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1-subdivided clique r-neighborhoods trees with at
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Let G be a graph class.
How large is the largest <r-subdivided clique
contained as a subgraph of any graph in G?

bounded for every r: unbounded for some 7:
nowhere dense somewhere dense

example: planar graphs example: complete graphs 5
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Subdivided Cliques

How large is the largest <r-subdivided clique
contained as a subgraph in G};,?
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Preferential attachment graphs are asymptotically
somewhere dense.
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O

Partition first vertices into log(1n)'/4 groups with log(n)"/4
vertices each
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