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Concentration

# Partition first vertices into log(n)1/4 groups with log(n)1/4

vertices each

# Concentration bound⇒ After log(n) steps each group has
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# in each set, there is one nail with degree at least
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# Concentration bound⇒ Nails have in round i with high
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√
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Summary

1-subdivided clique
I

r-neighborhoods trees with at
most 2 extra edges
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