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Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# basic database queries

Best algorithms on general graphs: nO(k)

2



Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . . ]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f(|ϕ|)n
algorithm

MC(G, L)
Input: A graph G ∈ G and a sentence ϕ ∈ L

Parameter: |ϕ|
Problem: Is ϕ true in G?

Goal: linear FPT run time f(|ϕ|)n
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Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011]
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Bounded Expansion — Minors

for every graph
in the graph class.
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Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

orient edges

or

orient edges

6



Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree              = 2

orient edgesorient edges

or

0th Augmentation

6



Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree              = 2

transitive rule

orient edgesorient edges

or

1st Augmentation

6



Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree              = 3

transitive rule

orient edgesorient edges

or

1st Augmentation

6



Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree              = 3

fraternal rule

or

transitive rule

orient edgesorient edges

or

1st Augmentation

6



Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree              = 3

fraternal rule

or

transitive rule

orient edgesorient edges

or

1st Augmentation

6



Bounded Expansion — Augmentations

Possible to do these augmentations such that after r
augmentations, outdegree at most f(r).

max outdegree              = 3

fraternal rule

or

transitive rule

orient edgesorient edges

or

2nd Augmentation

6



APPROXIMATE COUNTING QUERIES



Counting Problems

PARTIAL DOMINATING SET
Input: A graph G and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires ∃y1 . . . ∃ym).

Can be solved on H-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]
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Counting Problems

PARTIAL DOMINATING SET
Input: A graph G and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominating m vertices?

FO({>0}) = FO + “there are at least/most m ∈ N elements”

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∨ y = xi
)
≥ m

Length of formula depends only on k (and not on m)
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Counting Logic

Definition of FO({> 0})
built recursively using

◦ the rules of FO
◦ #y ϕ ≥ m for every m ∈ N and FO({>0}) formula ϕ

Example 1: PARTIAL DOMINATING SET

∃x1 . . . ∃xk #y
(∨

i

y ∼ xi ∧ y = xi
)
≥ m

Example 2: h-Index

#mypaper
(
#otherpaper cite(otherpaper,mypaper) ≥ h

)
≥ h
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Good News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[∗]-hard on trees.
similar to [Grohe, Schweikardt 2018]
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Bad News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[∗]-hard on trees.
similar to [Grohe, Schweikardt 2018]
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Bad News

contains k-clique satisfies FO({>0}) formula
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Stability

Are there k vertices dominating at least m = 5000 vertices?

Let ε > 0. A formula ϕ is ε-unstable on a graph G if scaling the
counting literals by (1± ε) changes whether ϕ is true in G.
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Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.

There exists an algorithm which takesG ∈ G , ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

# If then ϕ is true onG.

# If then ϕ is false onG.

# If then ϕ is ε-unstable onG.
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Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk #y
(∨

i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate < (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate < (1− ε)m vertices.
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Exact Counting

Theorem
PARTIALDOMINATINGSET can be solved in time f(k)n on graph
classes with bounded expansion.

This holds for all problems of the form

∃x1 . . . ∃xk#y ϕ(yx1 . . . xk)︸ ︷︷ ︸
∈ FO

≥ m.
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How about extensions of FO({> 0})?

FO({>0}) allows comparing #y and m ∈ N.

Theorem
Approximate model-checking becomes hard on trees if also allow
one of the following:

# comparing #y and #z (e.g., #y ϕ > #z ψ)
# counting tuples #yz (e.g., #yz ϕ > m)
# multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)
# subtraction of counting terms (e.g., #y ϕ−#z ψ > m)
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Summary

FO({>0}) is

# hard to solve exactly on trees,

# possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

# hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs
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Big Question

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

Can we generalize our results to nowhere dense graph classes?
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Proof — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(

m2 ≤ #x2

(

m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

)

)
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Proof — Equalities Only

evaluate for 
every vertex
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Proof — Inequalities
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Proof — Inequalities

add extra edge and
proceed as before
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Proof — Inequalities

add extra edge and
proceed as before

still bounded 
outdegree!
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Proof — Quantifier Elimination

Gradually simplify formula.

m1 ≤ #x1
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DENSE GRAPHS



Some Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

For graph classes G closed under subgraphs,
FO model-checking is tractable iff G is nowhere dense.

[Grohe, Kreutzer, Sieberz 2011]
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Dense Graphs

# What dense graph classes are tractable?

# Closure under subgraphs is not a good requirement.

# Goal: For graph classes G closed under induced subgraphs,
FO model-checking is tractable iff [. . . ].
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Example: Complements
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Example: Fully Bipartite
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Example: Fully Bipartite
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Interpretations
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Interpretations
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Interpretations

all blue
vertices
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Interpretations

all blue
vertices

all pairs with 
distance 3
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Structurally Property X

A graph class G has structurally property X if there exists

# a class G′ with property X,
# an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

# The class of all has treewidth 1

# For every there is with = I
( )

.
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Model-Checking in Sparse and Dense Classes

Sparse Dense

Somewhere dense

Nowhere dense

Bounded expansion

Structurally
nowhere dense

Structurally
bounded expansion

Structurally
bounded degree

(Top.) minor free

Planar
Bounded
treewidth

Bounded
degree

interpretation

interpretation

interp.

interp.

interp.

interp.

Nowhere Dense: Grohe, Kreutzer, Sieberz 2011
Structurally Bounded Degree: Gajarský, Hlinenỳ, Obdržálek, Lokshtanov, Ramanujan 2016 32



Structurally Bounded Expansion

Structurally
Bounded Expansion
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Bounded Expansion

Bounded 
Expansion
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Bounded Expansion
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Expansion

33



Structurally Bounded Expansion

Structurally
Bounded Expansion

Bounded 
Expansion

MC-algorithm
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Structurally Bounded Expansion

Structurally
Bounded Expansion

Bounded 
Expansion

MC-algorithm
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Structurally Bounded Expansion

Structurally
Bounded Expansion

Bounded 
Expansion

hard to
 find

MC-algorithm
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Structurally Bounded Degree

Structurally
Degree 3

Degree 3

NP-complete to find preimage
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Structurally Bounded Degree

Structurally
Degree 3

Degree 3

Degree

polynomially
computable
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Structurally Bounded Degree

Structurally
Degree 3

Degree 

Degree
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Structurally Bounded Degree

Structurally
Degree 3

Degree 

Degree

computable 
in FPT time
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Model-Checking in Sparse and Dense Classes

Sparse Dense
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Nowhere dense

Bounded expansion

Structurally
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bounded expansion

Structurally
bounded degree

(Top.) minor free

Planar
Bounded
treewidth

Bounded
degree

interpretation

interpretation

interp.

interp.

interp.

interp.

Nowhere Dense: Grohe, Kreutzer, Sieberz 2011
Structurally Bounded Degree: Gajarský, Hlinenỳ, Obdržálek, Lokshtanov, Ramanujan 2016 35



Big Question

Structurally
Bounded Expansion

Bounded 
Expansion
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Bounded 
Expansion

Bounded 
Expansion

Lacon Decomposition
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Lacon Decompositions

1 0 0 1

Lacon Decomposition

Output
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Lacon Decompositions
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Lacon Decompositions
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Lacon Decompositions

1 0 0

Lacon Decomposition

Output

structurally
treewidth 1

treewidth 3

38



Lacon Decompositions

1 0 0

Lacon Decomposition

Output
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Lacon Decompositions

1 0 0

Lacon Decomposition

Output
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Lacon Decompositions

1 0 00

Lacon Decomposition

Output
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Lacon Decompositions

1 0 0

Lacon Decomposition

Output
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Big Question

Structurally
Bounded Expansion
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Big Question

Structurally
Bounded Expansion

has Lacon Decomposition
with Bounded Expansion
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Big Question

has Lacon Decomposition
with Bounded Expansion

Structurally
Bounded Expansion

Can we compute it?
That would solve the 
model-checking problem.
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Big Question

Structurally
Nowhere Dense
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Big Question

has Nowhere Dense
Lacon Decomposition?

Structurally
Nowhere Dense
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End

Thanks!
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