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Algorithmic Meta-Theorems

FO Model-Checking [Dvořák, Král, Thomas 2010]

First-order formulas ϕ can be evaluated on bounded expansion
classes in time f(|ϕ|)n.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

Best algorithms on general graphs: nO(k)

On bounded expansion: f(k)n
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Exact Characterization

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

For graph classes G closed under subgraphs,
FO model-checking is tractable iff G is nowhere dense.

[Grohe, Kreutzer, Sieberz 2011] 5
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# Goal:

Theorem
For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . . ].
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Structurally Property X

A graph class G has structurally property X if there exists

# a class G′ with property X,
# an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

# The class of all has treewidth 1

# For every there is with = I
( )

.
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Result

Theorem
Let G be a graph class. The following statements are equivalent.

# G has structurally bounded expansion.

# G has lacon decompositions with
◦ bounded expansion,
◦ bounded target vertex degree.
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Result

Theorem
Let G be a graph class. The following statements are equivalent.

# G has structurally bounded expansion.

# G has lacon decompositions with
◦ bounded expansion,
◦ bounded target vertex degree.

# G has shrub decompositions with
◦ bounded expansion,
◦ bounded number of colors,
◦ bounded diameter.

# G has low shrubdepth covers [1].

[1] Gajarský, Kreuzer, Nešetřil, Ossona de Mendez, Siebertz, Toruńczyk 2018
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# global
# first-order types
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# local
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Step 2

connect vertices with…

 - distance 6
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 - distance 4: one vertex
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End

Thanks!
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