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Algorithmic Meta-Theorem

FO Model-Checking [Grohe, Kreutzer, Sieberz 2011]

First-order formulas ϕ can be evaluated on sparse graphs in time
f(|ϕ|)n1+ε.

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

best algorithms on general graphs: nO(k)

on sparse graphs: f(k)n1+ε
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First-Order Logic

can be expressed:

# dominating set of size k
# independent set of size k
# motif counting of size k
# fundamentals of SQL database queries

on general graphs: nO(k), on sparse graphs: f(k)n1+ε

cannot be expressed:

# are two vertices in the same connected component?
# do two vertices have distance at most log(n)?
# is something acyclic?
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Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree
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What Are Sparse Graphs?

for every graph
in the graph class.

real world: for small r (such as 1,2,3) sparse (w.r.t. gen. col. numbers)
[Nadara, Pilipczuk, Rabinovich, Reidl, Siebertz 2019]
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The Real World

Some central properties:

# Skewed degree distribution
Fraction of vertices with degree k
proportional to k−α with 2 ≤ α ≤ 3?

# Clustered
If we have a common friend we are
likely friends as well

# Small-world property
Everyone is close to everyone
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Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure
of the world wide web.

1
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Sparsity of Random Graph Models

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

some are here

and some here

[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]
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RESULTS



Our Result

A random graph model is 3-power-law-bounded if
(roughly speaking):

# fraction of vertices with degree k is O(k−3)

real networks: typically k−α with 2 ≤ α ≤ 3

# unclustered
real networks: typically clustered

Theorem
Given a first-order sentence ϕ and a graphG sampled from a
3-power-law-bounded model, one can decide whetherϕ is true onG
in expected time f(|ϕ|)n1+ε for every ε > 0.

[Dreier, Kuinke, Rossmanith 2020]
13
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Example: Chung–Lu Model

A more direct way to get a desirable degree distribution.

1 2 3 i j n-1 n
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α-power-law-boundedness

A random graph model with vertices 1, . . . , n is
3-power-law-bounded if the probability that some subset of edges

E ⊆
({1,...,n}

2

)
is present is at most

log(n)O(|E|2)
∏
ij∈E

1√
i · j

.

3
# Preferential attachment

model
# Chung–Lu model
# Erdös–Rényi model
# Configuration model
# . . .

7
# Hyperbolic random graph

model
# random intersection model
# Watts–Strogatz model
# Kleinberg model
# . . .
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α-power-law-boundedness
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Asymptotic Structure of 3-power-law-bounded models
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Algorithm

Input: graph sampled from 3-power-law-bounded model
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Algorithm

Gaifman’s theorem:
consider only
neighborhoods
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Algorithm

approximately find core
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Algorithm

prune trees
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Algorithm

prune protrusions

17



Algorithm

✓

use brute force on core
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Algorithm

repeat for every neighborhood

✓

use brute force on core

17



Algorithm

Done!
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Practical Considerations I
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Practical Considerations II

# our run time:

22
22

22
22

22

︸ ︷︷ ︸
|ϕ|

·n1+ε

# under worst-case complexity this is optimal

# open question: can we do better in the average-case?
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Summary (so far)

A random graph model is 3-power-law-bounded if
(roughly speaking):

# fraction of vertices with degree k is O(k−3)

real networks: typically k−α with 2 ≤ α ≤ 3

optima
l

# unclustered
real networks: typically clustered

???

Theorem
Given a first-order sentence ϕ and a graphG sampled from a
3-power-law-bounded model, one can decide whetherϕ is true onG
in expected time f(|ϕ|)n1+ε for every ε > 0.

Big Question: model-checking on clustered models?
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Want a Challenge?

Can we solve the problem on Hyperbolic Random Graphs?

[Cirle Limit I, M.C. Escher] 22



LOWER BOUNDS



Average Case Complexity

# worst-case: P and NP

# average-case: avgP and (NP, PComp)?
# expected time example:

∑
x∈N

P[X = x] · time(x) = O(1)

24



Average Case Complexity

# worst-case: P and NP
# average-case: avgP and (NP, PComp)?

# expected time example:

∑
x∈N

P[X = x] · time(x) = O(1)

24



Average Case Complexity

# worst-case: P and NP
# average-case: avgP and (NP, PComp)?
# expected time example:

∑
x∈N

P[X = x] · time(x) = O(1)

24



With Colors
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What if α < 3?
[Dreier, Rossmanith 2019]
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Without Colors
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Without Colors

1/2 random graph
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Zero-One Laws

1/2 random graph
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Average-Case Hierarchy Collapse

# worst-case
◦ W[1]-complete:

∃x1 . . . ∃xk

∀y∃z∀w

# average-case on 1/2 random graph

◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:

∃x1 . . . ∃xk∀y∃z∀w∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[2]-complete:

∃x1 . . . ∃xk∀y

∃z∀w

# average-case on 1/2 random graph

◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:

∃x1 . . . ∃xk∀y∃z∀w∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[3]-complete:

∃x1 . . . ∃xk∀y∃z

∀w

# average-case on 1/2 random graph

◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:

∃x1 . . . ∃xk∀y∃z∀w∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[4]-complete:

∃x1 . . . ∃xk∀y∃z∀w

# average-case on 1/2 random graph

◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:

∃x1 . . . ∃xk∀y∃z∀w∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[4]-complete:

∃x1 . . . ∃xk∀y∃z∀w

# average-case on 1/2 random graph

◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:

∃x1 . . . ∃xk∀y∃z∀w∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[4]-complete:

∃x1 . . . ∃xk∀y∃z∀w

# average-case on 1/2 random graph
◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:

∃x1 . . . ∃xk∀y∃z∀w∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[4]-complete:

∃x1 . . . ∃xk∀y∃z∀w

# average-case on 1/2 random graph
◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:
∃x1 . . . ∃xk∀y

∃z∀w∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[4]-complete:

∃x1 . . . ∃xk∀y∃z∀w

# average-case on 1/2 random graph
◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:
∃x1 . . . ∃xk∀y∃z

∀w∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[4]-complete:

∃x1 . . . ∃xk∀y∃z∀w

# average-case on 1/2 random graph
◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:
∃x1 . . . ∃xk∀y∃z∀w

∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[4]-complete:

∃x1 . . . ∃xk∀y∃z∀w

# average-case on 1/2 random graph
◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:
∃x1 . . . ∃xk∀y∃z∀w∃u

. . .

[Dreier, Lotze, Rossmanith 2020]

29



Average-Case Hierarchy Collapse

# worst-case
◦ W[4]-complete:

∃x1 . . . ∃xk∀y∃z∀w

# average-case on 1/2 random graph
◦ FPT (i.e., f(|ϕ|)n time):

∃x1 . . . ∃xk

◦ equally hard:
∃x1 . . . ∃xk∀y∃z∀w∃u . . .

[Dreier, Lotze, Rossmanith 2020]

29



Summary

# Solve all problems definable in FO logic on unclustered graphs
that are not too skewed.

# How about clustered models?

# How about about (uncolored) lower bounds?

30



Summary

# Solve all problems definable in FO logic on unclustered graphs
that are not too skewed.

# How about clustered models?

# How about about (uncolored) lower bounds?

30



Summary

# Solve all problems definable in FO logic on unclustered graphs
that are not too skewed.

# How about clustered models?

# How about about (uncolored) lower bounds?

30



Thanks!

dreier@ac.tuwien.ac.at
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