
APPROXIMATE EVALUATION OF
FIRST-ORDER COUNTING QUERIES

Jan Dreier, Peter Rossmanith

January 12, 2021

RWTH Aachen University

SODA 2021

0



Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

—————-

1



Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

MSO on 
treewidth

—————-

1



Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

FO on 
sparse graphs

MSO on 
treewidth

—————-

1



Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

FO on 
sparse graphs

FO({>0}) for
approximation on

 sparse graphs

MSO on 
treewidth

—————-

1



Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . . ]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f(|ϕ|)n
algorithm

MC(G, L)
Input: A graphG ∈ G and a sentence ϕ ∈ L

Parameter: |ϕ|
Problem: Is ϕ true inG?

Goal: linear FPT run time f(|ϕ|)n

3



Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . . ]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f(|ϕ|)n
algorithm

MC(G, L)
Input: A graphG ∈ G and a sentence ϕ ∈ L

Parameter: |ϕ|
Problem: Is ϕ true inG?

Goal: linear FPT run time f(|ϕ|)n 3



Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . . ]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f(|ϕ|)n
algorithm

MC(G, L)
Input: A graphG ∈ G and a sentence ϕ ∈ L

Parameter: |ϕ|
Problem: Is ϕ true inG?

Goal: linear FPT run time f(|ϕ|)n 3



Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011]

4



Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011]

4



Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011]

4



Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011] 4



Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011] 4



Bounded Expansion

for every graph
in the graph class.

5



Bounded Expansion

for every graph
in the graph class.

5



Bounded Expansion

5



Bounded Expansion

5



Bounded Expansion

5



Bounded Expansion

for every r-shallow 
minor of every graph

in the graph class.

5



Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

Cannot be expressed in first-order logic (requires ∃y1 . . . ∃ym).

Can be solved onH-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]

6



Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

Cannot be expressed in first-order logic (requires ∃y1 . . . ∃ym).

Can be solved onH-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]

6



Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

Cannot be expressed in first-order logic (requires ∃y1 . . . ∃ym).

Can be solved onH-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]

6



Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

FO({>0}) = FO + “there are at least/mostm ∈ N elements”

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∧ y = xi
)
≥ m

Length of formula depends only on k (and not onm)

7



Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

FO({>0}) = FO + “there are at least/mostm ∈ N elements”

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∧ y = xi
)
≥ m

Length of formula depends only on k (and not onm)

7



Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

FO({>0}) = FO + “there are at least/mostm ∈ N elements”

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∧ y = xi
)
≥ m

Length of formula depends only on k (and not onm)

7



Counting Logic

Definition of FO({> 0})
built recursively using

◦ the rules of FO
◦ #y ϕ ≥ m for everym ∈ N and FO({>0}) formula ϕ

Example 1: PARTIAL DOMINATING SET

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∧ y = xi
)
≥ m

Example 2: h-Index

#mypaper
(
#otherpaper cite(otherpaper,mypaper) ≥ h

)
≥ h

8



Good News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[∗]-hard on trees.
similar to [Grohe, Schweikardt 2018]

9



Bad News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[∗]-hard on trees.
similar to [Grohe, Schweikardt 2018] 9



Bad News

contains k-clique satisfies FO({>0}) formula

10



Bad News

contains k-clique satisfies FO({>0}) formula

10



Bad News

contains k-clique satisfies FO({>0}) formula

10



Bad News

contains k-clique satisfies FO({>0}) formula

10



Stability

Are there k vertices dominating at leastm = 5000 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graphG if scaling the
counting literals by (1± ε) changes whether ϕ is true inG.

11



Stability

Are there k vertices dominating at leastm = 4983 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graphG if scaling the
counting literals by (1± ε) changes whether ϕ is true inG.

11



Stability

Are there k vertices dominating at leastm = 5017 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graphG if scaling the
counting literals by (1± ε) changes whether ϕ is true inG.

11



Stability

Are there k vertices dominating at leastm = 5017 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graphG if scaling the
counting literals by (1± ε) changes whether ϕ is true inG.

11



Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.

There exists an algorithm which takes G ∈ G, ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

# If then ϕ is true on G.

# If then ϕ is false on G.

# If then ϕ is ε-unstable on G.

12



Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.
There exists an algorithm which takes G ∈ G, ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

# If then ϕ is true on G.

# If then ϕ is false on G.

# If then ϕ is ε-unstable on G.

12



Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.
There exists an algorithm which takes G ∈ G, ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

# If then ϕ is true on G.

# If then ϕ is false on G.

# If then ϕ is ε-unstable on G.

12



Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.
There exists an algorithm which takes G ∈ G, ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

# If then ϕ is true on G.

# If then ϕ is false on G.

# If then ϕ is ε-unstable on G.

12



Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.
There exists an algorithm which takes G ∈ G, ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

# If then ϕ is true on G.

# If then ϕ is false on G.

# If then ϕ is ε-unstable on G.

12



Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate< (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate< (1− ε)m vertices.

13



Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate< (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate< (1− ε)m vertices.

13



Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate< (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate< (1− ε)m vertices.

13



Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate< (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate< (1− ε)m vertices.

13



Exact Counting

Theorem
PARTIALDOMINATINGSET can be solved in time f(k)n on graph
classes with bounded expansion.

This holds for all problems of the form

∃x1 . . . ∃xk#y ϕ(yx1 . . . xk)︸ ︷︷ ︸
∈ FO

.

14



Exact Counting

Theorem
PARTIALDOMINATINGSET can be solved in time f(k)n on graph
classes with bounded expansion.

This holds for all problems of the form

∃x1 . . . ∃xk#y ϕ(yx1 . . . xk)︸ ︷︷ ︸
∈ FO

.

14



How about extensions of FO({> 0})?

FO({>0}) allows comparing #y andm ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:

# comparing #y and #z (e.g., #y ϕ > #z ψ)

# counting tuples #yz (e.g., #yz ϕ > m)

# multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)

# subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

15



How about extensions of FO({> 0})?

FO({>0}) allows comparing #y andm ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:

# comparing #y and #z (e.g., #y ϕ > #z ψ)

# counting tuples #yz (e.g., #yz ϕ > m)

# multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)

# subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

15



How about extensions of FO({> 0})?

FO({>0}) allows comparing #y andm ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:

# comparing #y and #z (e.g., #y ϕ > #z ψ)

# counting tuples #yz (e.g., #yz ϕ > m)

# multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)

# subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

15



How about extensions of FO({> 0})?

FO({>0}) allows comparing #y andm ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:

# comparing #y and #z (e.g., #y ϕ > #z ψ)

# counting tuples #yz (e.g., #yz ϕ > m)

# multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)

# subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

15



How about extensions of FO({> 0})?

FO({>0}) allows comparing #y andm ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:

# comparing #y and #z (e.g., #y ϕ > #z ψ)

# counting tuples #yz (e.g., #yz ϕ > m)

# multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)

# subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

15



Summary

FO({>0}) is

# hard to solve exactly on trees,

# possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

# hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs

16



Summary

FO({>0}) is

# hard to solve exactly on trees,

# possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

# hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs

16



Summary

FO({>0}) is

# hard to solve exactly on trees,

# possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

# hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs

16



Summary

FO({>0}) is

# hard to solve exactly on trees,

# possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

# hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs

16



Big Question

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

Can we generalize our results to nowhere dense graph classes?

17



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(

m2 ≤ #x2

(

m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

)

)

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(

m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

))

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

))

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

))

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)︸ ︷︷ ︸

replace with quantifier-free FO

))

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)

)

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)︸ ︷︷ ︸

replace with quantifier-free FO

)

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)︸ ︷︷ ︸

replace with quantifier-free FO

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

quantifier-free FO︷︸︸︷
ϕ′′′

18



Proof Sketch — Domination

#x3 (x3 ∼ x1 ∨ x3 ∼ x2) ≥ m︸ ︷︷ ︸
replace with quantifier-free FO

19



Proof Sketch — Small Intersection

20



Proof Sketch — Small Intersection

20



Proof Sketch — Small Intersection

20



Proof Sketch — Small Intersection

20



Proof Sketch — Small Intersection

20



Proof Sketch — Small Intersection

20



Proof Sketch — Small Intersection

1/ε∨
i=0

R≥εmi(x1) ∧R≥m−εmi(x2)

21



Proof Sketch — Small Intersection

1/ε∨
i=0

R≥εmi(x1) ∧R≥m−εmi(x2)

21



Proof Sketch — Small Intersection

1/ε∨
i=0

R≥εmi(x1) ∧R≥m−εmi(x2)

✓

21



Proof Sketch — Small Intersection

1/ε∨
i=0

R≥εmi(x1) ∧R≥m−εmi(x2)

21



Proof Sketch — Small Intersection

1/ε∨
i=0

R≥εmi(x1) ∧R≥m−εmi(x2)

✗

✗

✗

✗

21



Proof Sketch — Small Intersection

1/ε∨
i=0

R≥εmi(x1) ∧R≥m−εmi(x2)

unstable

21



Proof Sketch — Small Intersection

1/ε∨
i=0

R≥εmi(x1) ∧R≥m−εmi(x2)

unstable

21



Proof Sketch — Large Intersection
 relatively 

22



Proof Sketch — Large Intersection
 relatively 

22



Proof Sketch — Large Intersection
 relatively 

22



Proof Sketch — Large Intersection
 relatively 

22



Proof Sketch — Large Intersection
 relatively 

We assume (for simplicity)       has only one     
 with a large intersection.

22



Proof Sketch — Large Intersection

We assume (for simplicity)       has only one     
 with a large intersection.

We call it             .

 relatively 

22



Proof Sketch — Large Intersection
 relatively 

22



Proof Sketch — Large Intersection
 relatively 

22



Proof Sketch — Large Intersection
 relatively 

22



Proof Sketch — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)︸ ︷︷ ︸

replace with quantifier-free FO

))

23



Proof Sketch — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)

)

23



Proof Sketch — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)︸ ︷︷ ︸

replace with quantifier-free FO

)

23



Proof Sketch — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)

23



Proof Sketch — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)︸ ︷︷ ︸

replace with quantifier-free FO

23



Proof Sketch — Quantifier Elimination

Gradually simplify formula.

quantifier-free FO︷︸︸︷
ϕ′′′

23



Proof Sketch — Quantifier Elimination

Gradually simplify formula.

23



Questions or Feedback?

dreier@cs.rwth-aachen.de

24

dreier@cs.rwth-aachen.de

