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Many problems can be expressed in first-order (FO) logic, e.g.,
O independent set of size k:
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Can be solved in n°®) (ETH: essentially optimal)



Model-Checking

k-independent set
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k-dominatingset ———  logic = ———— model-checking
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length depends on k algorithm?

model-checking problem

Input: graph G and a sentence ¢
Parameter: ||

Problem:  is ¢ truein G?

Goal: linear fpt run time f (|| )n 3



Sparse Graph Classes
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MSO model-checking on bounded treewidth in f (|¢|)n.
[Courcelle 1990]

FO model-checking on nowhere dense graph classes in f(|])n**e.
[Grohe, Kreutzer, Sieberz 2011]



The Real World

Some central properties:

O Skewed degree distribution
Fraction of vertices with degree k
proportional to k= with2 < a < 3

it’ O Clustered
If we have a common friend we are
likely friends as well

F" © Small-world property
Everyone is close to everyone



Random Graph Models

Random graph model: probability distribution over graphs

Preferential attachment model

O O

Hyperbolic random graph model

O

Chung-Lu model

O

Erdds-Rényi model

O

Configuration model

Random intersection graph model

O O

Watts-Strogatz model
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Previous Results
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[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]



Our Result

A random graph model is 3-power-law-bounded if
(roughly speaking):

O fraction of vertices with degree kis O(k™3)
real networks: typically ks~ with2 < a <3

O unclustered
real networks: typically clustered n

Theorem

Given a first-order sentence v and a graph G sampled from a
3-power-law-bounded model, one can decide whether ¢ is true on G
in expected time f (|| )n**< for every ¢ > o.

Big Question: model-checking on clustered models? 8



Example: Preferential Attachment Model

Introduced by Barabasi and Albert in 1999 to explain the structure
of the world wide web.
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Example: Chung-Lu Model

A more direct way to get a fixed degree distribution.
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a-power-law-boundedness

A random graph model with vertices 1,...,nis
3-power-law-bounded if the probability that some subset of edges
E C (*;") is present is at most

log ()M T ——
=

ijeE



a-power-law-boundedness

A random graph model with vertices 1,...,nis
3-power-law-bounded if the probability that some subset of edges
E C (*;") is present is at most

log(n)O(E) H\ﬁ

ijeE
v X
O Preferential attachment O Hyperbolic random graph
model model
O Chung-Lu model O random intersection model
O Erdés-Rényi model O Watts-Strogatz model
O Configuration model O Kleinberg model

O ... O ...



Asymptotic Structure of 3-power-law-bounded models




Input: graph sampled from 3-power-law-bounded model



Algorithm




Gaifman's theorem:
consider only
neighborhoods
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Gaifman's theorem: ) \ /
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Algorithm
approximately find core \ |
-\ ‘\




prune trees




prune protrusions




use brute force on core




repeat for every neighborhood




Proof Sketch

Runtime: 1° ZPr .}' = x] - ¢!

To get a run time of f(||)n°(") we bound

Pr| *‘ > x| for every x.



Proof Sketch

O Assume core .}‘

is large in some neighborhood.

O

“blocking sets” such that E C E(G).

O By definition of 3-power-law-boundedness:
Pr(E € E(G)] < log(n)" [Tep 1.

O Union bound: Any “blocking set” form II present with
probability is at most

ren Pr{E € E(G)] < Lperrloa(m) 0¥ Tlep - s



Summary

A random graph model is 3-power-law-bounded if
(roughly speaking):

O fraction of vertices with degree kis O(k™3)
real networks: typically k¢ with2 < a <3

O unclustered
real networks: typically clustered n

Theorem

Given a first-order sentence v and a graph G sampled from a
3-power-law-bounded model, one can decide whether ¢ is true on G
in expected time f (|p|)n**< for every e > o.

Big Question: model-checking on clustered models? 16



