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Algorithmic Meta-Theorems

FO Model-Checking [Dvořák, Král, Thomas 2010]

First-order formulas ϕ can be evaluated on bounded expansion
classes in time f(|ϕ|)n.

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

Best algorithms on general graphs: nO(k)

On bounded expansion: f(k)n
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Exact Characterization

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

For graph classes G closed under subgraphs,
FO model-checking is tractable iff G is nowhere dense.

[Grohe, Kreutzer, Sieberz 2011] 5
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Structurally Property X

A graph class G has structurally property X if there exists

# a class G′ with property X,
# an interpretation I = (ν(x), µ(x, y)),

such that for every G ∈ G there is G′ ∈ G′ with G = I(G′).

The class of all fully bipartite graphs has structurally treewidth 1:

# The class of all has treewidth 1

# For every there is with = I
( )

.
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Model-Checking in Sparse and Dense Classes

Sparse Dense

Somewhere dense

Nowhere dense

Bounded expansion

Structurally
nowhere dense

Structurally
bounded expansion

Structurally
bounded degree

(Top.) minor free

Planar
Bounded
treewidth

Bounded
degree

interpretation

interpretation

interp.

interp.

interp.

interp.

Nowhere Dense: Grohe, Kreutzer, Sieberz 2011
Structurally Bounded Degree: Gajarský, Hlinenỳ, Obdržálek, Lokshtanov, Ramanujan 2016 9
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Shrub Decompositions

Shrub Decomposition

Output

structurally
property X

has shrub decomposition 
with property X

connect vertices with…

 - distance 2
 - distance 3 and same color
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Result

Theorem
Let G be a graph class. The following statements are equivalent.

# G has structurally bounded expansion.

# G has lacon decompositions with
◦ bounded expansion,
◦ bounded target vertex degree.

# G has shrub decompositions with
◦ bounded expansion,
◦ bounded number of colors,
◦ bounded diameter.

# G has low shrubdepth covers [1].

[1] Gajarský, Kreuzer, Nešetřil, Ossona de Mendez, Siebertz, Toruńczyk 2018
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End

Thanks!

dreier@ac.tuwien.ac.at
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