Solving a Family of Multivariate Optimization and Decision Problems on Classes of Bounded Expansion

Daniel Mock Joint work with Peter Rossmanith LoGAlg 2023, November 15, Warsaw

Algorithmician*: "I want to find a small set which optimizes multiple objectives!"

Algorithmician*: "I want to find a small set which optimizes multiple objectives!" Logician*: "What are some tractable fragments of counting logics on sparse classes?" Algorithmician*: "I want to find a small set which optimizes multiple objectives!" Logician*: "What are some tractable fragments of counting logics on sparse classes?"

(*Dramatization)

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, '21)

Built recursively using

- $\bullet\,$ the rules of FO
- $\#y \varphi(y, x_1, \dots, x_k) \ge m$ for every $m \in \mathbb{N}$ and $\mathsf{FO}(\{>0\})$ formula φ

Fragment of FO(\mathbb{P}) and FOC(\mathbb{P}) (Kuske, Schweikardt '17)

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, '21)

Built recursively using

- $\bullet\,$ the rules of FO
- $\#y \varphi(y, x_1, \dots, x_k) \ge m$ for every $m \in \mathbb{N}$ and $\mathsf{FO}(\{>0\})$ formula φ

Fragment of FO(\mathbb{P}) and FOC(\mathbb{P}) (Kuske, Schweikardt '17)

PARTDOMSET:

$$\exists x_1 \ldots \exists x_k \# y (\bigvee_{1 \le i \le k} E(y, x_i) \lor y = x_i) \ge t$$

First-Order with Some Counting: FO({>0})

Definition of FO({>0}) (Dreier, Rossmanith, '21)

Built recursively using

- $\bullet\,$ the rules of FO
- $\#y \varphi(y, x_1, \dots, x_k) \ge m$ for every $m \in \mathbb{N}$ and $\mathsf{FO}(\{>0\})$ formula φ

Fragment of FO(\mathbb{P}) and FOC(\mathbb{P}) (Kuske, Schweikardt '17)

PARTDOMSET:

$$\exists x_1 \ldots \exists x_k \# y (\bigvee_{1 \le i \le k} E(y, x_i) \lor y = x_i) \ge t$$

h-index:

$$\#$$
mypaper $\left(\#$ otherpaper cite(mypaper, otherpaper) $\geq h\right) \geq h$

Known Results for FO({>0})

Model-checking of $FO(\{>0\})$ is hard on forests of depth 4

Known Results for $FO(\{>0\})$

Model-checking of $FO(\{>0\})$ is hard on forests of depth 4

Theorem (Dreier, Rossmanith '21)

On classes of bounded expansion, in linear FPT time

- 1. $(1 + \varepsilon)$ -approximation of FO($\{>0\}$).
- 2. Exact evaluation of formulas $\exists x_1 \dots \exists x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{FO \ w/o \ \#} \ge m$

Known Results for FO({>0})

Model-checking of $FO(\{>0\})$ is hard on forests of depth 4

Theorem (Dreier, Rossmanith '21)

On classes of bounded expansion, in linear FPT time

- 1. $(1 + \varepsilon)$ -approximation of FO($\{>0\}$),
- 2. Exact evaluation of formulas $\exists x_1 \dots \exists x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{FO \ w/o \ \#} \ge m$

Theorem (Dreier, M., Rossmanith '23)

On nowhere dense classes, in almost linear FPT time:

Exact evaluation of formulas
$$\exists x_1 \dots \exists x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{quantifier-free} \ge m$$

 \Rightarrow PARTDOMSET in (almost) linear FPT time on bounded expansion & nowhere dense 3

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

Exact Partial Dominating Set

...

Problem: Are there *k* vertices dominating *exactly t* vertices?

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

 $G \models \exists x_1 \dots \exists x_k (\#y \operatorname{Red}(y) \land \operatorname{dom}(y, \bar{x})) \ge t_{\operatorname{red}} \land (\#y \operatorname{Blue}(y) \land \operatorname{dom}(y, \bar{x})) \ge t_{\operatorname{blue}}$

Exact Partial Dominating Set

• • •

Problem: Are there k vertices dominating exactly t vertices?

 $G \models \exists x_1 \ldots \exists x_k \# y \operatorname{dom}(y, \bar{x}) = t$

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

 $G \models \exists x_1 \dots \exists x_k (\#y \operatorname{Red}(y) \land \operatorname{dom}(y, \bar{x})) \ge t_{\operatorname{red}} \land (\#y \operatorname{Blue}(y) \land \operatorname{dom}(y, \bar{x})) \ge t_{\operatorname{blue}}$

Exact Partial Dominating Set

• • •

Problem: Are there *k* vertices dominating *exactly t* vertices?

 $G \models \exists x_1 \ldots \exists x_k \# y \operatorname{dom}(y, \bar{x}) = t$

Cannot be expressed as
$$\exists x_1 \dots \exists x_k \# y \underbrace{\varphi(y, x_1, \dots, x_k)}_{\text{quantifier-free}} \geq m$$

Red Blue Partial Dominating Set

Input:	A graph G and $k, t_{red}, t_{blue} \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t_{red}$ red and $\geq t_{blue}$ blue vertices?
Parameter:	k

 $G \models \exists x_1 \dots \exists x_k (\#y \operatorname{Red}(y) \land \operatorname{dom}(y, \bar{x})) \ge t_{\operatorname{red}} \land (\#y \operatorname{Blue}(y) \land \operatorname{dom}(y, \bar{x})) \ge t_{\operatorname{blue}}$

Exact Partial Dominating Set

•••

Problem: Are there *k* vertices dominating *exactly t* vertices?

$$G \models \exists x_1 \dots \exists x_k \# y \ dom(y, \bar{x}) = t$$

Our goal: Lift result to $\exists x_1 \dots \exists x_k \bigvee \bigwedge (\# y \ \varphi_i(y \bar{x}) \ge m_i)$
boolean combination of ℓ counting terms

Algorithmic Result

Algorithmic Result

Theorem (Our positive result)

On classes of bounded expansion, we can decide in time $f(k, \ell)n^{\ell+1}$ whether

$$G \models \exists x_1 \dots x_k P(\#y \underbrace{\varphi_1(y\bar{x})}_{first-order}, \dots, \#y \varphi_\ell(y\bar{x}))$$

where P is some efficiently computable predicate over \mathbb{N}^{ℓ} .

Moreover, we can count the number of solutions.

Algorithmic Result

Theorem (Our positive result)

On classes of bounded expansion, we can decide in time $f(k, \ell)n^{\ell+1}$ whether

$$G \models \exists x_1 \dots x_k P(\#y \underbrace{\varphi_1(y\bar{x})}_{first-order}, \dots, \#y \varphi_\ell(y\bar{x}))$$

where P is some efficiently computable predicate over \mathbb{N}^{ℓ} .

Moreover, we can count the number of solutions.

 \implies Exact Partial Dominating Set in time $f(k)n^2$ on bounded expansion.

 \implies Red Blue Partial Dominating Set in time $f(k)n^3$ on bounded expansion (can be improved to $f(k)n^2$).

Step 1: Reduction to a Simpler Problem

Original Pro	blem:	\rightarrow	
$G \in \mathcal{C}$ of bounded	expansion	\rightarrow	Ĝ
	φ_1		
FO-formulas <	÷	\rightarrow	
	φ_{ℓ}		

For all
$$\bar{u} = u_1 \dots u_k \in V(G)^k$$
:
 $G \models \qquad \# y \varphi_1(y \bar{u}) \ge t_1$
 $\land \qquad \vdots \qquad \Longleftrightarrow$
 $\land \# y \varphi_\ell(y \bar{u}) \ge t_\ell$

$$\begin{array}{c}
\textbf{Simpler Problem} \\
\vec{c} \in \mathcal{C}' \text{ of bounded expansion} \\
\begin{array}{c}
c_1 \\
\vdots \\
c_\ell
\end{array}
\right\} \text{ vertex weight fcts}$$

$$egin{aligned} c_1(u_1)+\cdots+c_1(u_k)\geq t_1\ dots\ c_\ell(u_1)+\cdots+c_\ell(u_k)\geq t_\ell\ ec d\ ec b=\omega(ar u) \ (ext{quantifier-free}) \end{aligned}$$

Courcelle with Semiring Homomorphisms

Often don't want one satisfying assignment but computing a property of the set of satisfying assignments

Example: Set of all vertex covers \mapsto minimum weight VC, number of VCs, all VCs...

Often don't want one satisfying assignment but computing a property of the set of satisfying assignments

Example: Set of all vertex covers \mapsto minimum weight VC, number of VCs, all VCs...

Definition

A problem *P* is an *MSO-evaluation problem* if it can be expressed as computing $h(sat(\varphi, G))$ for some homomorphism *h* into a semiring and MSO-formula φ .

Example: min. weight VC: $(\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0)$, h maps set to sum of weights

Often don't want one satisfying assignment but computing a property of the set of satisfying assignments

Example: Set of all vertex covers \mapsto minimum weight VC, number of VCs, all VCs...

Definition

A problem *P* is an *MSO-evaluation problem* if it can be expressed as computing $h(sat(\varphi, G))$ for some homomorphism *h* into a semiring and MSO-formula φ .

Example: min. weight VC: $(\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0)$, h maps set to sum of weights

Theorem (Courcelle, Mosbah '93)

An MSO-evaluation problem P can be solved in time $f_P(tw)$ nt on graphs of treewidth tw where t is the time complexity of the semiring operations.

Result

Maintain a table: for every (t_1, \ldots, t_ℓ) the number of $\bar{u} \in V(G)^{\bar{x}}$ with

- $\vec{G} \models \omega(\bar{u})$
- $c_1(u_1) + \cdots + c_1(u_k) = t_1$
- :
- $c_\ell(u_1) + \cdots + c_\ell(u_k) = t_\ell$

Show that this forms a semiring with appropriate operations! Complexity of operations is $\sim n^{\ell+\varepsilon}$

Theorem (Our positive result)

On classes of bounded expansion, we can decide in time $f(k, \ell)n^{\ell+1}$ whether

$$G \models \exists x_1 \dots x_k P(\#y \underbrace{\varphi_1(y\bar{x})}_{first-order}, \dots, \#y \varphi_\ell(y\bar{x}))$$

Lower Bounds

k-SUM Problem: given m numbers x_1, \ldots, x_m ; target TFind k numbers that add up to exactly T

Algorithms known for k-SUM: • $\widetilde{O}(Tm) \bullet O(m^{\lceil k/2 \rceil})$

k-SUM Problem: given *m* numbers x_1, \ldots, x_m ; target *T* Find *k* numbers that add up to exactly *T*

Algorithms known for k-SUM: • $\widetilde{O}(Tm) \bullet O(m^{\lceil k/2 \rceil})$

Theorem (Abboud et al. '21)

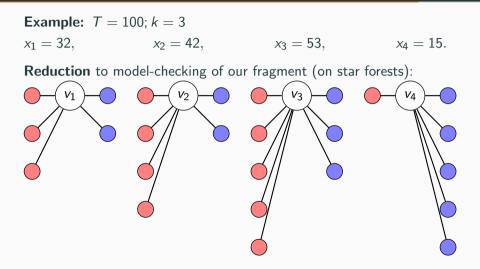
For every $\varepsilon > 0$, k-SUM is not in time $T^{1-\varepsilon}m^{o(k)}$ (under SETH).

Reduction

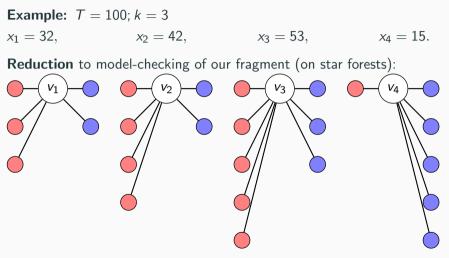
Example: T = 100; k = 3 $x_1 = 32, \qquad x_2 = 42, \qquad x_3 = 53, \qquad x_4 = 15.$

Reduction to model-checking of our fragment (on star forests):

Reduction



Reduction



 $G \models \exists x_1 \exists x_2 \exists x_3 \# y \operatorname{Red}(y) \land \operatorname{dom}(y, \bar{x}) = 9 \land \# y \operatorname{Blue}(y) \land \operatorname{dom}(y, \bar{x}) = 10$

Reduction: Parameters

Theorem (Reminder)

For every $\varepsilon > 0$, k-SUM is not in time $T^{1-\varepsilon}m^{o(k)}$ (under SETH).

In our example: Parameter $\ell = 2$, size $|G| \le 2\sqrt{T}m$.

 \implies quadratic lower bound for model-checking

Theorem (Reminder)

For every $\varepsilon > 0$, k-SUM is not in time $T^{1-\varepsilon}m^{o(k)}$ (under SETH).

In our example: Parameter $\ell = 2$, size $|G| \le 2\sqrt{T}m$.

 \implies quadratic lower bound for model-checking

In general: ℓ freely choosable \implies $|G| = O(\sqrt[\ell]{T}\ell m)$

Have to "guess carry-overs": only $f(k, \ell)$ many choices

Theorem (Our Lower Bound)

On star forests, for formulas of the form

 $\exists x_1 \ldots \exists x_k (\# y \varphi_1(y, x_1 \ldots x_k) = t_1 \land \cdots \land \# y \varphi_\ell(y, x_1 \ldots x_k) = t_\ell)$

there is no model-checking algorithm in time $f(k, \ell)n^{\ell-\varepsilon}$, for any function f or $\varepsilon > 0$.

Conclusion

Our results: Model-checking of $FO(\mathbb{P})$ formulas $G \models \exists x_1 \dots x_k P(\#y \underbrace{\varphi_1(y\bar{x})}_{\text{first-order}}, \dots, \#y \varphi_\ell(y\bar{x}))$

on classes of bounded expansion

- in time $f(k, \ell)n^{\ell+1}$ polylog n
- not in time $f(k, \ell)n^{\ell-\varepsilon}$ for all $\varepsilon > 0$ under SETH

For the case of boolean combinations of $\#\varphi(y\bar{x}) \ge m$:

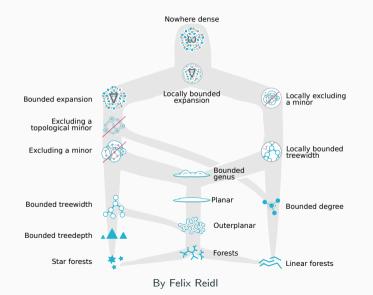
- in time $f(k, \ell)n^{\ell}$ polylog n
- not in time $f(k, \ell)n^{\ell/2-\varepsilon}$ for all $\varepsilon > 0$ under SETH

Outlook:

- Close the gaps
- Lift to (structurally) nowhere dense classes

Appendix

Sparse Graph Classes



Partial Dominating Set

PartDomSet

Input:	A graph G and $k, t \in \mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

Partial Dominating Set

PARTDOMSET

Input:	A graph G and $k,t\in\mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

• DomSet:
$$\exists x_1 \dots x_k \forall y (\bigvee E(y, x_i) \lor y = x_i)$$

• PARTDOMSET cannot be expressed as an short FO-formula (requires $\exists y_1 \dots \exists y_t$)

Partial Dominating Set

PartDomSet

Input:	A graph G and $k,t\in\mathbb{N}$
Problem:	Are there k vertices dominating $\geq t$ vertices?
Parameter:	k

• DomSet:
$$\exists x_1 \dots x_k \forall y (\bigvee E(y, x_i) \lor y = x_i)$$

- PARTDOMSET cannot be expressed as an short FO-formula (requires $\exists y_1 \dots \exists y_t$)
- W[1]-hard for 2-degenerate graphs
- Can be solved on H-minor free graphs in time $(g(H)k)^k n^{O(1)}$
- Can be solved on classes C of bounded expansion in time $f_C(k)n$
- Can be solved on nowhere dense classes $\mathcal C$ in time $f_{\mathcal C}(k)n^{1+arepsilon}$