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Motivation

Algorithms for real complex networks

↓

Algorithms for preferential attachment graphs

↓

Structure theorems for preferential attachment graphs

↓

Degree bounds for preferential attachment graphs
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Preferential Attachment

# Gn
m graph with vertices v1, . . . , vn and m edges per vertex
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Preferential Attachment
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Preferential Attachment

# Gn
m graph with vertices v1, . . . , vn and m edges per vertex
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Previous Results

Distribution of dnm(vi) (degree of vi in Gn
m)
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Previous Results

Distribution of dnm(vi) (degree of vi in Gn
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Needed: Exponentially strong concentration bounds for dnm(vi)
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Previous Results

Distribution of dnm(vi) (degree of vi in Gn
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Bollobás, Riordan, Spencer, Tusnády: Exact distribution of dn1 (v1),
for t ∈ N, d ≤ n1/15 approximation of Pr[dnm(vi) = d] with error
o(n−1) 3
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Previous Results

Distribution of dnm(vi) (degree of vi in Gn
m)

Flajolet, Dumas, Puyhaubert: Exact distribution of degrees of
arbitrary vertices
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Previous Results

Distribution of dnm(vi) (degree of vi in Gn
m)

Janson: Limit theorems
Pekoz, Rollin, Ross: Rate of convergence
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Concentration

Pr[d100001 (v1) = k]

p

k

0.02

0.01

0 375 750

# First grows polynomially, then decreases exponentially.
# Higher initial degrees lead to stronger concentration.
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Concentration

Pr[d100001 (v1) = k | d1001 (v1) = 18]

p

k

0.02

0.01

0 375 750

# First grows polynomially, then decreases exponentially.

# Higher initial degrees lead to stronger concentration.
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Concentration

Pr[d100001 (v1) = k | d10001 (v1) = 56]

p

k

0.02

0.01

0 375 750

# First grows polynomially, then decreases exponentially.

# Higher initial degrees lead to stronger concentration.
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Concentration

Pr[d100001 (v1) = k | d10001 (v1) = 56]

p

k

0.02

0.01

0 375 750

# First grows polynomially, then decreases exponentially.
# Higher initial degrees lead to stronger concentration. 4



Degrees of Sets

# dnm(vi) is degree of vi in Gn
m

# dnm(S) =
∑

v∈S dnm(v) is summed degree of set S in Gn
m

Goal: Exponentially strong concentration bounds for dnm(S),
assuming dtm(S) (with t ≤ n) is known.
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Results

Let d be the degree of a set S at time t.

If d is su�ciently large, then most likely for all n ≥ t the degree
at time n is (1± ε)

√n
t d.
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Results

Let d be the degree of a set S at time t.

The probability that the degree is a factor a� 1 larger than
expected is between e−Θ(a2d) and e−Θ(ad).
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Results

Let d be the degree of a set S at time t.

The probability that the degree is a factor 0 < a� 1 smaller
than expected is aΘ(d).
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Proof Sketch

# Use Cherno� bounds to bound probability that

d(1+δ)t
1 (S) =

(
1+ δ/2± 2δ2

)
dt1(S).

# Let t0 = t and ti+1 = (1+ δi)ti for some sequence δ1, δ2, . . . .

# Choose δ1, δ2, . . . such that short-term bounds imply
long-term bounds with error (1± ε).

# Our choice: δi = ε/i2/3, then∏∞
i=1(1+ δi) =∞,∏∞
i=1(1± 2δ2i ) = (1+O(ε)).
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APPLICATIONS



Applications: Structure

# Gn
m (m ≥ 2) contains asymptotically almost surely a

one-subdivided clique of size log(n)1/4.

✓

# After removing the �rst log(n)O(r) vertices, Gn
m contains

asymptotically almost surely no r-subdivided K4.

✗
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Applications: FPT Subgraph Counting

How often does H with k edges occur in G of size n?

# important in network analysis (motif detection)

# cannot be solved in time f (k)no(k) under #ETH
# Curticapean, Dell, Marx: in time kO(k)n0.174k+o(k)

Theorem

Let ε > 0, m ∈ N and a graph H be �xed. One can count how often
H occurs as a subgraph of Gn

m in time O(n1+ε).
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Applications: FPT First-Order Model Checking

First-Order Model Checking

# ∃ and ∀ quanti�cation over vertices, equality, adjacency

# yields powerful meta-theorems

# cannot be solved in time f (|ϕ|)no(|ϕ|) under ETH
# Grohe, Kreutzer, Siebertz: for �xed formula decidable

in time O(n1+ε) on nowhere-dense graph classes

Theorem

Let ε > 0, m ∈ N and ϕ ∈ FO be �xed.
One can decide whether Gn

m |= ϕ in expected time O(n1+ε).
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Thank you!
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