
APPROXIMATE FIRST-ORDER
COUNTING QUERIES ON SPARSE
AND DENSE GRAPHS

Jan Dreier
Vienna University of Technology

joint work with Peter Rossmanith

March 16, 2021

0

Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

—————-

———

1

Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

MSO on
treewidth

—————-

———

1

Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

FO on
sparse graphs

MSO on
treewidth

—————-

———

1

Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

FO on
sparse graphs

FO({>0}) for
approximation on

 sparse graphs

MSO on
treewidth

—————-

———

1

Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

FO on
sparse graphs

FO({>0}) for
approximation on

 sparse graphs

MSO on
cliquewidth

—————-

———

1

Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

?

?

MSO on
cliquewidth

—————-

———

1

Logic

Many problems can be expressed in first-order (FO) logic.

independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

basic database queries

Best algorithms on general graphs: nO(k)

2

Logic

Many problems can be expressed in first-order (FO) logic.

independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

basic database queries

Best algorithms on general graphs: nO(k)

2

Logic

Many problems can be expressed in first-order (FO) logic.

independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

basic database queries

Best algorithms on general graphs: nO(k)

2

Logic

Many problems can be expressed in first-order (FO) logic.

independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

basic database queries

Best algorithms on general graphs: nO(k)

2

Logic

Many problems can be expressed in first-order (FO) logic.

independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

basic database queries

Best algorithms on general graphs: nO(k)

2

Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . .]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f(|ϕ|)n
algorithm

MC(G, L)
Input: A graph G ∈ G and a sentence ϕ ∈ L

Parameter: |ϕ|
Problem: Is ϕ true in G?

Goal: linear FPT run time f(|ϕ|)n

3

Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . .]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f(|ϕ|)n
algorithm

MC(G, L)
Input: A graph G ∈ G and a sentence ϕ ∈ L

Parameter: |ϕ|
Problem: Is ϕ true in G?

Goal: linear FPT run time f(|ϕ|)n 3

Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . .]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f(|ϕ|)n
algorithm

MC(G, L)
Input: A graph G ∈ G and a sentence ϕ ∈ L

Parameter: |ϕ|
Problem: Is ϕ true in G?

Goal: linear FPT run time f(|ϕ|)n 3

Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011]

4

Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011]

4

Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011]

4

Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011] 4

Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011] 4

Bounded Expansion — Minors

for every graph
in the graph class.

5

Bounded Expansion — Minors

for every graph
in the graph class.

5

Bounded Expansion — Minors

shallow
topological minor

5

Bounded Expansion — Minors

shallow
topological minor

5

Bounded Expansion — Minors

shallow
topological minor

5

Bounded Expansion — Minors

for every r-shallow
minor of every graph

in the graph class.

shallow
topological minor

5

Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

orient edges

or

orient edges

6

Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree = 2

orient edgesorient edges

or

0th Augmentation

6

Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree = 2

transitive rule

orient edgesorient edges

or

1st Augmentation

6

Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree = 3

transitive rule

orient edgesorient edges

or

1st Augmentation

6

Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree = 3

fraternal rule

or

transitive rule

orient edgesorient edges

or

1st Augmentation

6

Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree = 3

fraternal rule

or

transitive rule

orient edgesorient edges

or

1st Augmentation

6

Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree = 3

fraternal rule

or

transitive rule

orient edgesorient edges

or

2nd Augmentation

6

APPROXIMATE COUNTING QUERIES

Counting Problems

PARTIAL DOMINATING SET
Input: A graph G and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires ∃y1 . . . ∃ym).

Can be solved on H-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]

8

Counting Problems

PARTIAL DOMINATING SET
Input: A graph G and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires ∃y1 . . . ∃ym).

Can be solved on H-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]

8

Counting Problems

PARTIAL DOMINATING SET
Input: A graph G and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires ∃y1 . . . ∃ym).

Can be solved on H-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]

8

Counting Problems

PARTIAL DOMINATING SET
Input: A graph G and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominating m vertices?

FO({>0}) = FO + “there are at least/most m ∈ N elements”

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∨ y = xi
)
≥ m

Length of formula depends only on k (and not on m)

9

Counting Problems

PARTIAL DOMINATING SET
Input: A graph G and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominating m vertices?

FO({>0}) = FO + “there are at least/most m ∈ N elements”

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∨ y = xi
)
≥ m

Length of formula depends only on k (and not on m)

9

Counting Problems

PARTIAL DOMINATING SET
Input: A graph G and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominating m vertices?

FO({>0}) = FO + “there are at least/most m ∈ N elements”

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∨ y = xi
)
≥ m

Length of formula depends only on k (and not on m)

9

Counting Logic

Definition of FO({> 0})
built recursively using

◦ the rules of FO
◦ #y ϕ ≥ m for every m ∈ N and FO({>0}) formula ϕ

Example 1: PARTIAL DOMINATING SET

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∧ y = xi
)
≥ m

Example 2: h-Index

#mypaper
(
#otherpaper cite(otherpaper,mypaper) ≥ h

)
≥ h

10

Good News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[∗]-hard on trees.
similar to [Grohe, Schweikardt 2018]

11

Bad News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[∗]-hard on trees.
similar to [Grohe, Schweikardt 2018]

11

Bad News

contains k-clique satisfies FO({>0}) formula

12

Bad News

contains k-clique satisfies FO({>0}) formula

12

Bad News

contains k-clique satisfies FO({>0}) formula

12

Bad News

contains k-clique satisfies FO({>0}) formula

12

Stability

Are there k vertices dominating at least m = 5000 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graph G if scaling the
counting literals by (1± ε) changes whether ϕ is true in G.

13

Stability

Are there k vertices dominating at least m = 4983 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graph G if scaling the
counting literals by (1± ε) changes whether ϕ is true in G.

13

Stability

Are there k vertices dominating at least m = 5017 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graph G if scaling the
counting literals by (1± ε) changes whether ϕ is true in G.

13

Stability

Are there k vertices dominating at least m = 5017 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graph G if scaling the
counting literals by (1± ε) changes whether ϕ is true in G.

13

Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.

There exists an algorithm which takesG ∈ G , ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

If then ϕ is true onG.

If then ϕ is false onG.

If then ϕ is ε-unstable onG.

14

Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.
There exists an algorithm which takesG ∈ G , ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

If then ϕ is true onG.

If then ϕ is false onG.

If then ϕ is ε-unstable onG.

14

Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.
There exists an algorithm which takesG ∈ G , ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

If then ϕ is true onG.

If then ϕ is false onG.

If then ϕ is ε-unstable onG.

14

Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.
There exists an algorithm which takesG ∈ G , ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

If then ϕ is true onG.

If then ϕ is false onG.

If then ϕ is ε-unstable onG.

14

Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.
There exists an algorithm which takesG ∈ G , ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

If then ϕ is true onG.

If then ϕ is false onG.

If then ϕ is ε-unstable onG.

14

Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate < (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate < (1− ε)m vertices.

15

Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate < (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate < (1− ε)m vertices.

15

Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate < (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate < (1− ε)m vertices.

15

Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate < (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate < (1− ε)m vertices.

15

Exact Counting

Theorem
PARTIALDOMINATINGSET can be solved in time f(k)n on graph
classes with bounded expansion.

This holds for all problems of the form

∃x1 . . . ∃xk#y ϕ(yx1 . . . xk)︸ ︷︷ ︸
∈ FO

≥ m.

16

Exact Counting

Theorem
PARTIALDOMINATINGSET can be solved in time f(k)n on graph
classes with bounded expansion.

This holds for all problems of the form

∃x1 . . . ∃xk#y ϕ(yx1 . . . xk)︸ ︷︷ ︸
∈ FO

≥ m.

16

How about extensions of FO({> 0})?

FO({>0}) allows comparing #y and m ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:

comparing #y and #z (e.g., #y ϕ > #z ψ)
counting tuples #yz (e.g., #yz ϕ > m)
multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)
subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

17

How about extensions of FO({> 0})?

FO({>0}) allows comparing #y and m ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:
comparing #y and #z (e.g., #y ϕ > #z ψ)

counting tuples #yz (e.g., #yz ϕ > m)
multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)
subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

17

How about extensions of FO({> 0})?

FO({>0}) allows comparing #y and m ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:
comparing #y and #z (e.g., #y ϕ > #z ψ)
counting tuples #yz (e.g., #yz ϕ > m)

multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)
subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

17

How about extensions of FO({> 0})?

FO({>0}) allows comparing #y and m ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:
comparing #y and #z (e.g., #y ϕ > #z ψ)
counting tuples #yz (e.g., #yz ϕ > m)
multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)

subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

17

How about extensions of FO({> 0})?

FO({>0}) allows comparing #y and m ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:
comparing #y and #z (e.g., #y ϕ > #z ψ)
counting tuples #yz (e.g., #yz ϕ > m)
multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)
subtraction of counting terms (e.g., #y ϕ−#z ψ > m)

17

Summary

FO({>0}) is

hard to solve exactly on trees,

possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs

18

Summary

FO({>0}) is

hard to solve exactly on trees,
possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs

18

Summary

FO({>0}) is

hard to solve exactly on trees,
possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs

18

Summary

FO({>0}) is

hard to solve exactly on trees,
possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs

18

Big Question

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

Can we generalize our results to nowhere dense graph classes?

19

Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(

m2 ≤ #x2

(

m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

)

)

20

Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(

m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

))

20

Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

))

20

Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

))

20

Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)︸ ︷︷ ︸

replace with quantifier-free FO

))

20

Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)

)

20

Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)︸ ︷︷ ︸

replace with quantifier-free FO

)

20

Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)

20

Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)︸ ︷︷ ︸

replace with quantifier-free FO

20

Proof — Quantifier Elimination

We want to gradually simplify this formula.

quantifier-free FO︷︸︸︷
ϕ′′′

20

Proof — Functional Representation

21

Proof — Functional Representation

bounded
outdegree

21

Proof — Functional Representation

bounded
outdegree

21

Proof — Functional Representation

bounded
outdegree

21

Proof — Equalities Only

22

Proof — Equalities Only

fraternal rule:

22

Proof — Equalities Only

fraternal rule:

22

Proof — Equalities Only

22

Proof — Equalities Only

22

Proof — Equalities Only

22

Proof — Equalities Only

evaluate for
every vertex

22

Proof — Equalities Only

evaluate for
every vertex

22

Proof — Equalities Only

evaluate for
every vertex

✓

22

Proof — Inequalities

23

Proof — Inequalities

23

Proof — Inequalities

23

Proof — Inequalities

23

Proof — Inequalities

23

Proof — Inequalities

23

Proof — Inequalities

add extra edge and
proceed as before

23

Proof — Inequalities

add extra edge and
proceed as before

still bounded
outdegree!

23

Proof — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)︸ ︷︷ ︸

replace with quantifier-free FO

))

24

Proof — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)

)

24

Proof — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)︸ ︷︷ ︸

replace with quantifier-free FO

)

24

Proof — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)

24

Proof — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)︸ ︷︷ ︸

replace with quantifier-free FO

24

Proof — Quantifier Elimination

Gradually simplify formula.

quantifier-free FO︷︸︸︷
ϕ′′′

24

Proof — Quantifier Elimination

Gradually simplify formula.

24

DENSE GRAPHS

Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

For graph classes G closed under subgraphs,
FO model-checking is tractable iff G is nowhere dense.

[Grohe, Kreutzer, Sieberz 2011]

26

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Dense Graphs

What dense graph classes are tractable?

Closure under subgraphs is not a good requirement.

Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . .].

27

Example: Complements

28

Example: Complements

complement

28

Example: Complements

complement

28

Example: Fully Bipartite

29

Example: Fully Bipartite

29

Example: Fully Bipartite

29

Example: Fully Bipartite

29

Example: Fully Bipartite

29

Interpretations

30

Interpretations

30

Interpretations

all blue
vertices

30

Interpretations

all blue
vertices

all pairs with
distance 3

30

Structurally Property X

A graph class G has structurally property X if there exists

a class G′ with property X,
an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

The class of all has treewidth 1

For every there is with = I
()

.

31

Structurally Property X

A graph class G has structurally property X if there exists

a class G′ with property X,

an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

The class of all has treewidth 1

For every there is with = I
()

.

31

Structurally Property X

A graph class G has structurally property X if there exists

a class G′ with property X,
an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

The class of all has treewidth 1

For every there is with = I
()

.

31

Structurally Property X

A graph class G has structurally property X if there exists

a class G′ with property X,
an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

The class of all has treewidth 1

For every there is with = I
()

.

31

Structurally Property X

A graph class G has structurally property X if there exists

a class G′ with property X,
an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

The class of all has treewidth 1

For every there is with = I
()

.

31

Structurally Property X

A graph class G has structurally property X if there exists

a class G′ with property X,
an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

The class of all has treewidth 1

For every there is with = I
()

.

31

Structurally Property X

A graph class G has structurally property X if there exists

a class G′ with property X,
an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

The class of all has treewidth 1

For every there is with = I
()

.
31

Model-Checking in Sparse and Dense Classes

Sparse Dense

Somewhere dense

Nowhere dense

Bounded expansion

Structurally
nowhere dense

Structurally
bounded expansion

Structurally
bounded degree

(Top.) minor free

Planar
Bounded
treewidth

Bounded
degree

interpretation

interpretation

interp.

interp.

interp.

interp.

Nowhere Dense: Grohe, Kreutzer, Sieberz 2011
Structurally Bounded Degree: Gajarský, Hlinenỳ, Obdržálek, Lokshtanov, Ramanujan 2016 32

Structurally Bounded Expansion

Structurally
Bounded Expansion

33

Structurally Bounded Expansion

Structurally
Bounded Expansion

Bounded
Expansion

33

Structurally Bounded Expansion

Structurally
Bounded Expansion

Bounded
Expansion

33

Structurally Bounded Expansion

Structurally
Bounded Expansion

Bounded
Expansion

MC-algorithm
33

Structurally Bounded Expansion

Structurally
Bounded Expansion

Bounded
Expansion

MC-algorithm
33

Structurally Bounded Expansion

Structurally
Bounded Expansion

Bounded
Expansion

hard to
 find

MC-algorithm
33

Structurally Bounded Degree

Structurally
Degree 3

Degree 3

NP-complete to find preimage

34

Structurally Bounded Degree

Structurally
Degree 3

Degree 3

Degree

polynomially
computable

34

Structurally Bounded Degree

Structurally
Degree 3

Degree

Degree

34

Structurally Bounded Degree

Structurally
Degree 3

Degree

Degree

computable
in FPT time

34

Model-Checking in Sparse and Dense Classes

Sparse Dense

Somewhere dense

Nowhere dense

Bounded expansion

Structurally
nowhere dense

Structurally
bounded expansion

Structurally
bounded degree

(Top.) minor free

Planar
Bounded
treewidth

Bounded
degree

interpretation

interpretation

interp.

interp.

interp.

interp.

Nowhere Dense: Grohe, Kreutzer, Sieberz 2011
Structurally Bounded Degree: Gajarský, Hlinenỳ, Obdržálek, Lokshtanov, Ramanujan 2016 35

Big Question

Structurally
Bounded Expansion

Bounded
Expansion

36

Big Question

Structurally
Bounded Expansion

Bounded
Expansion

Bounded
Expansion

36

Big Question

Structurally
Bounded Expansion

Bounded
Expansion

Bounded
Expansion

Lacon Decomposition

36

Lacon Decompositions

1 0 0 1

Lacon Decomposition

Output

37

Lacon Decompositions

1 0 0 1

Lacon Decomposition

Output

37

Lacon Decompositions

1 0 0 11

Lacon Decomposition

Output

37

Lacon Decompositions

1 0 0 1

Lacon Decomposition

Output

37

Lacon Decompositions

01 0 1

Lacon Decomposition

Output

37

Lacon Decompositions

1 0 0 1

Lacon Decomposition

Output

37

Lacon Decompositions

1 0 0 1

Lacon Decomposition

Output

37

Lacon Decompositions

1 0 0 1

Lacon Decomposition

Output

structurally
property X

has lacon decomposition
with property X 37

Lacon Decompositions

1 0 0 1

Lacon Decomposition

Output

structurally
property X

has lacon decomposition
with property X 37

Lacon Decompositions

1 0 0

Lacon Decomposition

Output

structurally
treewidth 1

treewidth 3

38

Lacon Decompositions

1 0 0

Lacon Decomposition

Output

38

Lacon Decompositions

1 0 0

Lacon Decomposition

Output

38

Lacon Decompositions

1 0 00

Lacon Decomposition

Output

38

Lacon Decompositions

1 0 0

Lacon Decomposition

Output

38

Big Question

Structurally
Bounded Expansion

39

Big Question

Structurally
Bounded Expansion

has Lacon Decomposition
with Bounded Expansion

39

Big Question

has Lacon Decomposition
with Bounded Expansion

Structurally
Bounded Expansion

Can we compute it?
That would solve the
model-checking problem.

39

Big Question

Structurally
Nowhere Dense

39

Big Question

has Nowhere Dense
Lacon Decomposition?

Structurally
Nowhere Dense

39

End

Thanks!

40

	Approximate Counting Queries
	Dense Graphs

