CONCENTRATION BOUNDS FOR DEGREES OF SETS OF VERTICES IN PREFERENTIAL ATTACHMENT GRAPHS

Jan Dreier, Philipp Kuinke, Peter Rossmanith

July 17th, 2019

Theoretical Computer Science RWTH Aachen University, Germany

RS&A 2019

Algorithms for real complex networks

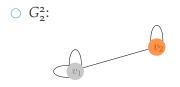
Algorithms for preferential attachment graphs

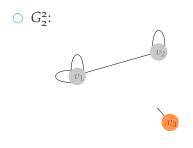
 \downarrow

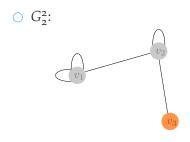
Structure theorems for preferential attachment graphs

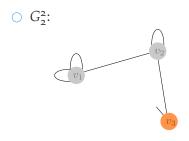
 \downarrow

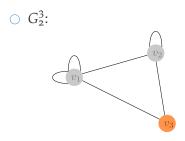
Degree bounds for preferential attachment graphs

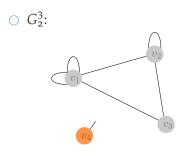


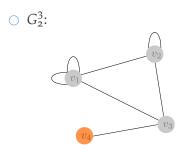


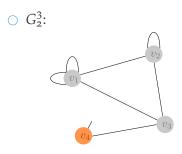


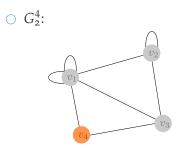


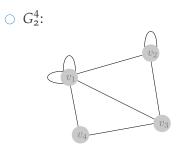




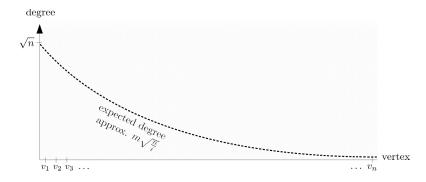




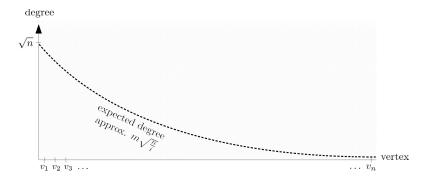




Distribution of $d_m^n(v_i)$ (degree of v_i in G_m^n)

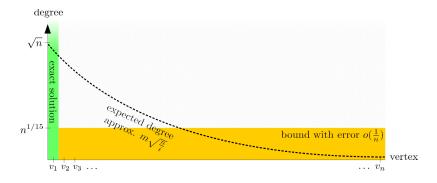


Distribution of $d_m^n(v_i)$ (degree of v_i in G_m^n)



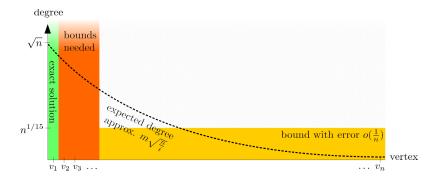
Needed: Exponentially strong concentration bounds for $d_m^n(v_i)$

Distribution of $d_m^n(v_i)$ (degree of v_i in G_m^n)



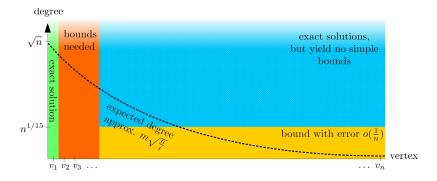
Bollobás, Riordan, Spencer, Tusnády: Exact distribution of $d_1^n(v_1)$, for $t \in \mathbf{N}$, $d \le n^{1/15}$ approximation of $\Pr[d_m^n(v_i) = d]$ with error $o(n^{-1})$

Distribution of $d_m^n(v_i)$ (degree of v_i in G_m^n)



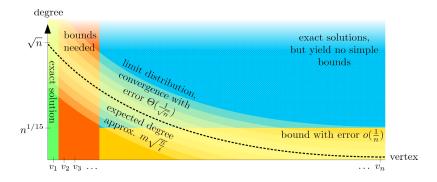
Bollobás, Riordan, Spencer, Tusnády: Exact distribution of $d_1^n(v_1)$, for $t \in \mathbf{N}$, $d \le n^{1/15}$ approximation of $\Pr[d_m^n(v_i) = d]$ with error $o(n^{-1})$

Distribution of $d_m^n(v_i)$ (degree of v_i in G_m^n)



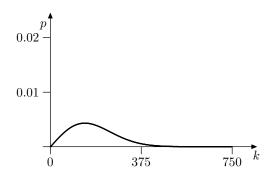
Flajolet, Dumas, Puyhaubert: Exact distribution of degrees of arbitrary vertices

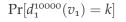
Distribution of $d_m^n(v_i)$ (degree of v_i in G_m^n)

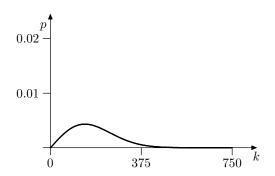


Janson: Limit theorems *Pekoz, Rollin, Ross:* Rate of convergence

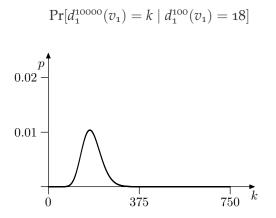
$$\Pr[d_1^{10000}(v_1) = k]$$



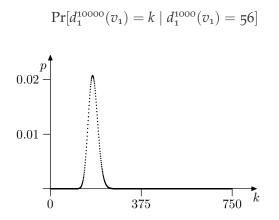




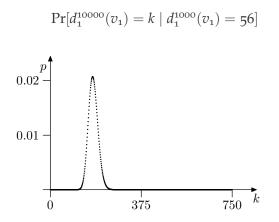
○ First grows polynomially, then decreases exponentially.



○ First grows polynomially, then decreases exponentially.



○ First grows polynomially, then decreases exponentially.



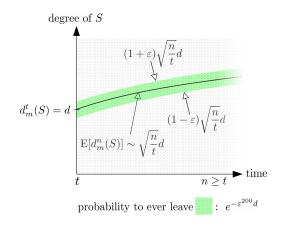
First grows polynomially, then decreases exponentially.Higher initial degrees lead to stronger concentration.

○ $d_m^n(v_i)$ is degree of v_i in G_m^n ○ $d_m^n(S) = \sum_{v \in S} d_m^n(v)$ is summed degree of set *S* in G_m^n

Goal: Exponentially strong concentration bounds for $d_m^n(S)$, assuming $d_m^t(S)$ (with $t \le n$) is known.

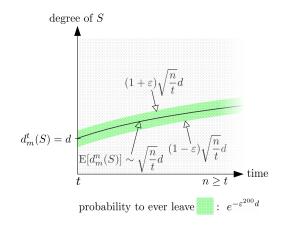
Let d be the degree of a set S at time t.

If *d* is sufficiently large, then most likely for all $n \ge t$ the degree at time *n* is $(1 \pm \varepsilon)\sqrt{\frac{n}{t}}d$.



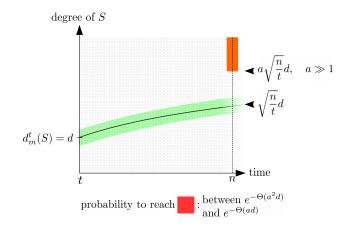
Let *d* be the degree of a set *S* at time *t*.

If *d* is sufficiently large, then most likely for all $n \ge t$ the degree at time *n* is $(1 \pm \varepsilon)\sqrt{\frac{n}{t}}d$.



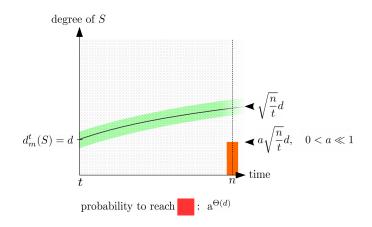
Let *d* be the degree of a set *S* at time *t*.

The probability that the degree is a factor $a \gg 1$ larger than expected is between $e^{-\Theta(a^2d)}$ and $e^{-\Theta(ad)}$.



Let d be the degree of a set S at time t.

The probability that the degree is a factor $0 < a \ll 1$ smaller than expected is $a^{\Theta(d)}$.



Use Chernoff bounds to bound probability that

$$d_1^{(1+\delta)t}(S) = \left(1 + \delta/2 \pm 2\delta^2\right) d_1^t(S).$$

 \bigcirc Let $t_0 = t$ and $t_{i+1} = (1 + \delta_i)t_i$ for some sequence $\delta_1, \delta_2, \ldots$.

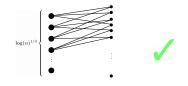
○ Choose $\delta_1, \delta_2, \ldots$ such that short-term bounds imply long-term bounds with error $(1 \pm \varepsilon)$.

○ Our choice:
$$\delta_i = \varepsilon/i^{2/3}$$
, then
 $\prod_{i=1}^{\infty} (1 + \delta_i) = \infty$,
 $\prod_{i=1}^{\infty} (1 \pm 2\delta_i^2) = (1 + O(\varepsilon))$.

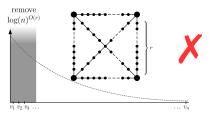
APPLICATIONS

Applications: Structure

○ G_m^n ($m \ge 2$) contains asymptotically almost surely a one-subdivided clique of size $\log(n)^{1/4}$.



○ After removing the first $log(n)^{O(r)}$ vertices, G_m^n contains asymptotically almost surely no *r*-subdivided K_4 .



How often does *H* with *k* edges occur in *G* of size *n*?

- important in network analysis (motif detection)
- \bigcirc cannot be solved in time $f(k)n^{o(k)}$ under #ETH
- \bigcirc *Curticapean, Dell, Marx:* in time $k^{O(k)}n^{0.174k+o(k)}$

Theorem

Let $\varepsilon > 0$, $m \in \mathbb{N}$ and a graph H be fixed. One can count how often H occurs as a subgraph of G_m^n in time $O(n^{1+\varepsilon})$.

First-Order Model Checking

- \bigcirc \exists and \forall quantification over vertices, equality, adjacency
- yields powerful meta-theorems
- \bigcirc cannot be solved in time $f(|\varphi|)n^{o(|\varphi|)}$ under ETH
- *Grohe, Kreutzer, Siebertz:* for fixed formula decidable in time $O(n^{1+\varepsilon})$ on nowhere-dense graph classes

Theorem

Let $\varepsilon > 0$, $m \in \mathbb{N}$ and $\varphi \in FO$ be fixed. One can decide whether $G_m^n \models \varphi$ in expected time $O(n^{1+\varepsilon})$. Thank you!