
A Parameterized Route to Exact Puzzles:

Breaking the 2n-Barrier for Irredundance

(Extended Abstract)

Daniel Binkele-Raible1, Ljiljana Brankovic2, Henning Fernau1, Joachim Kneis3,
Dieter Kratsch4, Alexander Langer3, Mathieu Liedloff5, and Peter Rossmanith3

1 Universität Trier, FB 4—Abteilung Informatik, D-54286 Trier, Germany.
{fernau,raible}@uni-trier.de

2 The University of Newcastle, University Drive, NSW 2308 Callaghan, Australia.⋆

ljiljana.brankovic@newcastle.edu.au
3 Department of Computer Science, RWTH Aachen University, Germany.⋆⋆

{kneis,langer,rossmani}@cs.rwth-aachen.de
4 Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine -

Metz, 57045 Metz Cedex 01, France. kratsch@univ-metz.fr
5 Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, 45067

Orléans Cedex 2, France. liedloff@univ-orleans.fr

Abstract. The lower and the upper irredundance numbers of a graph G,
denoted ir(G) and IR(G) respectively, are conceptually linked to domi-
nation and independence numbers and have numerous relations to other
graph parameters. It is a long-standing open question whether determin-
ing these numbers for a graph G on n vertices admits exact algorithms
running in time less than the trivial Ω(2n) enumeration barrier. We solve
this open problem by devising parameterized algorithms for the duals of
the natural parameterizations of the problems with running times faster
than O∗(4k). For example, we present an algorithm running in time
O∗(3.069k) for determining whether IR(G) is at least n − k. Although
the corresponding problem has been shown to be in FPT by kernelization
techniques, this paper offers the first parameterized algorithms with an
exponential dependency on the parameter in the running time. Further-
more, these seem to be the first examples of a parameterized approach
leading to a solution to a problem in exponential time algorithmics where
the natural interpretation as exact exponential-time algorithms fails.

1 Introduction

A set I ⊆ V is called an irredundant set of a graph G = (V, E) if each v ∈ I
is either isolated in G[I], the subgraph induced by I, or there is at least one
vertex u ∈ V \ I with N(u) ∩ I = {v}, called a private neighbor of v. An
irredundant set I is maximal if no proper superset of I is an irredundant set. The

⋆ Supported by the RGC CEF grant G0189479 of The University of Newcastle.
⋆⋆ Supported by the DFG under grant RO 927/7.

lower irredundance number ir(G) equals the minimum cardinality taken over all
maximal irredundant sets of G; similarly, the upper irredundance number IR(G)
equals the maximum cardinality taken over all such sets.

In graph theory, the irredundance numbers have been extensively studied
due to their relation to numerous other graph parameters. An estimated 100
research papers [1] have been published on the properties of irredundant sets
in graphs, e.g., [2–8]. For example, a set is minimal dominating if and only
if it is irredundant and dominating [9]. Since each independent set is also an
irredundant set, the well-known domination chain ir(G) ≤ γ(G) ≤ α(G) ≤
IR(G) is a simple observation. Here, as usual, γ(G) denotes the size of a minimum
dominating set, and α(G) denotes the size of a maximum independent set in G.
It is also known that γ(G)/2 < ir(G) ≤ γ(G) ≤ 2 · ir(G) − 1, see [10].

There are also some applications of irredundant sets in combinatorial op-
timization, e.g., locating senders in broadcast and packet radio networks [11].
Determining the irredundance numbers is NP-hard even for bipartite graphs [5].
The fastest currently known exact algorithm is the simple O∗(2n) brute-force ap-
proach enumerating all subsets.6 So it is tempting to study these problems from
a parameterized complexity viewpoint (for an introduction, see, e.g., [12]). It has
been known for a while (see, e.g., [13]) that it is possible to break the so-called
2n-barrier for (some) vertex-selection problems by designing parameterized al-
gorithms that run in time O∗(ck) for some c < 4 by a “win-win” approach: either
the parameter is “small” (k < n/2 + ǫ for an appropriate ǫ > 0) and we use the
parameterized algorithm, or we enumerate all

(

n
n/2−ǫ

)

< 2n subsets.

Unfortunately, the problem of finding an irredundant set of size k is W [1]-
complete when parameterized in k as shown by Downey et al. [14]. However,
they also proved that the parameterized dual, where the parameter is k′ :=
n − k, admits a problem kernel of size 3k′2 and is therefore in FPT (but the
running time has a superexponential dependency on the parameter). Therefore in
this paper we study the parameterized problems (following the notation of [14])
Co-Maximum Irredundant Set (Co-MaxIR) and Co-Minimum Maximal

Irredundant Set (Co-MinMaxIR), which given a graph G = (V, E) and a
positive integer parameter k are to decide whether, respectively, IR(G) ≥ n − k
and ir(G) ≤ n−k. We also consider the variant exact Co-Minimum Maximal

Irredundant Set (exact Co-MinMaxIR), which given a graph G = (V, E)
and positive integer parameter k, asks to decide whether ir(G) = n − k.

Our contribution. First, we present linear problem kernels with 2k−1 vertices
for the Co-MinMaxIR problem and 3k vertices for Co-MaxIR, which already
shows that both problems can be solved with a running time of O∗(ck), c ≤ 8.
In particular, this improves the kernel with 3k2 vertices and the corresponding
running time of O∗(8k2

) of [14]. Secondly, we present a simple algorithm with
a running time of O∗(3.841k) which solves both Co-MaxIR and exact Co--

MinMaxIR simultaneously. The price we pay for this generality is that the
running time is only slightly better than O∗(4k), since we cannot exploit any

6 The O∗-notation hides polynomial factors, e.g., f(n, k) · poly(n, k)) = O∗(f(n, k)).

special properties of Co-MaxIR that do not hold for exact Co-MinMaxIR

and vice versa. Thirdly, we present a modification of the above algorithm, which
trades the generality for improved running time and solves Co-MaxIR in time
O∗(3.069k).

Although all the algorithms are surprisingly simple, a major effort is required
to prove their running time using a non-standard measure and a Measure &
Conquer (M&C) approach. While nowadays M&C is a standard technique for
the analysis of moderately exponential time algorithms (see, e.g., [15]), it is still
seldom used in parameterized algorithmics.

Finally, as a direct consequence, we obtain algorithms that compute the
irredundance numbers in time O∗(1.99914n) and even O∗(1.9601n) in case of
Co-MaxIR. These are the first exact exponential time algorithms breaking the
trivial 2n enumeration barrier for computing the irredundance numbers on ar-
bitrary graphs with n vertices, a well-known open question (see, e.g., [16]). Re-
cently, this has independently been achieved by a group consisting of M. Cygan,
M. Pilipczuk and J. O. Wojtaszczyk [17].

Due to space limits, some proofs are omitted in this extended abstract.

2 Preliminaries and Linear Kernels

The following alternative definition of irredundance is more descriptive and eases
understanding the results in this paper: The vertices in an irredundant set can
be thought of as kings, where each such king ought to have his very own private
garden that no other king can see (where “seeing” means adjacency). Each king
has exactly one cultivated garden, and all additional private gardens degenerate
to wilderness. It is also possible that the garden is already built into the king’s
own castle. One can easily verify that this alternate definition is equivalent to
the formal one given above.

Definition 1. Let G = (V, E) be a graph and I ⊆ V an irredundant set. We call
the vertices in I kings. Private neighbors are called gardens, and all remaining
vertices are wilderness. If a king has more than one private neighbor, we fix one
of these vertices as a unique garden and the other vertices as wilderness. If a
vertex v ∈ I has no neighbors in I, we (w.l.o.g.) say v has an internal garden,
otherwise the garden is external. We denote the corresponding sets as K,G,W (K
and G are not necessarily disjoint). Kings with external gardens are denoted by
Ke and kings with internal garden by Ki. Similarly, the set of external gardens
is Ge := G \ K. In what follows these sets are also referred to as labels.

Our first theorem makes use of the inequality ir(G) ≤ γ(G) ≤ n/2 in graphs
without isolated vertices for Co-MinMaxIR, and of crown reductions [18, 19]
for Co-MaxIR. This already shows that Co-MinMaxIR and Co-MaxIR allow
fixed-parameter tractable algorithms with a running time exponential in k, a new
contribution. In contrast, computing IR(G) is W[1]-complete [14].

Theorem 1. The Co-MinMaxIR problem admits a kernel with at most 2k−1
vertices. Co-MaxIR admits a kernel with at most 3k vertices.

3 A Simple Algorithm For Computing The Irredundance

Numbers

Our algorithm for the irredundance numbers recursively branches on the vertices
of the graph and assigns each vertex one of the four possible labels Ki,Ke,Ge,W ,
until a labeling that forms a solution has been found (if one exists). If I is an
irredundant set of size at least n−k, then is is easy to see that |Ke| = |K\G| ≤ k
and |G\K|+|W| ≤ k, which indicates a first termination condition. Furthermore,
one can easily observe that for any irredundant set I ⊆ V the following simple
properties hold for all v ∈ V : (1) if |N(v) ∩ K| ≥ 2 then v ∈ K ∪ W; (2) if
|N(v) ∩ G| ≥ 2 then v ∈ G ∪W; (3) if |N(v) ∩ K| ≥ 2 and |N(v) ∩ G| ≥ 2 then
v ∈ W . Additionally, for all v ∈ Ki, we have N(v) ⊆ W .

This gives us a couple of conditions the labeling has to satisfy in order to yield
an irredundant set: each external garden is connected to exactly one external
king and vice versa. Once the algorithm constructs a labeling that cannot yield
an irredundant set anymore the current branch can be terminated.

Definition 2. Let G = (V, E) be a graph and let Ki,Ke,Ge,W ⊆ V be a
labeling of V . Let V = V \ (Ki ∪ Ke ∪ Ge ∪W). We call (Ki,Ke,Ge,W) valid if
the following conditions hold, and invalid otherwise.

1. Ki,Ke,Ge,W are pairwise disjoint, 4. for all v ∈ Ke, |N(v) ∩ Ge| ≤ 1,
2. for all v ∈ Ki, N(v) ⊆ W , 5. for all v ∈ Ge, N(v) ∩ (Ke ∪ V) 6= ∅,
3. for all v ∈ Ke, N(v) ∩ (Ge ∪ V) 6= ∅, 6. for all v ∈ Ge, |N(v) ∩ Ke| ≤ 1.

As a direct consequence, we can define a set of vertices that can no longer
become external gardens or kings without invalidating the current labeling:

NotG := { v ∈ V | the labeling (Ki,Ke,Ge ∪ {v},W) is invalid }

NotK := { v ∈ V | the labeling (Ki,Ke ∪ {v},Ge,W) is invalid }

It is easy to see that NotG and NotK can be computed in polynomial time,
and since vertices in NotG ∩ NotK can only be wilderness, we can also assume
that NotG ∩ NotK = ∅ once the following reduction rules have been applied.

Let G = (V, E) be a graph and let Ki,Ke,Ge,W ⊆ V be a valid labeling of
V . Let V = V \ (Ki ∪ Ke ∪ Ge ∪W). We define the following reduction rules, to
be applied in this order, one at a time:

R1 If there is some v ∈ W , remove all edges incident to v.
R2 If there is some v ∈ V with deg(v) = 0, then set Ki = Ki ∪ {v}.
R3 If there is v ∈ Ke with N(v) ∩ Ge = ∅ and N(v) ∩ V = {w}, then set

Ge := Ge ∪ {w}.
If there is v ∈ Ge with N(v) ∩ Ke = ∅ and N(v) ∩ V = {w}, then set
Ke := Ke ∪ {w}.

R4 For every v ∈ NotG ∩ NotK set W := W ∪ {v}.

A graph and a labeling of its vertices as above is called reduced if no further
reduction rules can be applied. Since the algorithm uses exhaustive branching,
we easily obtain:

Algorithm 1 A fast yet simple algorithm for Co-MaxIR.

Algorithm CO-IR(G, k,Ke,Ki,Ge,W):
Input: Graph G = (V, E), k ∈ N, labels Ke, Ki, Ge, W ⊆ V

01: Compute the sets NotG, NotK.
02: Apply the reduction rules exhaustively, updating NotG and NotK.
03: if the current labeling is invalid then return NO.
04: if ϕ(k,Ke,Ge,W) < 0 then return NO.
05: if |Ke| + |W| = k or |Ge| + |W| = k or all vertices are labeled then
06: return whether V \ (W ∪ Ge) is a solution.
07: if NotG 6= ∅ (or analogously, NotK 6= ∅) then
08: choose v ∈ NotG;
09: return CO-IR(G, k,Ke ∪{v},Ki,Ge,W) or CO-IR(G, k,Ke,Ki,Ge,W ∪{v})
10: Choose (in this preferred order) unlabeled v ∈ V of degree one, of maximum

degree with N(v) ∩ (Ge ∪ Ke) 6= ∅ or any unlabeled v with maximum degree.
11: return CO-IR(G, k,Ke,Ki,Ge,W ∪ {v})

or CO-IR(G, k,Ke,Ki ∪ {v}, Ge,W ∪ N(v))
or ∃u ∈ N(v) \ (Ke ∪ Ki ∪W) : CO-IR(G, k,Ke ∪ {v},Ki,Ge ∪ {u},W)
or ∃u ∈ N(v) \ (Ge ∪ Ki ∪W) : CO-IR(G, k,Ke ∪ {u},Ki,Ge ∪ {v},W)

Lemma 1. Algorithm 1 correctly solves Co-MaxIR (when initially called with
empty labels).

Algorithm 1 can be also used, with slight modifications, to answer the question if
a graph G has a minimum inclusion-maximal co-irredundant set of size exactly k
(Exact Co-MinMaxIR). Namely, if the potential dropped to zero, then either
the current labeling corresponds to a valid co-irredundant set of size k that is
inclusion-maximal or not; this has to be tested in addition.

Let T (k,Ke,Ge,W) be the number of recursive calls that reach Line 5 where
none of the (possibly zero) following recursive calls (in Lines 9 and 11) reach
this line. Since all recursive calls only require polynomial time, the running time
of Algorithm 1 is bounded by O∗(T (k,Ke,Ge,W)). Let our measure be:

ϕ(k,Ke,Ge,W) = k − |W| − 0.5|Ke| − 0.5|Ge|

Lemma 2. T (k,Ke,Ge,W) ≤ αϕ(k,Ke,Ge,W) with α ≤ 3.841.

Theorem 2. Co-MaxIR and Exact Co-MinMaxIR can be solved in time
O∗(3.841k). Consequently, the irredundance numbers of a graph G with n vertices
can be computed in time O∗(1.99914n).

4 Measure & Conquer Tailored To The Problems

In this section, we tailor the general Algorithm 2 to the needs of the Co-MaxIR

problem. To this end, we use a more precise annotation of vertices: In the course
of the algorithm, they will be either unlabeled U , kings with internal gardens

Ki, kings with external gardens Ke, (external) gardens Ge, wilderness W , not
being kings NotK, or not being gardens NotG. We furthermore partition the set
of vertices V into active vertices

Va = U ∪ NotG ∪ NotK ∪ { v ∈ Ke | N(v) ∩ Ge = ∅ } ∪ { v ∈ Ge | N(v) ∩Ke = ∅ }

that have to be reconsidered, and inactive vertices Vi = V \ Va. Now, a labeling
is called complete if Va = ∅. This means that the inactive vertices are either
from W , Ki or paired-up external kings and gardens. Define Kea = Ke ∩ Va and
Kei = Ke ∩ Vi (and analogously Gea, Gei).

We use a new measure ϕ(k,Ki,Ke,Ge, NotG, NotK,W , Va) = k−|W|−|Gei|−
ωℓ(|Kea| + |Gea|) − ωn(|NotG| + |NotK|), where NotG and NotK are taken into
account. We will later determine the weights ωℓ and ωn to optimize the analysis,
where 0 ≤ ωn ≤ 0.5 ≤ ωℓ ≤ 1 and ωn + ωℓ ≤ 1. We will describe in words how
the measure changes in each case. Let us first present the reduction rules that
we employ in Table 1. They shall be applied in the given order, one at a time.
Note that the reduction rules are sound and do not increase the measure.

Lemma 3. In a reduced instance, a vertex v ∈ NotK ∪ NotG has at most one
neighbor u ∈ Ge ∪ Ke; more precisely, if such u exists, then u ∈ Ge if and only
if v ∈ NotG and deg(v) ≥ 2 (Thus, v must have a neighbor z that is not in
Ge ∪Ke).

Proof. Consider, w.l.o.g., v ∈ NotG. Assume that u ∈ N(v) ∩ (Ge ∪ Ke) exists.
Note that the alternative u ∈ Ke is resolved by Reduction Rule 7. Hence, u ∈ Ge.
If v had no other neighbor but u, then Reduction Rule 12 would have triggered.
So, deg(v) ≥ 2. Let z ∈ N(v) \ {u}. If the claim were false, then z ∈ Ge ∪ Ke.
The case z ∈ Ke is ruled out by Reduction Rule 7. The case z ∈ Ge is dealt with
by Reduction Rule 13. Hence, z /∈ Ge ∪ Ke. ⊓⊔

Now consider Algorithm 2.

Lemma 4. In each labeled graph which is input of a recursive call of CO-IR

there are no two neighbors u, v such that u ∈ Kea and v ∈ Gea.

Lemma 5. Whenever our algorithm encounters a reduced instance, a vertex
v ∈ Ge obeys N(v) ⊆ U∪NotG. Symmetrically, if v ∈ Ke, then N(v) ⊆ U∪NotK.

Although we are looking for a maximal irredundant set, we can likewise
look for a complete labeling L = (Ki

L,Ge
L
i ,Ke

L
i ,WL) that partitions the whole

vertex set V = Ki
L ⊎ Ge

L
i ⊎ Ke

L
i ⊎ WL into internal kings, external kings and

gardens, as well as wilderness. Having determined L, IL = Ke
L
i ⊎Ki

L should be an
irredundant set, and conversely, to a given irredundant set I, one can compute in
polynomial time a corresponding complete labeling. However, during the course
of the algorithm, we deal with (incomplete) labelings L = (Ki, Ge, Ke, NotG,
NotK, W , Va), a tuple of subsets of V that also serve as input to our algorithm,
preserving the invariant that V = Ki ⊎ Ge ⊎ Ke ⊎ NotG ⊎ NotK ⊎ W ⊎ U . A
complete labeling corresponds to a labeling with NotG = NotK = U = Va = ∅.

1. If V contains a vertex x ∈ Ki and a neighbor u ∈ Ge ∪ Ke ∪ Ki, then return NO.
2. If V contains a vertex x with two neighbors u, v where x ∈ Ke and u, v ∈ Ge, then

return NO. Exchanging the roles of kings and gardens, we obtain a symmetric rule.
3. If V contains an isolated vertex v ∈ (Ge ∪ Ke), then return NO.
4. If V contains an isolated vertex v ∈ (NotK∪NotG), then put v into W, decreasing

the measure by 1 − ωn.
5. If V contains an isolated vertex u ∈ U , then put u into Ki and set Va = Va \ {u}.
6. Delete an edge between two external kings or two external gardens.
7. Delete an edge between a Ke- and a NotG-vertex. Exchanging the roles of kings

and gardens, we obtain a symmetric rule.
8. Remove any edges incident to vertices in W.
9. a) Delete an edge between two NotK-vertices.

b) Delete an edge between two NotG-vertices.
10. If u ∈ U such that N(u) = {v} for some v ∈ U , then put u into Ki and set

Va = Va \ {u}.
11. If u ∈ Ki, then put its neighbors N(u) into W and set Va = Va \ N(u); this

decreases the measure by |N(u)|.
12. If V contains two neighbors u, v such that u ∈ Gea and v ∈ U ∪ NotG with either

deg(u) = 1 or deg(v) = 1, then put v into Ke, and render both, u and v inactive;
this decreases the measure by 1 − ωℓ if v ∈ U and otherwise by 1 − ωℓ − ωn.
Exchanging the roles of kings and gardens, we obtain a symmetric rule.

13. If V contains a vertex v with two neighboring gardens such that v ∈ U , then set
v ∈ NotK; if v ∈ NotG, then set v ∈ W. This decreases the measure by ωn or
by (1 − ωn), respectively. Exchanging the roles of kings and gardens, we obtain a
symmetric rule.

14. Assume that V contains two inactive neighbors u, v where u ∈ Ke and v ∈ Ge, then
put all x ∈ (N(u)∩U) into NotG, all x ∈ (N(u)∩NotK) into W, all x ∈ (N(v)∩U)
into NotK and all x ∈ (N(v)∩NotG) into W. The measure decrease for each vertex
x is ωn if x ∈ ((N(u)∪N(v))∩U) and 1−ωn if x ∈ (N(u)∩NotK)∪(N(v)∩NotK).

Table 1. Extensive list of reduction rules.

Since (NotK ∪ NotG) ⊆ Va, we have obtained a complete labeling once we leave
our algorithm in Line 4, returning YES. We say that a labeling L′ = (Ki

′,
Ge

′, Ke
′, NotG′, NotK′, W ′, V ′

a) extends the labeling L = (Ki, Ge, Ke, NotG,
NotK, W , Va) if Ki ⊆ Ki

′, Ge ⊆ Ge
′, Ke ⊆ Ke

′, NotG ⊆ W ′ ∪ Ke
′ ∪ NotG′,

NotK ⊆ W ′ ∪ Ge
′ ∪ NotK′, W ⊆ W ′, V ′

a ⊆ Va. We also write L ≺G L′ if L′

extends L. Notice that reduction rules and recursive calls only extend labelings
(further).

Notice that ≺G is a partial order on the set of labelings of a graph G = (V, E).
The maximal elements in this order are precisely the complete labelings. Hence,
the labeling LI corresponding to a maximal irredundant set I is maximal, with
ϕ(k, LI) ≤ 0 iff |I| ≥ |V |− k. Conversely, given a graph G = (V, E), the labeling
LG = (∅, ∅, ∅, ∅, ∅, ∅, V) is the smallest element of ≺G; this is also the initial
labeling that we start off with when first calling Algorithm 2. If L, L′ are labelings
corresponding to the parameter lists of nodes n, n′ in the search tree such that
n is ancestor of n′ in the search tree, then L ≺G L′. The basic strategy of

Algorithm 2 A faster algorithm for Co-MaxIR.

Algorithm CO-IR(G, k,Ki,Ke,Ge, NotG, NotK,W, Va):
Input: Graph G = (V, E), k ∈ N, labels Ki, Ke, Ge, NotG, NotK, W, Va ⊆ V

01: Consecutively apply the procedure CO-IR to components containing Va-vertices.
02: Apply all the reduction rules exhaustively.
03: if ϕ(k,Ki,Ke,Ge,W, NotG, NotK, Va) < 0 then return NO.
04: if Va = ∅ then return YES.
05: if maxdegree(G[Va]) ≤ 2 then solve by dynamic programming [20].
06: if NotG 6= ∅ (and analogously, NotK 6= ∅) then
07: choose v ∈ NotG; if ∃z ∈ N(v) ∩ Ge then I := {v, z} else I := ∅.
08: return CO-IR(G, k,Ki,Ke ∪ {v}, Ge, NotG \ {v}, NotK,W, Va \ I) or

CO-IR(G, k,Ki,Ke, Ge, NotG \ {v}, NotK,W ∪ {v}, Va \ {v});
09: if there is an unlabeled v ∈ V with exactly two neighbors u, w in G[Va],

where u ∈ Gea and w ∈ Kea then
10: return CO-IR(G, k,Ki,Ke ∪ {v}, Ge, NotG, NotK,W, Va \ {v, u}) or

CO-IR(G, k,Ki,Ke, Ge ∪ {v}, NotG, NotK,W, Va \ {v, w});
11: if Kea ∪ Gea 6= ∅ then
12: Choose some v ∈ Kea ∪ Gea of maximum degree.
13: if v ∈ Kea (and analogously, v ∈ Gea) then return whether
14: ∃u ∈ N(v) : CO-IR(G, k,Ki,Ke,Ge ∪ {u}, NotG, NotK,W, Va \ {u, v})
15: Choose v ∈ U of maximum degree, preferring v with some u ∈ N(v) of degree two.
16: return CO-IR(G, k,Ki,Ke,Ge, NotG, NotK,W ∪ {v}, Va \ {v})

or CO-IR(G, k,Ki ∪ {v},Ke,Ge, NotG, NotK,W, Va \ {v})
or ∃u ∈ N(v) such that

CO-IR(G, k,Ki,Ke ∪ {v}, Ge ∪ {u}, NotG, NotK,W, Va \ {u, v})
or ∃u ∈ N(v) such that

CO-IR(G, k,Ki,Ke ∪ {u}, Ge ∪ {v}, NotG, NotK,W, Va \ {u, v})

Algorithm 2 is to exhaustively consider all complete labelings (only neglecting
cases that cannot be optimal). This way, also all important maximal irredundant
sets are considered.

Lemma 6. If ϕ(k,Ki,Ke,Ge,W , NotG, NotK, Va) < 0, then for weights 0 ≤
ωn ≤ 0.5 ≤ ωℓ ≤ 1 with ωn + ωℓ ≤ 1, for any complete labeling L = (Ki

L,Ge
L
i ,

Ke
L
i ,WL) extending Λ := (Ki,Ke,Ge, NotG, NotK,W , Va) we have ϕ(k,Ki

L,
Ge

L
i ,Ke

L
i , ∅, ∅,WL, ∅) < 0.

1 Kea → Ke
L

i −ωl

2 Gea → Ge
L
i 1 − ωl

3 NotG → Ke
L

i −ωn

4 NotG → WL 1 − ωn

5 NotK → Ge
L

i 1 − ωn

6 NotK → WL 1 − ωn

7 U → WL 1

8 U → Ki
L 0

9 U → Ke
L

i 0

10 U → Ge
L

i 1

Proof. We give a table for every possible label transi-
tion from Λ to its extension L. Note that Algorithm
CO-IR only computes such solutions. All entries ex-
cept two cause a non-increase of ϕ. The entries number
1 and 3 expose an increase in ϕ. By the problem defi-
nition, there exists a bijection f : Ke

L → Ge
L. So for a

vertex v in Ke
L
i ∩ Kea we must have f(v) ∈ U ∪ NotK.

By Lemma 4 f(v) 6∈ Gea. Taking now into account the

label transition of f(v) which must be of the form U → Ge
L
i or NotK → Ge

L
i , we

see that a total decrease with respect to v and f(v) of at least 1 − ωn − ωl ≥ 0
can be claimed. If v ∈ NotG ∩ Ke

L
i then by arguing analogously we get a total

decrease of at least 1 − ωn − ωl ≥ 0. ⊓⊔

Lemma 7. Assume that there is an unlabeled vertex v, which has exactly two
neighbors vG ∈ Ge and vK ∈ Ke. In the corresponding branching process, we may
then omit the case v ∈ W.

Proof. We are looking for an inclusion-maximal irredundant set. Hence, only the
positions of the kings matter, not the positions of the gardens. So, in particular
we cannot insist on the garden of vK being placed on some neighbor u of vK

different from v. In this sense, any solution that uses v as wilderness can be
transformed into a no worse solution with v ∈ Ge: Simply pair up v and vK ,
turning the hitherto garden of vK into wilderness. So, no optimum solution is
lost by omitting the case v ∈ W in the branching. ⊓⊔

Lemma 8. Algorithm 2 correctly solves Co-MaxIR.

Proof. The algorithm correctly answers NO in line 3 by Lemma 6. If Va = ∅ in
line 4 we can deduce k ≥ |W| + |Gei|. Thus, we can correctly answer YES. The
recursive calls in lines 8, 14 and 16 are all exhaustive branchings and therefore
no optimum solution is neglected. In the call in line 10 we do not consider the
possibility of setting v ∈ W which is justified by Lemma 7. ⊓⊔

Theorem 3. Co-MaxIR can be solved in time O∗(3.069k), and consequently
in time O∗(1.9601n).

Proof. The correctness of the algorithm has been reasoned above already (in
particular, Lemma 6 concerning the correctness of the abort condition). For
the running time, we now provide a partial analysis leading to recurrences that
estimate an upper bound on the search tree size Tϕ(µ, h), where µ denotes the
measure and h the height of the search tree. The claimed running time would
then formally follow by an induction over h.

1. Assume that the algorithm branches on some vertex v ∈ NotG, the case v ∈
NotK being completely analogous. By reduction rules, N(v) ⊆ U ∪ Gea ∪ NotK.

a) If N(v) ⊆ U ∪ NotK, we derive the following branch in the worst case:
Tϕ(µ, h) ≤ Tϕ(µ− (1− ωn), h− 1) + Tϕ(µ− (ωℓ − ωn), h− 1). This follows from
a simple branching analysis considering the cases that v becomes wilderness or
that v becomes a king. See also Table 2 where the entries (1a)#1 and (1a)#2
correspond to the reduction of the first and second branch.

b) Assume now that N(v)∩Gea 6= ∅ and let u ∈ N(v)∩Gea. Lemma 3 ensures
that there can be at most one element in N(v) ∩ Ge and that d(v) ≥ 2. Due to
Reduction Rule 12, deg(u) ≥ 2.

First assume that deg(u) = 2, i.e., N(u) = {v, x}. Then, we arrive at the
following recursion: Tϕ(µ, h) ≤ Tϕ(µ − (2 − ωℓ − ωn), h − 1) + Tϕ(µ − (1 − ωℓ +
ωn), h−1), see entries (1bi)#1 and (1bi)#2 of Table 2. This is seen as follows. By

Weight 1 1 ωℓ ωℓ ωn ωn

Case W Gei Kea Gea NotG NotK potent. diff. ≥
(1a)#1 v −v 1 − ωn

(1a)#2 v −v ωℓ − ωn

(1bi)#1 v u −u −v 2 − ωn − ωℓ

(1bi)#2 u −u −v, +z x 1 + ωn − ωℓ

(1bii)#1 v −v 1 − ωn

(1bii)#2 u −u −v, +z {x1, x2} 1 + 2ωn − ωℓ

(2a)#1 vG −vG N(vG) \ Ge 1 − ωℓ + 2ωn

(2a)#2 v −vK N(vK) \ Ke 1 − ωℓ + 2ωn

(2b)#1 {vG, x} −vK −vG N(vG) \ {v} −x∈N(vK)\{v} 2 − 2ωℓ + ωn

(2b)#2 {v, vG} −vK −vG −x∈N(vG)\{v} N(vK)\{v} 2 − 2ωℓ + ωn

(2c)#1 {vG, x} −vK −vG N(vG) \ {v} −x∈N(vK)\{v} 2 − 2ωℓ + ωn

(2c)#2 v −vK N(vK) \ Ke 1 − ωℓ + ωn

(3)#j v −v N(u) \ {v} N(v) \ {u} 1 − ωℓ + deg(v)ωn

(4a)#1 N(w) 2
(4a)#2 N(v) deg(v)
(4a)#j u N(v) \ {u} N(u) \ {v} 1 + deg(v)ωn

(4a)#j v N(u) \ {v} N(v) \ {u} 1 + deg(v)ωn

(4b)#1 v 1
(4b)#2 N(v) deg(v)
(4b)#j u N(v) \ {u} N(u) \ {v} 1+(deg(v)+1)ωn

(4b)#j v N(u) \ {v} N(v) \ {u} 1+(deg(v)+1)ωn

Table 2. Overview over the potential gained in different branchings; symmetric
branches due to exchanging roles of kings and gardens are not displayed. Neither are
possibly better branches listed.

setting v ∈ W , due to Reduction Rule 8, u will be of degree one and hence will
be paired with its neighbor x due to Reduction Rule 12. If x ∈ U , the measure
decreases by 2−ωl −ωn. If x ∈ NotG, it decreases by 2−ωl − 2ωn. But then by
Lemma 3 there is y ∈ N(x) \ {u} such that y ∈ NotK ∪ U . Then by Reduction
Rule 12 y is moved to W ∪ NotG giving some additional amount of at least ωn.
Note that y 6= v as v ∈ NotG.
If we set v ∈ Ke, then u and v will be paired by Reduction Rule 14. Thereafter,
the other neighbor x of u will become a member of NotG or of W , depending on
its previous status. Moreover, there must be a further neighbor z ∈ U ∪NotK of
v (by Lemma 3 and the fact that u is the unique Gea neighbor) that will become
member of NotG or W . This yields the claimed measure change if z 6= x. If z = x,
then z is in U and the vertex will be put into W . Thus, the recursively considered
instance has complexity Tϕ(µ−(2−ωℓ−ωn), h−1) ≤ Tϕ(µ−(1−ωℓ+ωn), h−1).

Secondly, assume that deg(u) ≥ 3 (keeping the previous scenario otherwise).
This yields the following worst-case branch: Tϕ(µ, h) ≤ Tϕ(µ− (1−ωn), h−1)+
Tϕ(µ − (1 − ωℓ + 2ωn), h − 1), see entries (1bii)#1 and (1bii)#2 of Table 2.

This is seen by a similar (even simpler) analysis. Note that all z ∈ N(v) ∩
N(u) ⊆ U get labeled W in the second branch.

We will henceforth not present the recurrences for the search tree size in this
explicit form, but rather point to Table 2 that contains the same information.
There, cases are differentiated by writing Bj for the jth branch.

2. Assume that all active vertices are in U ∪ Ge ∪ Ke, with Gea ∪ Kea 6= ∅.
Then, the algorithm would pair up some v ∈ Gea ∪ Kea. Assume that there is
an unlabeled vertex v that has exactly two neighbors vG ∈ Ge and vK ∈ Ke.
Observe that we may skip the possibility that v ∈ W due to Lemma 7. Due to
space constraints, we omit further details. For the resulting branching vectors,
please see Table 2.

3. Assume that all active vertices are in U ∪ Ge ∪ Ke, with Gea ∪ Kea 6= ∅.
Then, the algorithm tries to pair up some v ∈ Gea ∪ Kea of maximum degree.
There are deg(v) branches for the cases labeled (3)#j. Since the two possibilities
arising from v ∈ Gea ∪Kea are completely symmetric, we focus on v ∈ Gea. First
note that by Lemma 5 and the fact that NotG ∪ NotK = ∅ we have N(v) ⊆ U .
Exactly one neighbor u of v ∈ Gea will be paired with v in each step, i.e., we
set u ∈ Ke. Pairing the king on u with the garden from v will inactivate both
u and v. Then, reduction rules will label all other neighbors of v with NotK
(they can no longer be kings), and symmetrically all other neighbors of u with
NotG. Note that N(u) \ (Ke ∪ {v}) 6= ∅, since otherwise a previous branching
case or Reduction Rules 13 or 12 would have triggered. Thus, there must be
some q ∈ N(u) ∩ U . From q, we obtain at least a measure decrease of ωn, even
if q ∈ N(v). This results in a set of recursions depending on the degree of v as
given in Table 2.

4. Finally, assume Va = U . Since an instance consisting of paths and cycles
can be easily seen to be optimally solvable in polynomial time, we can assume
that we can always find a vertex v of degree at least three to branch at. There
are two cases to be considered: (a) either v has a neighbor w of degree two or
(b) this is not the case. Details of the analysis are contained in Table 2.

Finally, to show the claimed parameterized running time, we set ωℓ = 0.7455
and ωn = 0.2455 in the recurrences. If the measure drops below zero, then we
argue that we can safely answer NO, see Lemma 6. The exponential running time
is a straightforward consequence using the aforementioned “win-win” approach.

⊓⊔

5 Conclusions

We presented a parameterized route to the solution of yet unsolved questions in
exact algorithms. More specifically, we obtained algorithms for computing the
irredundance numbers running in time less than O∗(2n) by devising appropriate
parameterized algorithms (where the parameterization is via a bound k on the
co-irredundant set) running in time less than O∗(4k).

It would be interesting to see this approach used for other problems, as
well. Some of the vertex partitioning parameters discussed in [21] seem to be
appropriate. We believe that the M&C approach could also be useful to find
better algorithms for computing the lower irredundance number.

References

1. Favaron, O., Haynes, T.W., Hedetniemi, S.T., Henning, M.A., Knisley, D.J.: Total
irredundance in graphs. Discrete Mathematics 256(1-2) (2002) 115–127

2. Allan, R.B., Laskar, R.: On domination and independent domination numbers of
a graph. Discrete Mathematics 23(2) (1978) 73–76

3. Favaron, O.: Two relations between the parameters of independence and irredun-
dance. Discrete Mathematics 70(1) (1988) 17–20

4. Fellows, M.R., Fricke, G., Hedetniemi, S.T., Jacobs, D.P.: The private neighbor
cube. SIAM J. Discrete Math. 7(1) (1994) 41–47

5. Hedetniemi, S.T., Laskar, R., Pfaff, J.: Irredundance in graphs: a survey. Congr.
Numer. 48 (1985) 183–193

6. Bollobás, B., Cockayne, E.J.: Graph-theoretic parameters concerning domination,
independence, and irredundance. J. Graph Theory 3 (1979) 241–250

7. Cockayne, E.J., Grobler, P.J.P., Hedetniemi, S.T., McRae, A.A.: What makes an
irredundant set maximal? J. Combin. Math. Combin. Comput. 25 (1997) 213–224

8. Chang, M.S., Nagavamsi, P., Rangan, C.P.: Weighted irredundance of interval
graphs. Information Processing Letters 66 (1998) 65–70

9. Cockayne, E.J., Hedetniemi, S.T., Miller, D.J.: Properties of hereditary hyper-
graphs and middle graphs. Canad. Math. Bull. 21(4) (1978) 461–468

10. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Volume 208 of Monographs and Textbooks in Pure and Applied Mathe-
matics. Marcel Dekker (1998)

11. Colbourn, C.J., Proskurowski, A.: Concurrent transmissions in broadcast networks.
In: Proc. of 11th ICALP. Number 172 in LNCS (1984) 128–136

12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
13. Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and

their duals in tournaments. Theoretical Computer Science 351(3) (2006) 446–458
14. Downey, R.G., Fellows, M.R., Raman, V.: The complexity of irredundant sets

parameterized by size. Discrete Applied Mathematics 100 (2000) 155–167
15. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the

analysis of exact algorithms. Journal of the ACM 56(5) (2009)
16. Fomin, F.V., Iwama, K., Kratsch, D., Kaski, P., Koivisto, M., Kowalik, L.,

Okamoto, Y., van Rooij, J., Williams, R.: 08431 Open problems – Moderately
exponential time algorithms. In: Moderately Exponential Time Algorithms. Num-
ber 08431 in Dagstuhl Seminar Proceedings (2008)

17. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Irredundant set faster than O(2n).
In: these proceedings

18. Chor, B., Fellows, M., Juedes, D.: Linear kernels in linear time, or how to save
k colors in O(n2) steps. In: Proc. of 30th WG. Number 3353 in LNCS, Springer
(2004) 257–269

19. Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT.
In: Proc. of 29th WG. Number 2880 in LNCS, Springer (2003) 1–12

20. Telle, J.A.: Complexity of domination-type problems in graphs. Nordic J. of Comp.
1 (1994) 157–171

21. Telle, J.A.: Vertex Partitioning Problems: Characterization, Complexity and Al-
gorithms on Partial k-Trees. PhD thesis, Department of Computer Science, Uni-
versity of Oregon, USA (1994)

