i}\right)$
- PartDomSet cannot be expressed as an short FO-formula (requires $\exists y_{1} \ldots \exists y_{t}$)
- W[1]-hard for 2-degenerate graphs
- Can be solved on H-minor free graphs in time $(g(H) k)^{k} n^{O(1)}$
- Can be solved on classes \mathcal{C} of bounded expansion in time $f_{\mathcal{C}}(k) n$
- Can be solved on nowhere dense classes \mathcal{C} in time $f_{\mathcal{C}}(k) n^{1+\varepsilon}$

Step 1: Reduction to a Simpler Problem

For all $\bar{u}=u_{1} \ldots u_{k} \in V(G)^{k}$:
$G \models \quad \# y \varphi_{1}(y \bar{u}) \geq t_{1}$

$$
\begin{gathered}
c_{1}\left(u_{1}\right)+\cdots+c_{1}\left(u_{k}\right) \geq t_{1} \\
\vdots \\
c_{\ell}\left(u_{1}\right)+\cdots+c_{\ell}\left(u_{k}\right) \geq t_{\ell} \\
\vec{G} \models \omega(\bar{u}) \text { (quantifier-free) }
\end{gathered}
$$

Courcelle with Semiring Homomorphisms

Often don't want one satisfying assignment but computing a property of the set of satisfying assignments

Example: Set of all vertex covers \mapsto minimum weight VC, number of VCs, all VCs...

Courcelle with Semiring Homomorphisms

Often don't want one satisfying assignment but computing a property of the set of satisfying assignments

Example: Set of all vertex covers \mapsto minimum weight VC, number of VCs, all VCs...

Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing $h(\operatorname{sat}(\varphi, G))$ for some homomorphism h into a semiring and MSO-formula φ.

Example: min. weight VC: $(\mathbb{R} \cup\{\infty\}$, min $,+, \infty, 0)$, h maps set to sum of weights

Courcelle with Semiring Homomorphisms

Often don't want one satisfying assignment but computing a property of the set of satisfying assignments

Example: Set of all vertex covers \mapsto minimum weight VC, number of VCs, all VCs...

Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing $h(\operatorname{sat}(\varphi, G))$ for some homomorphism h into a semiring and MSO-formula φ.

Example: min. weight VC: $(\mathbb{R} \cup\{\infty\}$, min $,+, \infty, 0)$, h maps set to sum of weights

Theorem (Courcelle, Mosbah '93)

An MSO-evaluation problem P can be solved in time $f_{P}(t w)$ nt on graphs of treewidth tw where t is the time complexity of the semiring operations.

kSum

k-Sum Problem: given m numbers x_{1}, \ldots, x_{m}; target T
Find k numbers that add up to exactly T
Algorithms known for k-SUM: • $\widetilde{O}(T m) \bullet O\left(m^{\lceil k / 2\rceil}\right)$

kSum

k-Sum Problem: given m numbers x_{1}, \ldots, x_{m}; target T
Find k numbers that add up to exactly T
Algorithms known for k-SUM: • $\widetilde{O}(T m) \bullet O\left(m^{\lceil k / 2\rceil}\right)$
Theorem (Abboud et al. '21)
For every $\varepsilon>0, k$-SUM is not in time $T^{1-\varepsilon} m^{o(k)}$ (under SETH).

Reduction

Example: $T=100 ; k=3$
$x_{1}=32, \quad x_{2}=42, \quad x_{3}=53, \quad x_{4}=15$.
Reduction to model-checking of our fragment (on star forests):

Reduction

Example: $T=100 ; k=3$
$x_{1}=32$,

$$
x_{2}=42
$$

$$
x_{3}=53,
$$

$$
x_{4}=15 .
$$

Reduction to model-checking of our fragment (on star forests):

Reduction

Example: $T=100 ; k=3$
$x_{1}=32$,
$x_{2}=42$,
$x_{3}=53$,
$x_{4}=15$.

Reduction to model-checking of our fragment (on star forests):

$G \models \exists x_{1} \exists x_{2} \exists x_{3} \# y \operatorname{Red}(y) \wedge \operatorname{dom}(y, \bar{x})=9 \wedge \# y \operatorname{Blue}(y) \wedge \operatorname{dom}(y, \bar{x})=10$

Reduction: Parameters

Theorem (Reminder)

For every $\varepsilon>0, k$-SUM is not in time $T^{1-\varepsilon} m^{o(k)}$ (under SETH).
In our example: Parameter $\ell=2$, size $|G| \leq 2 \sqrt{T} m$.
\Longrightarrow quadratic lower bound for model-checking

Reduction: Parameters

Theorem (Reminder)

For every $\varepsilon>0, k$-SUM is not in time $T^{1-\varepsilon} m^{\circ(k)}$ (under SETH).
In our example: Parameter $\ell=2$, size $|G| \leq 2 \sqrt{T} m$.
\Longrightarrow quadratic lower bound for model-checking
In general: ℓ freely choosable $\Longrightarrow|G|=O(\sqrt[\ell]{T} \ell m)$
Have to "guess carry-overs": only $f(k, \ell)$ many choices

Theorem (Our Lower Bound)

On star forests, for formulas of the form
$\exists x_{1} \ldots \exists x_{k}\left(\# y \varphi_{1}\left(y, x_{1} \ldots x_{k}\right)=t_{1} \wedge \cdots \wedge \# y \varphi_{\ell}\left(y, x_{1} \ldots x_{k}\right)=t_{\ell}\right)$
there is no model-checking algorithm in time $f(k, \ell) n^{\ell-\varepsilon}$, for any function f or $\varepsilon>0$.

