Solving a Family of Multivariate Optimization and Decision Problems on Classes of Bounded Expansion

Daniel Mock Joint work with Peter Rossmanith AlgoOpt 2023, November 14, Aachen

Algorithms For...

Max Partial Vertex Cover

Problem: How many edges can be covered by set of *k* vertices?

Red Blue Partial Dominating Set

Problem: Are there *k* vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?

Fair Dominating Matching

Problem: Is there a matching of size *k* that dominates twice as many red as blue vertices?

Half Triangle Deletion

Problem: Can we destroy half of the triangles and squares by deleting *k* vertices?

Algorithms For...

Max Partial Vertex Cover

Problem: How many edges can be covered by set of *k* vertices?

Red Blue Partial Dominating Set

Problem: Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?

Fair Dominating Matching

Problem: Is there a matching of size *k* that dominates twice as many red as blue vertices?

Half Triangle Deletion

Problem: Can we destroy half of the triangles and squares by deleting *k* vertices?

On graph classes

- Of bounded treewidth
- Of bounded degree
- Planar Graphs

We give **one** algorithm for that!

We give one meta-algorithm for that!

"Every problem expressible in logic L can be solved efficiently on graph class C."

"Every problem expressible in logic L can be solved efficiently on graph class C."

Model-Checking

MC(L, C)

Input:	A graph ${\it G} \in {\it C}$ and a sentence $arphi \in {\it L}$
Problem:	Is $arphi$ true in G? (G $\models arphi$?)
Parameter:	$ \varphi $

MC(FO, G) is hard (PSPACE-hard and AW[*]-hard)

Goal: Find classes C and logic L where MC(L, C) is FPT (time complexity of $f_{\mathcal{C}}(|\varphi|)n^d$)

Model-Checking

MC(L, C)

Input:	A graph ${\it G} \in {\it C}$ and a sentence $arphi \in {\it L}$
Problem:	Is $arphi$ true in G? (G $\models arphi$?)
Parameter:	$ \varphi $

MC(FO, G) is hard (PSPACE-hard and AW[*]-hard)

Goal: Find classes C and logic L where MC(L, C) is FPT (time complexity of $f_{C}(|\varphi|)n^{d}$)

Sparse Graph Classes

Bounded Expansion

Class has bounded expansion if:

there is a function f s.t. $\frac{|E|}{|V|} \leq f(r)$ for every r-shallow minor of every graph in C

Bounded Expansion

Class has bounded expansion if: there is a function f s.t. $\frac{|E|}{|V|} \leq f(r)$ for every r-shallow minor of every graph in C

Many other characterizations: copwidth game, weak coloring numbers, neighborhood complexity, treedepth colorings, neighborhood covers, ...

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, '21)

Built recursively using

- $\bullet\,$ the rules of FO
- $\#y \varphi(y, x_1, \dots, x_k) \ge m$ for every $m \in \mathbb{N}$ and $\mathsf{FO}(\{>0\})$ formula φ

Fragment of FO(\mathbb{P}) and FOC(\mathbb{P}) (Kuske, Schweikardt '17)

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, '21)

Built recursively using

- $\bullet\,$ the rules of FO
- $\#y \varphi(y, x_1, \dots, x_k) \ge m$ for every $m \in \mathbb{N}$ and $\mathsf{FO}(\{>0\})$ formula φ

Fragment of FO(\mathbb{P}) and FOC(\mathbb{P}) (Kuske, Schweikardt '17)

PARTDOMSET:

$$\exists x_1 \ldots \exists x_k \# y \left(\bigvee_{1 \le i \le k} E(y, x_i) \lor y = x_i \right) \ge t$$

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, '21)

Built recursively using

- $\bullet\,$ the rules of FO
- $\#y \varphi(y, x_1, \dots, x_k) \ge m$ for every $m \in \mathbb{N}$ and $\mathsf{FO}(\{>0\})$ formula φ

Fragment of FO(\mathbb{P}) and FOC(\mathbb{P}) (Kuske, Schweikardt '17)

PARTDOMSET:

$$\exists x_1 \ldots \exists x_k \# y \left(\bigvee_{1 \le i \le k} E(y, x_i) \lor y = x_i \right) \ge t$$

h-index:

$$\# \mathsf{mypaper}\left(\# \mathsf{otherpaper}\,\mathsf{cite}(\mathsf{mypaper},\mathsf{otherpaper}) \geq h\right) \geq h$$

Known Results for FO({>0})

Model-checking of $FO(\{>0\})$ is hard on forests of depth 4

Known Results for FO({>0})

Model-checking of $FO(\{>0\})$ is hard on forests of depth 4

Theorem (Dreier, Rossmanith '21)

On classes of bounded expansion, in linear FPT time 1 (1 + c) expression of EQ((2.0))

- 1. $(1 + \varepsilon)$ -approximation of FO($\{>0\}$),
- 2. Exact evaluation of formulas $\exists x_1 \dots \exists x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{FO \ w/o \ \#} \ge m$

Known Results for FO({>0})

Model-checking of $FO(\{>0\})$ is hard on forests of depth 4

Theorem (Dreier, Rossmanith '21)

On classes of bounded expansion, in linear FPT time

- 1. $(1 + \varepsilon)$ -approximation of FO($\{>0\}$),
- 2. Exact evaluation of formulas $\exists x_1 \dots \exists x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{FO \ w/o \ \#} \ge m$

Theorem (Dreier, M., Rossmanith '23)

On nowhere dense classes, in almost linear FPT time:

Exact evaluation of formulas
$$\exists x_1 \dots \exists x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{quantifier-free} \ge m$$

 \Rightarrow PARTDOMSET in (almost) linear FPT time on bounded expansion & nowhere dense 7

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

Exact Partial Dominating Set

...

Problem: Are there *k* vertices dominating *exactly t* vertices?

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

$G \models \exists x_1 \dots \exists x_k \# y \operatorname{\mathit{Red}}(y) \land \operatorname{\mathit{dom}}(y, \bar{x}) \ge t_{\operatorname{red}} \land \# y \operatorname{\mathit{Blue}}(y) \land \operatorname{\mathit{dom}}(y, \bar{x}) \ge t_{\operatorname{blue}}$

Exact Partial Dominating Set

• • •

Problem: Are there k vertices dominating exactly t vertices?

 $G \models \exists x_1 \ldots \exists x_k \# y \ dom(y, x_1, \ldots, x_k) = t$

. . .

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

$G \models \exists x_1 \dots \exists x_k \# y \operatorname{\mathit{Red}}(y) \land \operatorname{\mathit{dom}}(y, \bar{x}) \ge t_{\operatorname{red}} \land \# y \operatorname{\mathit{Blue}}(y) \land \operatorname{\mathit{dom}}(y, \bar{x}) \ge t_{\operatorname{blue}}$

Exact Partial Dominating Set

Problem: Are there k vertices dominating *exactly t* vertices?

$$G \models \exists x_1 \dots \exists x_k \# y \ dom(y, x_1, \dots, x_k) = t$$

Cannot be expressed as $\exists x_1 \dots \exists x_k \# y \ \underbrace{\varphi(y, x_1, \dots, x_k)}_{\text{FO w/o } \#} \ge m$

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

$G \models \exists x_1 \dots \exists x_k \# y \operatorname{\mathit{Red}}(y) \land \operatorname{\mathit{dom}}(y, \bar{x}) \ge t_{\operatorname{red}} \land \# y \operatorname{\mathit{Blue}}(y) \land \operatorname{\mathit{dom}}(y, \bar{x}) \ge t_{\operatorname{blue}}$

Exact Partial Dominating Set

...

Problem: Are there *k* vertices dominating *exactly t* vertices?

$$G \models \exists x_1 \dots \exists x_k \# y \ dom(y, x_1, \dots, x_k) = t$$

Our goal: Lift result to $\exists x_1 \dots \exists x_k \bigvee \bigwedge (\# y \ \varphi_i(y\bar{x}) \ge m_i)$
boolean combination of ℓ counting terms

Our Results

Algorithmic Result

Theorem (Our Positive Result)

On classes of bounded expansion, we can decide in time $f(k, \ell)n^{\ell+1}$ polylog n whether

$$G \models \exists x_1 \dots \exists x_k \mathbf{P} (\# y \underbrace{\varphi_1(y\bar{x})}_{FO \ w/o \ \#}, \dots, \# y \varphi_\ell(y\bar{x}))$$

where **P** is some efficiently computable predicate over \mathbb{N}^{ℓ} .

Moreover, we can count the number of such solutions.

Algorithmic Result

Theorem (Our Positive Result)

On classes of bounded expansion, we can decide in time $f(k, \ell)n^{\ell+1}$ polylog n whether

$$G \models \exists x_1 \ldots \exists x_k \mathbf{P} (\# y \underbrace{\varphi_1(y\bar{x})}_{FO \ w/o \ \#}, \ldots, \# y \varphi_\ell(y\bar{x}))$$

where **P** is some efficiently computable predicate over \mathbb{N}^{ℓ} .

Moreover, we can count the number of such solutions.

 \implies Exact Partial Dominating Set in time $f(k)n^2$ on bounded expansion. \implies Red Rhue Partial Dominating Set in time $f(k)n^3$ on bounded expansion.

 \implies Red Blue Partial Dominating Set in time $f(k)n^3$ on bounded expansion (can be improved to $f(k)n^2$).

k-SUM Problem: given *m* numbers x_1, \ldots, x_m ; target *T* Find *k* numbers that add up to exactly *T*

Algorithms known for k-SUM: • $\widetilde{O}(Tm) \bullet O(m^{\lceil k/2 \rceil})$

k-SUM Problem: given *m* numbers x_1, \ldots, x_m ; target *T* Find *k* numbers that add up to exactly *T*

Algorithms known for k-SUM: • $\widetilde{O}(Tm) \bullet O(m^{\lceil k/2 \rceil})$

Theorem (Abboud et al. '21)

For every $\varepsilon > 0$, k-SUM is not in time $T^{1-\varepsilon}m^{o(k)}$ (under SETH).

k-SUM Problem: given *m* numbers x_1, \ldots, x_m ; target *T* Find *k* numbers that add up to exactly *T*

Algorithms known for k-SUM: • $\widetilde{O}(Tm) \bullet O(m^{\lceil k/2 \rceil})$

Theorem (Abboud et al. '21)

For every $\varepsilon > 0$, k-SUM is not in time $T^{1-\varepsilon}m^{o(k)}$ (under SETH).

Theorem (Our Lower Bound)

On star forests, for formulas of the form $\exists x_1 \dots \exists x_k (\# y \varphi_1(y, x_1 \dots x_k) = t_1 \land \dots \land \# y \varphi_\ell(y, x_1 \dots x_k) = t_\ell)$ there is no model-checking algorithm in time $f(k, \ell) n^{\ell-\varepsilon}$, for any function f or $\varepsilon > 0$.

Reduction

Example: T = 100; k = 3 $x_1 = 32, \qquad x_2 = 42, \qquad x_3 = 53, \qquad x_4 = 15.$

Reduction to model-checking of our fragment (on star forests):

Reduction

Reduction

 $G \models \exists x_1 \exists x_2 \exists x_3 \# y \operatorname{Red}(y) \land \operatorname{dom}(y, \bar{x}) = 9 \land \# y \operatorname{Blue}(y) \land \operatorname{dom}(y, \bar{x}) = 10$

Conclusion

Our results: Model-checking of $FO(\mathbb{P})$ formulas

 $G \models \exists x_1 \ldots \exists x_k \mathbf{P}(\#y \underbrace{\varphi_1(y\bar{x})}_{\text{first-order}}, \ldots, \#y \varphi_\ell(y\bar{x}))$

on classes of bounded expansion

- in time $f(k, \ell)n^{\ell+1}$ polylog n
- not in time $f(k, \ell)n^{\ell-\varepsilon}$ for all $\varepsilon > 0$ under SETH

Outlook:

- Close the gaps
- Lift to (structurally) nowhere dense classes

Thank you! mock@cs.rwth-aachen.de

Appendix

Partial Dominating Set

PartDomSet

Input:	A graph G and $k, t \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

Partial Dominating Set

PARTDOMSET

Input:	A graph G and $k,t\in\mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

• DomSet:
$$\exists x_1 \dots x_k \forall y (\bigvee E(y, x_i) \lor y = x_i)$$

• PARTDOMSET cannot be expressed as an short FO-formula (requires $\exists y_1 \dots \exists y_t$)

Partial Dominating Set

PartDomSet

Input:	A graph G and $k,t\in\mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

• DomSet:
$$\exists x_1 \dots x_k \forall y (\bigvee E(y, x_i) \lor y = x_i)$$

- PARTDOMSET cannot be expressed as an short FO-formula (requires $\exists y_1 \dots \exists y_t$)
- W[1]-hard for 2-degenerate graphs
- Can be solved on H-minor free graphs in time $(g(H)k)^k n^{O(1)}$
- Can be solved on classes C of bounded expansion in time $f_C(k)n$
- Can be solved on nowhere dense classes C in time $f_C(k)n^{1+\varepsilon}$

Step 1: Reduction to a Simpler Problem

Original Pro	\rightarrow		
$G \in \mathcal{C}$ of bounded	\rightarrow	Ĝ	
	φ_1		
FO-formulas 〈	÷	\rightarrow	
	φ_{ℓ}		

$$\begin{array}{ll} \text{For all } \bar{u} = u_1 \dots u_k \in V(G)^k \\ G \models & \# y \, \varphi_1(y \bar{u}) \geq t_1 \\ & \land & \vdots & \Longleftrightarrow \\ & \land \# y \, \varphi_\ell(y \bar{u}) \geq t_\ell \end{array}$$

$$\begin{cases} \textbf{Simpler Problem} \\ \vec{c} \in \mathcal{C}' \text{ of bounded expansion} \\ c_1 \\ \vdots \\ c_\ell \end{cases} \text{ vertex weight fcts} \end{cases}$$

$$egin{aligned} c_1(u_1)+\cdots+c_1(u_k)\geq t_1\ dots\ c_\ell(u_1)+\cdots+c_\ell(u_k)\geq t_\ell\ ec G\models\omega(ar u) ext{ (quantifier-free)} \end{aligned}$$

Courcelle with Semiring Homomorphisms

Often don't want one satisfying assignment but computing a property of the set of satisfying assignments

Example: Set of all vertex covers \mapsto minimum weight VC, number of VCs, all VCs...

Often don't want one satisfying assignment but computing a property of the set of satisfying assignments

Example: Set of all vertex covers \mapsto minimum weight VC, number of VCs, all VCs...

Definition

A problem *P* is an *MSO-evaluation problem* if it can be expressed as computing $h(sat(\varphi, G))$ for some homomorphism *h* into a semiring and MSO-formula φ .

Example: min. weight VC: $(\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0)$, h maps set to sum of weights

Often don't want one satisfying assignment but computing a property of the set of satisfying assignments

Example: Set of all vertex covers \mapsto minimum weight VC, number of VCs, all VCs...

Definition

A problem *P* is an *MSO-evaluation problem* if it can be expressed as computing $h(sat(\varphi, G))$ for some homomorphism *h* into a semiring and MSO-formula φ .

Example: min. weight VC: $(\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0)$, h maps set to sum of weights

Theorem (Courcelle, Mosbah '93)

An MSO-evaluation problem P can be solved in time $f_P(tw)$ nt on graphs of treewidth tw where t is the time complexity of the semiring operations.

k-SUM Problem: given m numbers x_1, \ldots, x_m ; target TFind k numbers that add up to exactly T

Algorithms known for k-SUM: • $\widetilde{O}(Tm) \bullet O(m^{\lceil k/2 \rceil})$

k-SUM Problem: given *m* numbers x_1, \ldots, x_m ; target *T* Find *k* numbers that add up to exactly *T*

Algorithms known for k-SUM: • $\widetilde{O}(Tm) \bullet O(m^{\lceil k/2 \rceil})$

Theorem (Abboud et al. '21)

For every $\varepsilon > 0$, k-SUM is not in time $T^{1-\varepsilon}m^{o(k)}$ (under SETH).

Reduction

Example: T = 100; k = 3 $x_1 = 32, \qquad x_2 = 42, \qquad x_3 = 53, \qquad x_4 = 15.$

Reduction to model-checking of our fragment (on star forests):

Reduction

Reduction

 $G \models \exists x_1 \exists x_2 \exists x_3 \# y \operatorname{Red}(y) \land \operatorname{dom}(y, \bar{x}) = 9 \land \# y \operatorname{Blue}(y) \land \operatorname{dom}(y, \bar{x}) = 10$

Reduction: Parameters

Theorem (Reminder)

For every $\varepsilon > 0$, k-SUM is not in time $T^{1-\varepsilon}m^{o(k)}$ (under SETH).

In our example: Parameter $\ell = 2$, size $|G| \le 2\sqrt{T}m$.

 \implies quadratic lower bound for model-checking

Theorem (Reminder)

For every $\varepsilon > 0$, k-SUM is not in time $T^{1-\varepsilon}m^{o(k)}$ (under SETH).

In our example: Parameter $\ell = 2$, size $|G| \le 2\sqrt{T}m$.

 \implies quadratic lower bound for model-checking

In general: ℓ freely choosable \implies $|G| = O(\sqrt[\ell]{T}\ell m)$

Have to "guess carry-overs": only $f(k, \ell)$ many choices

Theorem (Our Lower Bound)

On star forests, for formulas of the form

 $\exists x_1 \ldots \exists x_k (\# y \varphi_1(y, x_1 \ldots x_k) = t_1 \land \cdots \land \# y \varphi_\ell(y, x_1 \ldots x_k) = t_\ell)$

there is no model-checking algorithm in time $f(k, \ell)n^{\ell-\varepsilon}$, for any function f or $\varepsilon > 0$.