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Motivation

real world
networks

random 
graph
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network
science

practical
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provably fast
algorithms

engineering
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profit?

friendship networks
coauthor networks
internet backbone

world wide web
power-grid

biological processes
...

preferential attachment
hyperbolic random graph
Chung–Lu
Kleinberg
configuration model
random intersection
Watts–Strogatz
...

“solve all problems
expressible in first-order 
logic in expected linear time 
on power-law-bounded 
random graph models”
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Logic

Many problems can be expressed in first-order (FO) logic, e.g.,

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6= xj ∧ xi 6∼ xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨

i
y ∼ xi ∨ y = xi

Can be solved in nO(k) (ETH: essentially optimal)
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Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . . ]

length depends on k

k-independent set

k-dominating set

. . .

model-checking

f (|ϕ|)n
algorithm?

model-checking problem
Input: graph G and a sentence ϕ
Parameter: |ϕ|
Problem: is ϕ true in G?

Goal: linear fpt run time f (|ϕ|)n 3



Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

MSO model-checking on bounded treewidth in f (|ϕ|)n.
[Courcelle 1990]

FO model-checking on nowhere dense graph classes in f (|ϕ|)n1+ε.
[Grohe, Kreutzer, Sieberz 2011]
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The Real World

Some central properties:

# Skewed degree distribution
Fraction of vertices with degree k
proportional to k−α with 2 ≤ α ≤ 3

# Clustered
If we have a common friend we are
likely friends as well

# Small-world property
Everyone is close to everyone
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Random Graph Models

Random graph model: probability distribution over graphs

# Preferential attachment model

# Hyperbolic random graph model

# Chung–Lu model

# Erdös–Rényi model

# Configuration model

# Random intersection graph model

# Watts–Strogatz model

# . . .
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Previous Results

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

Chung–Lu
Configuration
Erdös–Rényi

Random Intersection

Preferential Attachment
Kleinberg

[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]
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Our Result

A random graph model is 3-power-law-bounded if
(roughly speaking):

# fraction of vertices with degree k is O(k−3)

real networks: typically k−α with 2 ≤ α ≤ 3
optimal

# unclustered
real networks: typically clustered ???

Theorem
Given a first-order sentence ϕ and a graph G sampled from a
3-power-law-bounded model, one can decide whetherϕ is true on G
in expected time f (|ϕ|)n1+ε for every ε > 0.

Big Question: model-checking on clustered models? 8



Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure
of the world wide web.
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Example: Chung–Lu Model

A more direct way to get a fixed degree distribution.

1 2 3 i j n-1 n
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α-power-law-boundedness

A random graph model with vertices 1, . . . ,n is
3-power-law-bounded if the probability that some subset of edges

E ⊆
(1,...,n

2
)

is present is at most

log(n)O(|E|2)
∏
ĳ∈E

1√
i · j

.

3
# Preferential attachment

model

# Chung–Lu model

# Erdös–Rényi model

# Configuration model

# . . .

7
# Hyperbolic random graph

model

# random intersection model

# Watts–Strogatz model

# Kleinberg model

# . . .
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α-power-law-boundedness

A random graph model with vertices 1, . . . ,n is
3-power-law-bounded if the probability that some subset of edges

E ⊆
(1,...,n

2
)

is present is at most

log(n)O(|E|2)
∏
ĳ∈E

1√
i · j

.

3
# Preferential attachment

model

# Chung–Lu model

# Erdös–Rényi model

# Configuration model

# . . .

7
# Hyperbolic random graph

model

# random intersection model

# Watts–Strogatz model

# Kleinberg model

# . . .
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Asymptotic Structure of 3-power-law-bounded models
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Algorithm

Input: graph sampled from 3-power-law-bounded model
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Algorithm
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Algorithm
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Algorithm

Gaifman’s theorem:
consider only
neighborhoods
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Algorithm

approximately find core
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Algorithm

prune trees
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Algorithm

prune protrusions
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Algorithm

✓

use brute force on core
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Algorithm

repeat for every neighborhood

✓

use brute force on core
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Proof Sketch

Runtime: nO(1) ·
n∑

x=1
Pr
[

= x
]
· x|ϕ|

To get a run time of f (|ϕ|)nO(1) we bound

Pr
[

≥ x
]

for every x.
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Proof Sketch

# Assume core is large in some neighborhood.

#

# Then there is an edge set E ⊆
(1,...,n

2
)

from a collection Π of
“blocking sets” such that E ⊆ E(G).

# By definition of 3-power-law-boundedness:
Pr[E ⊆ E(G)] ≤ log(n)O(|E|2)

∏
ĳ∈E

1√
i·j

.

# Union bound: Any “blocking set” form Π present with
probability is at most∑

E∈Π Pr[E ⊆ E(G)] ≤
∑

E∈Π log(n)O(|E|2)
∏

ĳ∈E
1√
i·j

.
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Summary

A random graph model is 3-power-law-bounded if
(roughly speaking):

# fraction of vertices with degree k is O(k−3)

real networks: typically k−α with 2 ≤ α ≤ 3
optimal

# unclustered
real networks: typically clustered ???

Theorem
Given a first-order sentence ϕ and a graph G sampled from a
3-power-law-bounded model, one can decide whetherϕ is true on G
in expected time f (|ϕ|)n1+ε for every ε > 0.

Big Question: model-checking on clustered models? 16


