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FO-logic and graphs

FO-logic (�rst order logic) is a powerful language to express
problems in.

Recursive de�nition:

# ϕ = ∀xψ(x)
# ϕ = ∃xψ(x)
# ϕ = (u = v)
# ϕ = adj(u, v)

# ϕ = ϕ1 ∨ ϕ2

# ϕ = ϕ1 ∧ ϕ2

# ϕ = ¬ψ

G |= ϕ: Is G a model for ϕ?

Example: ∃x∃y∃z(adj(x, y) ∧ adj(x, z) ∧ adj(y, z))
2



Efficient FO model checking

# If G has bounded treewidth, then we can decide G |= ϕ in
linear time if G ∈ G and ϕ is an MSO-formula.
[Courcelle 1990]

# If G has bounded expansion, then we can decide G |= ϕ in
linear time if G ∈ G and ϕ is an FO-formula.
[Dvořák, Kráľ, Thomas 2010]

# If G is nowhere dense, then we can decide G |= ϕ in time
n1+ε if G ∈ G and ϕ is an FO-formula.
[Kreutzer, Grohe, Siebertz 2011]
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Algorithms on Random Graphs

When is an algorithm fast on random inputs?

# worst case running time?

# fast on 1− ε fraction of inputs for small ε?

# fast average running time∑
G∈G running time on input G · probability of G.
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Algorithms on Random Graphs

random graph

nice structure with
probability 1 − ε

bad structure
with probability ε

clever f (k)n
algorithm dumb nk algorithm

Expected running time: (1− ε)f (k)n + εnk
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Structure of Preferential Attachement Graphs

Removing log(n)O(r) nodes yields
with high probability: Every
r-neighborhood is only few edges
away from a tree.

Gaifman: If we can do
model-checking on r-neighborhoods
we can do it for the complete graph.
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Structure of Preferential Attachement Graphs

This is not enough.

Model-checking on bipartite graphs
with log(n) vertices on the left as hard
as the general case.

Problem: Vertices on the right can
have many neighbors on the left.
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Structure of Preferential Attachement Graphs

We decompose the vertices into
sets A,B,C such that:

# B ∪ C is locally treelike

# A,B have size log(n)O(r)

# every r-neighborhood in C
has only few edges to A

Then:

# use Gaifman

# Kernelize neighborhood to
size f (|ϕ|)polylog(n)

# Solve in time(
f (|ϕ|)polylog(n)

)|ϕ|
= O(nε)
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Structure of Preferential Attachement Graphs

Kernelization:

# Consider r-neighborhoods
# Prune redundant isomorphic

subtrees in C
# Size: f (|ϕ|)polylog(n)
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Model-Checking Algorithm

Input: Preferential attachement graph G and formula ϕ

# Check if G has A-B-C-structure.
# If not use n|ϕ|-algorithm and exit. Otherwise proceed.

# Use Gaifman to restrict model-checking to neighborhoods.

# Build f (|ϕ|)polylog(n)-kernel for neighborhood.
# Solve in time

(
f (|ϕ|)polylog(n)

)|ϕ| for each neighborhood.

Probability of not having A-B-C structure is less likely than 1
n|ϕ| .

Therefore, expected running time FPT.
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Proving Structure

Removing log(n)O(r) nodes yields
with high probability: Every
r-neighborhood is only few edges
away from a tree.

r-neighborhood with many edges
implies small subgraph with many
edges.

We show that small subgraphs with
many edges are improbable.
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Proving Structure

Probability that vertices v1, v2, . . . , vk form dense subgraph is

s(v1, v2, . . . , vk) = P(adj(v1, v2), adj(v5, v3), . . . )

One can show
P(adj(a, b)) ≤ 1√

ab
Use union-bound as upper bound

n∑
v1=l

n∑
v2=l
· · ·

n∑
vk=l

s(v1, v2, . . . , vk)

This sum is small for l = log(n)O(1).
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Summary

We analyze �ne structure of preferential attachment graphs to
construct an e�cient model-checking algorithm.

Possible future work: Generalize to other random graphs.
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