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Algorithmic Meta-Theorem

FO Model-Checking [Grohe, Kreutzer, Sieberz 2011]

First-order formulas ¢ can be evaluated on sparse graphs in time
f(lphnte.

O dominating set of size &:

dxq ...z Yy \/ywa:i\/y:xi

7

O independent set of size k:

dzq ... doy, /\.’L‘i’/'l’j/\ivi7éxj
i,J

best algorithms on general graphs: n0(*)

on sparse graphs: f(k)n'*e
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What Are Sparse Graphs?

radius r

£
m < f(r)

for every r-shallow
minor of every graph
in the graph class.

h

r—shallow minor

real world: for small r (such as 1,2,3) sparse (w.r.t. gen. col. numbers)
[Nadara, Pilipczuk, Rabinovich, Reid|, Siebertz 2019]
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The Real World

Some central properties:

O Skewed degree distribution
Fraction of vertices with degree &
proportional to £~ with 2 < o < 3?

i" O Clustered
If we have a common friend we are
likely friends as well

" © Small-world property
Everyone is close to everyone
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Introduced by Barabasi and Albert in 1999 to explain the structure
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Sparsity of Random Graph Models

some are here —— Somewhere Dense
T
Nowhere Dense
T
and some here —— Bounded Expansion
0
(Top.) Minor Free
— T ~
Planar Bounded Degree Bounded Treewidth

[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]
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Our Result

A random graph model is 3-power-law-bounded if
(roughly speaking):
O fraction of vertices with degree k is O(k3)
real networks: typically £~ with2 < a < 3

O unclustered
real networks: typically clustered
Theorem
Given a first-order sentence  and a graph G sampled from a
3-power-law-bounded model, one can decide whether ¢ is true on G
in expected time f (|| )n'*¢ for every ¢ > 0.

[Dreier, Kuinke, Rossmanith 2020]



Example: Chung—Lu Model

A more direct way to get a desirable degree distribution.
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a-power-law-boundedness

A random graph model with vertices 1, ..., nis
3-power-law-bounded if the probability that some subset of edges
E C ({1""7”}) is present is at most

log(n)CUEP) Hi

z]EE
O Preferential attachment O Hyperbolic random graph
model model
O Chung-Lu model O random intersection model
O Erdés—Rényi model O Watts—Strogatz model

O Configuration model

O

Kleinberg model

o ... 15

O
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Input: graph sampled from 3-power-law-bounded model
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prune trees




prune protrusions




use brute force on core




repeat for every neighborhood
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Practical Considerations Il

O our run time:

O under worst-case complexity this is optimal

O open question: can we do better in the average-case?

20



Summary (so far)

A random graph model is 3-power-law-bounded if
(roughly speaking):

21



Summary (so far)

A random graph model is 3-power-law-bounded if
(roughly speaking):

O fraction of vertices with degree k is O(k3)
real networks: typically £~ with2 < a < 3

21



Summary (so far)

A random graph model is 3-power-law-bounded if
(roughly speaking):

O fraction of vertices with degree k is O(k3)
real networks: typically £~ with2 < a < 3

O unclustered
real networks: typically clustered

21



Summary (so far)

A random graph model is 3-power-law-bounded if
(roughly speaking):

O fraction of vertices with degree k is O(k3)
real networks: typically £~ with2 < a < 3

O unclustered
real networks: typically clustered

Theorem

Given a first-order sentence  and a graph G sampled from a
3-power-law-bounded model, one can decide whether © is true on G
in expected time f(|¢|)n' ™ for every e > 0.



Summary (so far)

A random graph model is 3-power-law-bounded if
(roughly speaking):

O fraction of vertices with degree k is O(k3)
real networks: typically £~ with2 < a < 3

O unclustered
real networks: typically clustered

Theorem

Given a first-order sentence  and a graph G sampled from a
3-power-law-bounded model, one can decide whether © is true on G
in expected time f(|¢|)n' ™ for every e > 0.



Summary (so far)

A random graph model is 3-power-law-bounded if
(roughly speaking):
O fraction of vertices with degree k is O(k3)
real networks: typically £~ with2 < a < 3

O unclustered

real networks: typically clustered

Theorem

Given a first-order sentence  and a graph G sampled from a
3-power-law-bounded model, one can decide whether © is true on G
in expected time f(|¢|)n' ™ for every e > 0.



Summary (so far)

A random graph model is 3-power-law-bounded if
(roughly speaking):
O fraction of vertices with degree k is O(k3)

real networks: typically £~ with2 < a < 3

O unclustered

real networks: typically clustered

Theorem

Given a first-order sentence  and a graph G sampled from a
3-power-law-bounded model, one can decide whether © is true on G
in expected time f(|¢|)n' ™ for every e > 0.

Big Question: model-checking on clustered models? 2



Want a Challenge?

Can we solve the problem on Hyperbolic Random Graphs?

[Cirle Limit I, M.C. Escher] 22
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Average Case Complexity

O worst-case: P and NP
O average-case: avgP and (NP, PComp)?

O expected time example:

D PIX =a]- time(z) = O(1)

zeN

24



With Colors

25



With Colors

Vzdy...

25



With Colors

Vzdy...

L5 -®

Eftime] < f(|¢[)n'*e?

25



With Colors

Vzdy...

L5 d - @

3
* E[time] < f(|go|)n1+€?

25



What if o < 3?

[Dreier, Rossmanith 2019]
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O Solve all problems definable in FO logic on unclustered graphs
that are not too skewed.

O How about clustered models?

O How about about (uncolored) lower bounds?
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Thanks!

dreier@ac.tuwien.ac.at
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