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Algorithmic Meta-Theorems

FO Model-Checking [Dvorak, Kral, Thomas 2010]

First-order formulas ¢ can be evaluated on bounded expansion
classes in time f(|¢|)n.

O dominating set of size &:

dxq ...z Yy \/ywa:i\/y:xi

7

O independent set of size k:

dzq ... doy, /\.’L‘i’/'l’j/\ivi7éxj
i,J

Best algorithms on general graphs: n9(*)

On bounded expansion: f(k)n



Exact Characterization
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For graph classes G closed under subgraphs,
FO model-checking is tractable iff G is nowhere dense.

[Grohe, Kreutzer, Sieberz 2011] 5
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Structurally Property X

A graph class G has structurally property X if there exists

O aclass G’ with property X,
O aninterpretation I = (v(x), u(x,y)),

such that for every G € G thereis G’ € G’ with G = I(G).

The class of all fully bipartite graphs has structurally treewidth 1:

O The class of all >‘< has treewidth 1

O For every % there is >‘< with % = I(%‘% )



Model-Checking in Sparse and Dense Classes
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Result

Let G be a graph class. The following statements are equivalent.

O G has structurally bounded expansion.

O G has lacon decompositions with

o bounded expansion,
o bounded target vertex degree.

O G has shrub decompositions with

o bounded expansion,
o bounded number of colors,
o bounded diameter.

O G has low shrubdepth covers [1].

[1] Gajarsky, Kreuzer, Nesetfil, Ossona de Mendez, Siebertz, Torunczyk 2018
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