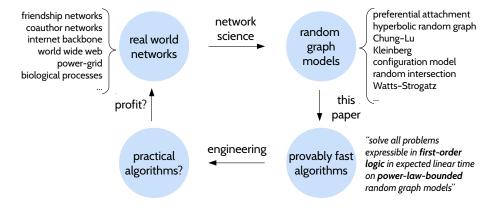
First-Order Model-Checking in Random Graphs and Complex Networks

Jan Dreier, Philipp Kuinke, Peter Rossmanith

Theoretical Computer Science RWTH Aachen University, Germany

ESA 2020

Motivation



Many problems can be expressed in first-order (FO) logic, e.g.,

 \bigcirc independent set of size *k*:

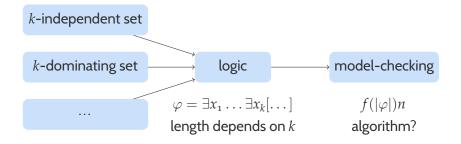
$$\exists x_1 \ldots \exists x_k \bigwedge_{i,j} x_i \neq x_j \land x_i \not\sim x_j$$

 \bigcirc dominating set of size k:

$$\exists x_1 \ldots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

Can be solved in $n^{O(k)}$ (ETH: essentially optimal)

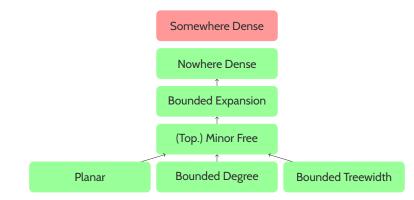
Model-Checking



model-checking problem	
Input:	graph G and a sentence $arphi$
Parameter:	$ \varphi $
Problem:	is φ true in G ?

Goal: linear fpt run time $f(|\varphi|)n$

Sparse Graph Classes



MSO model-checking on bounded treewidth $\inf f(|\varphi|)n$.

[Courcelle 1990]

FO model-checking on nowhere dense graph classes in $f(|\varphi|)n^{1+\varepsilon}$. [Grohe, Kreutzer, Sieberz 2011]

The Real World



Some central properties:

$\bigcirc \ \ \, {\rm Skewed \ degree \ distribution} \\ {\rm Fraction \ of \ vertices \ with \ degree \ } k \\ {\rm proportional \ to \ } k^{-\alpha} \ {\rm with \ 2 \le \alpha \le 3} \\ \end{cases}$

Clustered

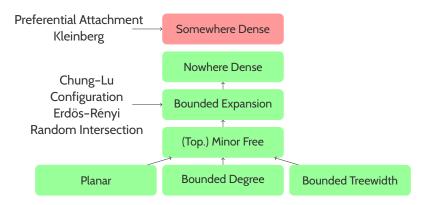
If we have a common friend we are likely friends as well

Small-world property Everyone is close to everyone

Random graph model: probability distribution over graphs

- Preferential attachment model
- Hyperbolic random graph model
- O Chung-Lu model
- Erdös-Rényi model
- Configuration model
- Random intersection graph model
- Watts-Strogatz model

0 ...



[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]

A random graph model is *3-power-law-bounded* if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$ real networks: typically $k^{-\alpha}$ with $2 \le \alpha \le 3$
- unclustered

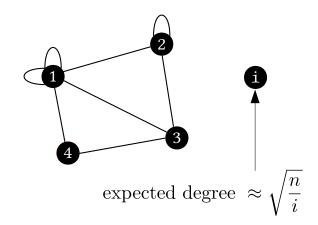
real networks: typically clustered

Theorem

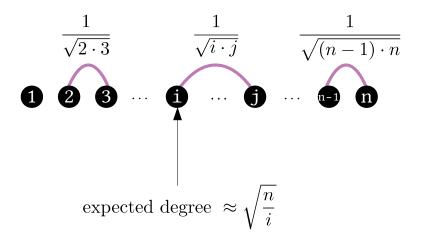
Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

Big Question: model-checking on clustered models?

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.



A more direct way to get a fixed degree distribution.



α -power-law-boundedness

A random graph model with vertices 1, ..., *n* is 3-*power-law-bounded* if the probability that some subset of edges $E \subseteq \binom{1,...,n}{2}$ is present is at most $\log(n)^{O(|E|^2)} \prod_{ij \in E} \frac{1}{\sqrt{i \cdot j}}.$

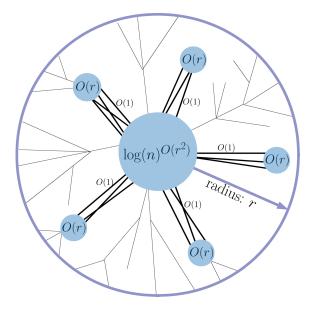
α -power-law-boundedness

A random graph model with vertices $1, \ldots, n$ is 3-power-law-bounded if the probability that some subset of edges $E \subseteq \binom{1,\ldots,n}{2}$ is present is at most $\log(n)^{O(|E|^2)} \prod_{ii\in F} \frac{1}{\sqrt{i \cdot j}}.$

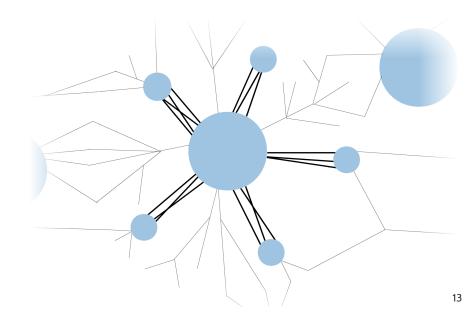
- Preferential attachment model
- O Chung-Lu model
- O Erdös-Rényi model
- Configuration model

- X
- Hyperbolic random graph model
- random intersection model
- Watts-Strogatz model
- Kleinberg model

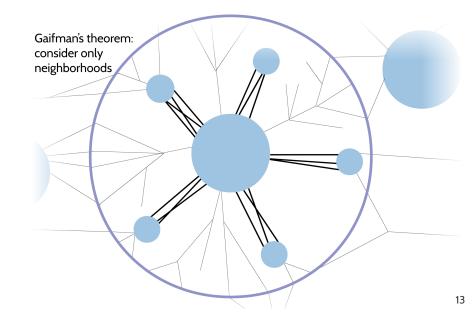
Asymptotic Structure of 3-power-law-bounded models

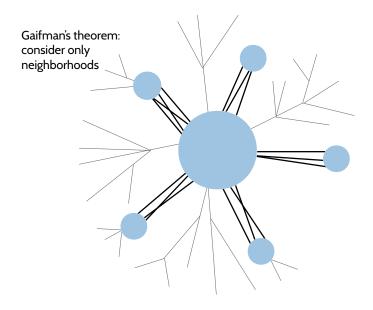


Input: graph sampled from 3-power-law-bounded model

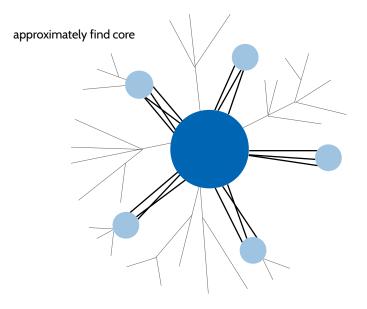


Algorithm

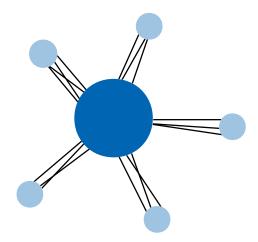




Algorithm



prune trees

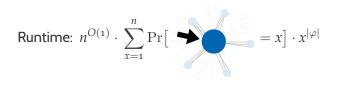


prune protrusions

use brute force on core

repeat for every neighborhood





To get a run time of $f(|\varphi|)n^{O(1)}$ we bound

$$\Pr[\quad \Rightarrow \quad \ge x] \text{ for every } x.$$

Assume core is large in some neighborhood.

- Then there is an edge set $E \subseteq \binom{1,...,n}{2}$ from a collection Π of "blocking sets" such that $E \subseteq E(G)$.
- By definition of 3-power-law-boundedness: $\Pr[E \subseteq E(G)] \le \log(n)^{O(|E|^2)} \prod_{ij \in E} \frac{1}{\sqrt{i \cdot j}}.$
- Union bound: Any "blocking set" form Π present with probability is at most $\sum_{E \in \Pi} \Pr[E \subseteq E(G)] \leq \sum_{E \in \Pi} \log(n)^{O(|E|^2)} \prod_{ij \in E} \frac{1}{\sqrt{i\cdot j}}.$

A random graph model is *3-power-law-bounded* if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$ real networks: typically $k^{-\alpha}$ with $2 \le \alpha \le 3$
- unclustered

real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

Big Question: model-checking on clustered models?