LACON- AND SHRUB-DECOMPOSITIONS

A New Characterization of First-Order Transductions of Bounded Expansion Classes

Jan Dreier TU Wien, Austria

LICS 2021

1

1

1

P	anar
---	------

Bounded Degree

Bounded Treewidth

$$\frac{|E|}{|V|} \le f(r)$$

for every r-shallow minor of every graph in the graph class.

FO Model-Checking

[Dvořák, Král, Thomas 2010]

First-order formulas φ can be evaluated on bounded expansion classes in time $f(|\varphi|)n.$

FO Model-Checking

[Dvořák, Král, Thomas 2010]

First-order formulas φ can be evaluated on bounded expansion classes in time $f(|\varphi|)n.$

 \bigcirc dominating set of size k:

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

FO Model-Checking

[Dvořák, Král, Thomas 2010]

First-order formulas φ can be evaluated on bounded expansion classes in time $f(|\varphi|)n.$

 \bigcirc dominating set of size k:

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

 \bigcirc independent set of size k:

$$\exists x_1 \dots \exists x_k \bigwedge_{i,j} x_i \not\sim x_j \land x_i \neq x_j$$

FO Model-Checking

[Dvořák, Král, Thomas 2010]

First-order formulas φ can be evaluated on bounded expansion classes in time $f(|\varphi|)n.$

 \bigcirc dominating set of size k:

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

 \bigcirc independent set of size k:

$$\exists x_1 \dots \exists x_k \bigwedge_{i,j} x_i \not\sim x_j \land x_i \neq x_j$$

Best algorithms on general graphs: $n^{O(k)}$

FO Model-Checking

[Dvořák, Král, Thomas 2010]

First-order formulas φ can be evaluated on bounded expansion classes in time $f(|\varphi|)n.$

 \bigcirc dominating set of size k:

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

 \bigcirc independent set of size k:

$$\exists x_1 \dots \exists x_k \bigwedge_{i,j} x_i \not\sim x_j \land x_i \neq x_j$$

Best algorithms on general graphs: $n^{O(k)}$

On bounded expansion: f(k)n

Exact Characterization

For graph classes *G* closed under subgraphs, FO model-checking is tractable iff *G* is nowhere dense.

[Grohe, Kreutzer, Sieberz 2011]

 $\operatorname{dist}(x,y) = 3$

 $x \sim y$

 $\exists x \text{ blue}(x) \land \varphi$

 $\begin{aligned} x \sim y \\ \exists x \ \varphi \end{aligned}$

 $\exists x_1 \exists x_2 \exists x_3 \\ \text{blue}(x_1) \land \text{blue}(x_2) \land \text{blue}(x_3) \\ \text{dist}(x_1, x_2) = 3 \land \text{dist}(x_2, x_3) = 3 \\ \land \text{dist}(x_1, x_3) = 3$

$$\exists x_1 \exists x_2 \exists x_3 \\ x_1 \sim x_2 \land x_2 \sim x_3 \\ \land x_1 \sim x_3$$

 $I = (\nu(x), \mu(x, y))$

vertices: $\{v \mid G \models \nu(v)\}$ edges: $\{uv \mid G \models \mu(u, v)\}$

 $\, \odot \,$ a class \mathcal{G}' with property X,

- \bigcirc a class \mathcal{G}' with property X,
- \bigcirc an interpretation $I = (\nu(x), \mu(x, y))$,

- \bigcirc a class \mathcal{G}' with property X,
- \bigcirc an interpretation $I = (\nu(x), \mu(x, y))$,

such that for every $G \in \mathcal{G}$ there is $G' \in \mathcal{G}'$ with G = I(G').

- \bigcirc a class \mathcal{G}' with property X,
- \bigcirc an interpretation $I = (\nu(x), \mu(x, y))$,

such that for every $G \in \mathcal{G}$ there is $G' \in \mathcal{G}'$ with G = I(G').

The class of all fully bipartite graphs has structurally treewidth 1:

- \bigcirc a class \mathcal{G}' with property X,
- \bigcirc an interpretation $I = (\nu(x), \mu(x, y))$,

such that for every $G \in \mathcal{G}$ there is $G' \in \mathcal{G}'$ with G = I(G').

The class of all fully bipartite graphs has structurally treewidth 1:
A graph class \mathcal{G} has structurally property X if there exists

- \bigcirc a class \mathcal{G}' with property X,
- \bigcirc an interpretation $I = (\nu(x), \mu(x, y))$,

such that for every $G \in \mathcal{G}$ there is $G' \in \mathcal{G}'$ with G = I(G').

The class of all fully bipartite graphs has structurally treewidth 1:

• The class of all has treewidth 1
• For every there is with
$$= I($$
.

Model-Checking in Sparse and Dense Classes

Nowhere Dense: Grohe, Kreutzer, Sieberz 2011 Structurally Bounded Degree: Gajarský, Hlinenỳ, Obdržálek, Lokshtanov, Ramanujan 2016

Bounded Expansion G

Structurally Bounded Expansion

Ι

Bounded Structurally **Bounded Expansion** Expansion GNP-hard to find Ι Bounded Expansion, but denser

10

Theorem

Let ${\mathcal{G}}$ be a graph class. The following statements are equivalent.

Theorem

Let ${\mathcal G}$ be a graph class. The following statements are equivalent.

 $\, \odot \, \, \mathcal{G}$ has structurally bounded expansion.

Theorem

Let ${\mathcal G}$ be a graph class. The following statements are equivalent.

- $\bigcirc \mathcal{G}$ has structurally bounded expansion.
- $\bigcirc \ \mathcal{G}$ has **lacon decompositions** with
 - bounded expansion,
 - bounded target vertex degree.

Theorem

Let ${\mathcal G}$ be a graph class. The following statements are equivalent.

- $\bigcirc \mathcal{G}$ has structurally bounded expansion.
- $\bigcirc \ \mathcal{G}$ has **lacon decompositions** with
 - bounded expansion,
 - bounded target vertex degree.
- $\bigcirc \ \mathcal{G}$ has **shrub decompositions** with
 - bounded expansion,
 - bounded number of colors,
 - bounded diameter.
Result

Theorem

Let ${\mathcal G}$ be a graph class. The following statements are equivalent.

- $\bigcirc \mathcal{G}$ has structurally bounded expansion.
- $\bigcirc \mathcal{G}$ has lacon decompositions with
 - bounded expansion,
 - bounded target vertex degree.
- $\bigcirc \mathcal{G}$ has shrub decompositions with
 - bounded expansion,
 - bounded number of colors,
 - bounded diameter.

$\bigcirc \mathcal{G}$ has low shrubdepth covers [1].

Structurally **Bounded Expansion**

Questions

has Decomposition with Bounded Expansion

Structurally Bounded Expansion

Structurally Bounded Expansion

Questions

Thanks!

dreier@ac.tuwien.ac.at