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Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)
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Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . . ]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f(|ϕ|)n
algorithm

MC(G, L)
Input: A graphG ∈ G and a sentence ϕ ∈ L

Parameter: |ϕ|
Problem: Is ϕ true inG?

Goal: linear FPT run time f(|ϕ|)n
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Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011]
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Bounded Expansion

for every graph
in the graph class.
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Bounded Expansion

for every r-shallow 
minor of every graph

in the graph class.
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Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

Cannot be expressed in first-order logic (requires ∃y1 . . . ∃ym).

Can be solved onH-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]
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Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

FO({>0}) = FO + “there are at least/mostm ∈ N elements”

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∧ y = xi
)
≥ m

Length of formula depends only on k (and not onm)
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Counting Logic

Definition of FO({> 0})
built recursively using

◦ the rules of FO
◦ #y ϕ ≥ m for everym ∈ N and FO({>0}) formula ϕ

Example 1: PARTIAL DOMINATING SET

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∧ y = xi
)
≥ m

Example 2: h-Index

#mypaper
(
#otherpaper cite(otherpaper,mypaper) ≥ h

)
≥ h
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Good News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[∗]-hard on trees.
similar to [Grohe, Schweikardt 2018]
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Bad News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[∗]-hard on trees.
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Bad News

contains k-clique satisfies FO({>0}) formula
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Stability

Are there k vertices dominating at leastm = 5000 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graphG if scaling the
counting literals by (1± ε) changes whether ϕ is true inG.
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Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.

There exists an algorithm which takes G ∈ G, ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

# If then ϕ is true on G.

# If then ϕ is false on G.

# If then ϕ is ε-unstable on G.
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Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate< (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate< (1− ε)m vertices.
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Exact Counting

Theorem
PARTIALDOMINATINGSET can be solved in time f(k)n on graph
classes with bounded expansion.

This holds for all problems of the form

∃x1 . . . ∃xk#y ϕ(yx1 . . . xk)︸ ︷︷ ︸
∈ FO

.
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How about extensions of FO({> 0})?

FO({>0}) allows comparing #y andm ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:

# comparing #y and #z (e.g., #y ϕ > #z ψ)

# counting tuples #yz (e.g., #yz ϕ > m)

# multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)

# subtraction of counting terms (e.g., #y ϕ−#z ψ > m)
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Summary

FO({>0}) is

# hard to solve exactly on trees,

# possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

# hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs
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Big Question

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

Can we generalize our results to nowhere dense graph classes?
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Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(

m2 ≤ #x2

(

m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

)

)
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Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.
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Proof Sketch — Domination

#x3 (x3 ∼ x1 ∨ x3 ∼ x2) ≥ m︸ ︷︷ ︸
replace with quantifier-free FO
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Proof Sketch — Small Intersection
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Proof Sketch — Small Intersection

1/ε∨
i=0

R≥εmi(x1) ∧R≥m−εmi(x2)
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Proof Sketch — Small Intersection

1/ε∨
i=0

R≥εmi(x1) ∧R≥m−εmi(x2)

unstable
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Proof Sketch — Large Intersection
 relatively 
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We assume (for simplicity)       has only one     
 with a large intersection.
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Questions or Feedback?

dreier@cs.rwth-aachen.de
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