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For graph classes G closed under subgraphs,
FO model-checking is tractable iff G is nowhere dense.

[Grohe, Kreutzer, Sieberz 2011] 5
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Dense Graphs

O What dense graph classes are tractable?
O Closure under subgraphs is not a good requirement.

O Goal:

For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [....].
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Structurally Property X

A graph class G has structurally property X if there exists

O aclass G’ with property X,
O aninterpretation I = (v(x), u(x,y)),

such that for every G € G thereis G’ € G’ with G = I(G).

The class of all fully bipartite graphs has structurally treewidth 1:

O The class of all % has treewidth 1

O For every % there is >< with % - I(%‘% )
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Result

Let G be a graph class. The following statements are equivalent.

O G has structurally bounded expansion.

O G has lacon decompositions with

o bounded expansion,
o bounded target vertex degree.

O G has shrub decompositions with

o bounded expansion,
o bounded number of colors,
o bounded diameter.

O G has low shrubdepth covers [1].

[1] Gajarsky, Kreuzer, Nesetfil, Ossona de Mendez, Siebertz, Torunczyk 2018



Comparison to Low Shrubdepth Covers

Lacon- and Shrub Low Shrubdepth
Decompositions Covers

21



Comparison to Low Shrubdepth Covers

Lacon- and Shrub Low Shrubdepth
Decompositions Covers

O global O local

21



Comparison to Low Shrubdepth Covers

Lacon- and Shrub Low Shrubdepth
Decompositions Covers
O global O local
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