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Algorithmic Meta-Theorems

“All problems expressible in a certain logic
can be solved efficiently on certain graphs”

FO on 
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FO({>0}) for
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Logic

Many problems can be expressed in first-order (FO) logic.

# independent set of size k:

∃x1 . . . ∃xk
∧
i,j

xi 6∼ xj ∧ xi 6= xj

# dominating set of size k:

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# some database queries

Best algorithms on general graphs: nO(k)
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Model-Checking

logic

ϕ = ∃x1 . . . ∃xk[. . . ]
length depends on k

k-independent set

k-dominating set

. . .

model-checking

f(|ϕ|)n
algorithm

MC(G, L)
Input: A graphG ∈ G and a sentence ϕ ∈ L

Parameter: |ϕ|
Problem: Is ϕ true inG?

Goal: linear FPT run time f(|ϕ|)n
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Sparse Graph Classes

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded treewidth then MC(G, MSO) ∈ FPT.
[Courcelle 1990]

If G is nowhere dense then MC(G, FO) ∈ FPT.
[Grohe, Kreutzer, Sieberz 2011]
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APPROXIMATE EVALUATION OF
FIRST-ORDER COUNTING QUERIES



Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

Cannot be expressed in first-order logic (requires ∃y1 . . . ∃ym).

Can be solved onH-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]
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Counting Problems

PARTIAL DOMINATING SET
Input: A graphG and k,m ∈ N

Parameter: k

Problem: Are there k vertices dominatingm vertices?

FO({>0}) = FO + “there are at least/mostm ∈ N elements”

∃x1 . . . ∃xk#y
(∨
i

y ∼ xi ∧ y = xi
)
≥ m

Length of formula depends only on k (and not onm)
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Counting Logic

Definition of FO({> 0})
built recursively using

◦ the rules of FO
◦ #y ϕ ≥ m for everym ∈ N and FO({>0}) formula ϕ

Example 1: PARTIAL DOMINATING SET

∃x1 . . . ∃xk#y
(∨
i

y ∼ xi ∧ y = xi
)
≥ m

Example 2: h-Index

#mypaper
(
#otherpaper cite(otherpaper,mypaper) ≥ h

)
≥ h
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Good News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[∗]-hard on trees.
similar to [Grohe, Schweikardt 2018]

10



Bad News

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

If G has bounded degree then MC(G, FOC) ∈ FPT.
[Kuske, Schweikardt 2017]
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Bad News

contains k-clique satisfies FO({>0}) formula
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Stability

Are there k vertices dominating at leastm = 5000 vertices?

A formula ϕ is ε-stable on a graphG if scaling the counting literals
by (1± ε) does not change whether ϕ is true inG.
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Stability

Are there k vertices dominating at leastm = 4983 vertices?

A formula ϕ is ε-stable on a graphG if scaling the counting literals
by (1± ε) does not change whether ϕ is true inG.
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Stability

Are there k vertices dominating at leastm = 5017 vertices?

A formula ϕ is ε-stable on a graphG if scaling the counting literals
by (1± ε) does not change whether ϕ is true inG.
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Approximate Model-Checking

Theorem
Let G be a graph class with bounded expansion and ε > 0.

There exists an algorithm which takes G ∈ G, ϕ ∈ FO({>0}),
runs in time f(|ϕ|)n and returns , , or .

# If then ϕ is true on G.

# If then ϕ is false on G.

# If then ϕ is ε-unstable on G.
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Approximate Model-Checking

PARTIAL DOMINATING SET: ∃x1 . . . ∃xk#y
(∨
i

y ∼ xi∧y = xi
)
≥ m

There exists a set dominating
≥ (1 + ε)m vertices.

All sets dominate< (1 + ε)m vertices
and there exists a set dominating
≥ (1− ε)m vertices.

All sets dominate< (1− ε)m vertices.
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How about extensions of FO({> 0})?

FO({>0}) allows comparing #y andm ∈ N.

Theorem
Approximate model-checking becomes hard if also allow one of
the following:

# comparing #y and #z (e.g., #y ϕ > #z ψ)

# counting tuples #yz (e.g., #yz ϕ > m)

# multiplying of counting terms (e.g., #y ϕ ·#z ψ > m)

# subtraction of counting terms (e.g., #y ϕ−#z ψ > m)
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Summary

FO({>0}) is

# hard to solve exactly on trees,

# possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

# hard to approximate on trees.

⇒ FO({>0}) seems like “the right logic” for
approximation on sparse graphs
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Big Question

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

Can we generalize our results to nowhere dense graph classes?

17



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(

m2 ≤ #x2

(

m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

)

)

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(

m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

))

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

))

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)

))

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

(
m3 ≤ #x3

quantifer-free FO︷ ︸︸ ︷
ϕ(x1x2x3)︸ ︷︷ ︸

replace with quantifier-free FO

))

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)

)

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

(
m2 ≤ #x2

quantifier-free FO︷ ︸︸ ︷
ϕ′(x1x2)︸ ︷︷ ︸

replace with quantifier-free FO

)

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)

18



Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

m1 ≤ #x1

quantifier-free FO︷ ︸︸ ︷
ϕ′′(x1)︸ ︷︷ ︸

replace with quantifier-free FO

18



Proof Sketch — Quantifier Elimination
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Proof Sketch — Domination

#x3 (x3 ∼ x1 ∨ x3 ∼ x2) ≥ m︸ ︷︷ ︸
replace with quantifier-free FO
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Proof Sketch — Small Intersection
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Proof Sketch — Small Intersection
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Proof Sketch — Large Intersection
 relatively 
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 with a large intersection.
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FIRST-ORDER MODEL-CHECKING IN
RANDOM GRAPHS AND COMPLEX
NETWORKS



Motivation

real world
networks
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The Real World

Some central properties:

# Skewed degree distribution
Fraction of vertices with degree k
proportional to k−α with 2 ≤ α ≤ 3?

# Clustered
If we have a common friend we are
likely friends as well

# Small-world property
Everyone is close to everyone
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Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure
of the world wide web.

1
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Previous Results

Somewhere Dense

Nowhere Dense

Bounded Expansion

(Top.) Minor Free

Planar Bounded TreewidthBounded Degree

some are here

and some here

[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]
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Meta-Theorem

A random graph model is 3-power-law-bounded if
(roughly speaking):

# fraction of vertices with degree k isO(k−3)

real networks: typically k−α with 2 ≤ α ≤ 3

optima
l

# unclustered
real networks: typically clustered

???

Theorem
Given a first-order sentence ϕ and a graph G sampled from a
3-power-law-bounded model, one can decide whetherϕ is true onG
in expected time f(|ϕ|)n1+ε for every ε > 0.

Big Question: model-checking on clustered models?
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Example: Chung–Lu Model

A more direct way to get a desirable degree distribution.

1 2 3 i j n-1 n

30



α-power-law-boundedness

A random graph model with vertices 1, . . . , n is
3-power-law-bounded if the probability that some subset of edges

E ⊆
(
1,...,n

2

)
is present is at most

log(n)O(|E|2)
∏
ij∈E

1√
i · j

.

3
# Preferential attachment

model

# Chung–Lu model

# Erdös–Rényi model

# Configuration model

# . . .

7
# Hyperbolic random graph

model

# random intersection model

# Watts–Strogatz model

# Kleinberg model

# . . .
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Asymptotic Structure of 3-power-law-bounded models
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Algorithm

Input: graph sampled from 3-power-law-bounded model
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Algorithm
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Algorithm

Gaifman’s theorem:
consider only
neighborhoods
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Algorithm

approximately find core
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Algorithm

prune trees
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Algorithm

prune protrusions
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Algorithm

✓

use brute force on core
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Algorithm

repeat for every neighborhood

✓

use brute force on core
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Runtime Analysis

Runtime: nO(1) ·

n∑
x=1

Pr
[

= x
]
· x|ϕ|

To get a run time of f(|ϕ|)nO(1) we bound

Pr
[

≥ x
]

for every x.
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Summary

A random graph model is 3-power-law-bounded if
(roughly speaking):

# fraction of vertices with degree k isO(k−3)

real networks: typically k−α with 2 ≤ α ≤ 3
optima

l

# unclustered
real networks: typically clustered ???

Theorem
Given a first-order sentence ϕ and a graph G sampled from a
3-power-law-bounded model, one can decide whetherϕ is true onG
in expected time f(|ϕ|)n1+ε for every ε > 0.

Big Question: model-checking on clustered models? 35
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Let α > 2. A random graph model G is α-power-law-bounded if for
every n ∈ N there exists an ordering v1, . . . , vn of V (Gn) such that
for all E ⊆

({v1,...,vn}
2

)
Pr
[
E ⊆ E(Gn)

]
≤

∏
vivj∈E

(n/i)1/(α−1)(n/j)1/(α−1)

n
·


2O(|E|2) if α > 3

log(n)O(|E|2) if α = 3

O(nε)|E|
2

for every ε > 0 if α < 3.
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A graphH is an r-shallow topological minor of a graphG if a graph
obtained fromH by subdividing every edge up to 2r times is
isomorphic to a subgraph ofG. The set of all r-shallow topological
minors of a graphG is denoted byGOr.

A graph class C has bounded expansion if there exists a function
f : N→ N such that for all r ∈ N and allG ∈ C

max
H∈GOr

||H||
|H|

≤ f(r).
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