Two New Perspectives for Algorithmic Meta-Theorems

Jan Dreier

November 162020

Algorithmic Meta-Theorems

Everything is a graph.

Algorithmic Meta-Theorems

Everything is a graph.

Algorithmic Meta-Theorems

"All problems expressible in a certain logic can be solved efficiently on certain graphs"

Algorithmic Meta-Theorems

"All problems expressible in a certain logic
can be solved efficiently on certain graphs"

MSO on
treewidth

Algorithmic Meta-Theorems

"All problems expressible in a certain logic can be solved efficiently on certain graphs"

Algorithmic Meta-Theorems

"All problems expressible in a certain logic can be solved efficiently on certain graphs"

Algorithmic Meta-Theorems

"All problems expressible in a certain logic can be solved efficiently on certain graphs"

Logic

Many problems can be expressed in first-order (FO) logic.

Logic

Many problems can be expressed in first-order (FO) logic.
\bigcirc independent set of size k :

$$
\exists x_{1} \ldots \exists x_{k} \bigwedge_{i, j} x_{i} \nsim x_{j} \wedge x_{i} \neq x_{j}
$$

Logic

Many problems can be expressed in first-order (FO) logic.
\bigcirc independent set of size k :

$$
\exists x_{1} \ldots \exists x_{k} \bigwedge_{i, j} x_{i} \nsim x_{j} \wedge x_{i} \neq x_{j}
$$

dominating set of size k :

$$
\exists x_{1} \ldots \exists x_{k} \forall y \bigvee_{i} y \sim x_{i} \vee y=x_{i}
$$

Logic

Many problems can be expressed in first-order (FO) logic.
\bigcirc independent set of size k :

$$
\exists x_{1} \ldots \exists x_{k} \bigwedge_{i, j} x_{i} \nsucc x_{j} \wedge x_{i} \neq x_{j}
$$

dominating set of size k :

$$
\exists x_{1} \ldots \exists x_{k} \forall y \bigvee_{i} y \sim x_{i} \vee y=x_{i}
$$

some database queries

Logic

Many problems can be expressed in first-order (FO) logic.
\bigcirc independent set of size k :

$$
\exists x_{1} \ldots \exists x_{k} \bigwedge_{i, j} x_{i} \nsim x_{j} \wedge x_{i} \neq x_{j}
$$

dominating set of size k :

$$
\exists x_{1} \ldots \exists x_{k} \forall y \bigvee_{i} y \sim x_{i} \vee y=x_{i}
$$

o some database queries

Best algorithms on general graphs: $n^{O(k)}$

Model-Checking

k-independent set
k-dominating set \longrightarrow logic \longrightarrow model-checking

Model-Checking

$\mathrm{MC}(\mathcal{G}, \mathrm{L})$
Input: \quad A graph $G \in \mathcal{G}$ and a sentence $\varphi \in \mathrm{L}$
Parameter: $|\varphi|$
Problem: Is φ true in G ?
Goal: linear FPT run time $f(|\varphi|) n$

Model-Checking

$\mathrm{MC}(\mathcal{G}, \mathrm{L})$
Input: \quad A graph $G \in \mathcal{G}$ and a sentence $\varphi \in \mathrm{L}$
Parameter: $|\varphi|$
Problem: Is φ true in G ?
Goal: linear FPT run time $f(|\varphi|) n$

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $M C(\mathcal{G}, \mathrm{FO}) \in \mathrm{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $M C(\mathcal{G}, \mathrm{FO}) \in \mathrm{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $\mathrm{MC}(\mathcal{G}, \mathrm{FO}) \in \mathrm{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $\operatorname{MC}(\mathcal{G}, F O) \in \mathrm{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $\operatorname{MC}(\mathcal{G}, F O) \in \mathrm{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $\mathrm{MC}(\mathcal{G}, \mathrm{FO}) \in \mathrm{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]

Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\mathrm{MC}(\mathcal{G}, \mathrm{MSO}) \in \mathrm{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $\operatorname{MC}(\mathcal{G}, F O) \in \mathrm{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]

Approximate Evaluation of First-Order Counting Queries

Counting Problems

Partial Dominating Set

Input: \quad A graph G and $k, m \in \mathbf{N}$
Parameter: k
Problem: Are there k vertices dominating m vertices?

Counting Problems

Partial Dominating Set
 Input: \quad A graph G and $k, m \in \mathbf{N}$
 Parameter: k
 Problem: \quad Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires $\exists y_{1} \ldots \exists y_{m}$).

Counting Problems

Partial Dominating Set

Input: \quad A graph G and $k, m \in \mathbf{N}$

Parameter: k
Problem: \quad Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires $\exists y_{1} \ldots \exists y_{m}$).
Can be solved on H-minor free graphs in time $(g(H) k)^{k} n^{O(1)}$.
[Amini, Fomin, Saurabh, 2008]
Can be solved on apex-minor-free graphs in time $2^{\sqrt{k}} n^{O(1)}$.
[Fomin, Lokshtanov, Raman, Saurabh, 2011]
Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]

Counting Problems

Partial Dominating Set

Input: \quad A graph G and $k, m \in \mathbf{N}$
Parameter: k
Problem: Are there k vertices dominating m vertices?
$\mathrm{FO}(\{>0\})=\mathrm{FO}+$ "there are at least/most $m \in \mathbf{N}$ elements"

Counting Problems

Partial Dominating Set

Input: \quad A graph G and $k, m \in \mathbf{N}$
Parameter: k
Problem: Are there k vertices dominating m vertices?
$\mathrm{FO}(\{>0\})=\mathrm{FO}+$ "there are at least/most $m \in \mathbf{N}$ elements"

$$
\exists x_{1} \ldots \exists x_{k} \# y\left(\bigvee_{i} y \sim x_{i} \wedge y=x_{i}\right) \geq m
$$

Counting Problems

Partial Dominating Set

Input: \quad A graph G and $k, m \in \mathbf{N}$
Parameter: k
Problem: Are there k vertices dominating m vertices?
$\mathrm{FO}(\{>0\})=\mathrm{FO}+$ "there are at least/most $m \in \mathbf{N}$ elements"

$$
\exists x_{1} \ldots \exists x_{k} \# y\left(\bigvee_{i} y \sim x_{i} \wedge y=x_{i}\right) \geq m
$$

Length of formula depends only on k (and not on m)

Counting Logic

Definition of FO $(\{>0\})$

built recursively using

- the rules of FO
- \#y $\varphi \geq m$ for every $m \in \mathbf{N}$ and $\operatorname{FO}(\{>0\})$ formula φ

Example 1: Partial Dominating Set

$$
\exists x_{1} \ldots \exists x_{k} \# y\left(\bigvee_{i} y \sim x_{i} \wedge y=x_{i}\right) \geq m
$$

Example 2: h-Index
\#mypaper (\#otherpaper cite(otherpaper, mypaper) $\geq h) \geq h$

Good News

If \mathcal{G} has bounded degree then $\mathrm{MC}(\mathcal{G}, \mathrm{FOC}) \in \mathrm{FPT}$.
[Kuske, Schweikardt 2017]

Bad News

If \mathcal{G} has bounded degree then $\operatorname{MC}(\mathcal{G}, F O C) \in \operatorname{FPT}$.
[Kuske, Schweikardt 2017]
$\mathrm{MC}(\mathcal{G}, \mathrm{FO}(\{>0\}))$ is $\mathrm{AW}[*]$-hard on trees.
similar to [Grohe, Schweikardt 2018]

Bad News

contains k -clique

satisfies $\mathrm{FO}(\{>0\})$ formula

Bad News

contains k -clique
\Leftrightarrow

satisfies $\mathrm{FO}(\{>0\})$ formula

Bad News

contains k -clique

\Leftrightarrow

4 x

satisfies $\mathrm{FO}(\{>0\})$ formula

Bad News

contains k -clique

\Leftrightarrow

4 x

satisfies $\mathrm{FO}(\{>0\})$ formula

Stability

Are there k vertices dominating at least $m=5000$ vertices?

Stability

Are there k vertices dominating at least $m=4983$ vertices?

Stability

Are there k vertices dominating at least $m=5017$ vertices?

Stability

Are there k vertices dominating at least $m=5017$ vertices?

A formula φ is ε-stable on a graph G if scaling the counting literals by $(1 \pm \varepsilon)$ does not change whether φ is true in G.

Approximate Model-Checking

Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon>0$.

Approximate Model-Checking

Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon>0$. There exists an algorithm which takes $G \in \mathcal{G}, \varphi \in \mathrm{FO}(\{>0\})$, runs in time $f(|\varphi|) n$ and returns ${ }^{\circ}$, or ${ }^{\circ}$.

Approximate Model-Checking

Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon>0$. There exists an algorithm which takes $G \in \mathcal{G}, \varphi \in \mathrm{FO}(\{>0\})$, runs in time $f(|\varphi|) n$ and returns ${ }^{\circ}$, or ${ }^{\circ}$.
\bigcirc If ${ }^{\circ}$ then φ is true on G.

Approximate Model-Checking

Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon>0$.
There exists an algorithm which takes $G \in \mathcal{G}, \varphi \in \mathrm{FO}(\{>0\})$, runs in time $f(|\varphi|) n$ and returns \because, \because, or \because.
\bigcirc If then φ is true on G.
If 6 then φ is false on G.

Approximate Model-Checking

Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon>0$.
There exists an algorithm which takes $G \in \mathcal{G}, \varphi \in \mathrm{FO}(\{>0\})$, runs in time $f(|\varphi|) n$ and returns \because, \because, or \because.
\bigcirc If then φ is true on G.
If 6 then φ is false on G.
If O then φ is ε-unstable on G.

Approximate Model-Checking

Partial Dominating Set: $\exists x_{1} \ldots \exists x_{k} \# y\left(\bigvee_{i} y \sim x_{i} \wedge y=x_{i}\right) \geq m$

Approximate Model-Checking

Partial Dominating Set: $\exists x_{1} \ldots \exists x_{k} \# y\left(\bigvee_{i} y \sim x_{i} \wedge y=x_{i}\right) \geq m$

There exists a set dominating
$\geq(1+\varepsilon) m$ vertices.

Approximate Model-Checking

Partial Dominating Set: $\exists x_{1} \ldots \exists x_{k} \# y\left(\bigvee_{i} y \sim x_{i} \wedge y=x_{i}\right) \geq m$

There exists a set dominating
$\geq(1+\varepsilon) m$ vertices.

All sets dominate $<(1-\varepsilon) m$ vertices.

Approximate Model-Checking

Partial Dominating Set: $\exists x_{1} \ldots \exists x_{k} \# y\left(\bigvee_{i} y \sim x_{i} \wedge y=x_{i}\right) \geq m$

There exists a set dominating
$\geq(1+\varepsilon) m$ vertices.

All sets dominate $<(1+\varepsilon) m$ vertices and there exists a set dominating
$\geq(1-\varepsilon) m$ vertices.

All sets dominate $<(1-\varepsilon) m$ vertices.

How about extensions of $\mathrm{FO}(\{>0\})$?

FO($\{>0\}$) allows comparing $\# y$ and $m \in \mathbf{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

How about extensions of $\mathrm{FO}(\{>0\})$?

FO($\{>0\}$) allows comparing $\# y$ and $m \in \mathbf{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- comparing $\# y$ and $\# z$

$$
\text { (e.g., } \# y \varphi>\# z \psi \text {) }
$$

How about extensions of $\mathrm{FO}(\{>0\})$?

FO($\{>0\}$) allows comparing $\# y$ and $m \in \mathbf{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- comparing $\# y$ and $\# z$
- counting tuples \#yz

$$
\begin{array}{r}
\text { (e.g., } \# y \varphi>\# z \psi \text {) } \\
(\text { (e.g., } \# y z \varphi>m \text {) }
\end{array}
$$

How about extensions of $\mathrm{FO}(\{>0\})$?

FO($\{>0\}$) allows comparing $\# y$ and $m \in \mathbf{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- comparing \#y and \#z
- counting tuples \#yz

O multiplying of counting terms

$$
\begin{array}{r}
\text { (e.g., } \# y \varphi>\# z \psi \text {) } \\
\text { (e.g., } \# y z \varphi>m \text {) } \\
\text { (e.g., } \# y \varphi \cdot \# z \psi>m \text {) }
\end{array}
$$

How about extensions of $\mathrm{FO}(\{>0\})$?

$\mathrm{FO}(\{>0\})$ allows comparing $\# y$ and $m \in \mathbf{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- comparing $\# y$ and $\# z$
- counting tuples \#yz
multiplying of counting terms
subtraction of counting terms
(e.g., $\# y \varphi>\# z \psi$)
(e.g., $\# y z \varphi>m$)
(e.g., $\# y \varphi \cdot \# z \psi>m$)
(e.g., $\# y \varphi-\# z \psi>m$)

Summary

$\mathrm{FO}(\{>0\})$ is
hard to solve exactly on trees,

Summary

$\mathrm{FO}(\{>0\})$ is

- hard to solve exactly on trees,
possible to approximate on bounded expansion.

Summary

$\mathrm{FO}(\{>0\})$ is

- hard to solve exactly on trees,
- possible to approximate on bounded expansion.

Slight extensions of $\mathrm{FO}(\{>0\})$ are

- hard to approximate on trees.

Summary

$\mathrm{FO}(\{>0\})$ is

- hard to solve exactly on trees,
possible to approximate on bounded expansion.

Slight extensions of $\mathrm{FO}(\{>0\})$ are

- hard to approximate on trees.
$\Rightarrow \mathrm{FO}(\{>0\})$ seems like "the right logic" for approximation on sparse graphs

Big Question

Can we generalize our results to nowhere dense graph classes?

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}\left(m_{2} \leq \# x_{2}\right.
$$

))

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}\left(m_{2} \leq \# x_{2}\left(m_{3} \leq \# x_{3} \quad\right)\right)
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}(m_{2} \leq \# x_{2}(m_{3} \leq \# x_{3} \overbrace{\varphi\left(x_{1} x_{2} x_{3}\right)}^{\text {quantifer-free FO }}))
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}(m_{2} \leq \# x_{2}(\underbrace{m_{3} \leq \# x_{3} \overbrace{\varphi\left(x_{1} x_{2} x_{3}\right)}^{\text {quantifer-free FO }}}_{\text {replace with quantifier-free FO }}))
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}(m_{2} \leq \# x_{2} \overbrace{\varphi^{\prime}\left(x_{1} x_{2}\right)}^{\text {quantifier-free FO }})
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}(\underbrace{m_{2} \leq \# x_{2} \overbrace{\varphi^{\prime}\left(x_{1} x_{2}\right)}^{\text {quantifier-free FO }}}_{\text {replace with quantifier-free FO }})
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1} \overbrace{\varphi^{\prime \prime}\left(x_{1}\right)}^{\text {quantifier-free FO }}
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.
quantifier-free FO
$\overbrace{\varphi^{\prime \prime \prime}}^{\prime}$

Proof Sketch - Domination

$\underbrace{\# x_{3}\left(x_{3} \sim x_{1} \vee x_{3} \sim x_{2}\right) \geq m}_{\text {replace with quantifier-free FO }}$

Proof Sketch - Small Intersection

Proof Sketch - Small Intersection

$$
\bigvee_{i=0}^{1 / \varepsilon} R_{\geq \varepsilon m i}\left(x_{1}\right) \wedge R_{\geq m-\varepsilon m i}\left(x_{2}\right)
$$

Proof Sketch - Small Intersection

$$
\bigvee_{i=0}^{1 / \varepsilon} R_{\geq \varepsilon m i}\left(x_{1}\right) \wedge R_{\geq m-\varepsilon m i}\left(x_{2}\right)
$$

Proof Sketch - Small Intersection

$$
\bigvee_{i=0}^{1 / \varepsilon} R_{\geq \varepsilon m i}\left(x_{1}\right) \wedge R_{\geq m-\varepsilon m i}\left(x_{2}\right)
$$

Proof Sketch - Small Intersection

$$
\bigvee_{i=0}^{1 / \varepsilon} R_{\geq \varepsilon m i}\left(x_{1}\right) \wedge R_{\geq m-\varepsilon m i}\left(x_{2}\right)
$$

Proof Sketch - Small Intersection

$$
\bigvee_{i=0}^{1 / \varepsilon} R_{\geq \varepsilon m i}\left(x_{1}\right) \wedge R_{\geq m-\varepsilon m i}\left(x_{2}\right)
$$

Proof Sketch - Small Intersection

$$
\bigvee_{i=0}^{1 / \varepsilon} R_{\geq \varepsilon m i}\left(x_{1}\right) \wedge R_{\geq m-\varepsilon m i}\left(x_{2}\right)
$$

Proof Sketch - Small Intersection

$$
\bigvee_{i=0}^{1 / \varepsilon} R_{\geq \varepsilon m i}\left(x_{1}\right) \wedge R_{\geq m-\varepsilon m i}\left(x_{2}\right)
$$

Proof Sketch - Large Intersection

We assume (for simplicity) x_{1} has only one x_{2} with a large intersection.

Proof Sketch - Large Intersection

We assume (for simplicity) x_{1} has only one x_{2} with a large intersection.

We call it $f\left(x_{1}\right)$.

Proof Sketch - Large Intersection

$$
\begin{gathered}
Q_{f}(x) \text { true } \\
\text { iff }|N(x) \cup N(f(x))| \geq m
\end{gathered}
$$

Proof Sketch - Large Intersection

Final Formula:

$$
\left(x_{2}=f\left(x_{1}\right) \wedge Q_{f}\left(x_{1}\right)\right)
$$

Proof Sketch - Large Intersection

Final Formula:

$$
\begin{gathered}
\left(x_{2}=f\left(x_{1}\right) \wedge Q_{f}\left(x_{1}\right)\right) \vee \\
\left(x_{2} \neq f\left(x_{1}\right) \wedge \varphi_{\text {small }}\left(x_{1}, x_{2}\right)\right)
\end{gathered}
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}(m_{2} \leq \# x_{2}(\underbrace{m_{3} \leq \# x_{3} \overbrace{\varphi\left(x_{1} x_{2} x_{3}\right)}^{\text {quantifer-free FO }}}_{\text {replace with quantifier-free FO }}))
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}(m_{2} \leq \# x_{2} \overbrace{\varphi^{\prime}\left(x_{1} x_{2}\right)}^{\text {quantifier-free FO }})
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1}(\underbrace{m_{2} \leq \# x_{2} \overbrace{\varphi^{\prime}\left(x_{1} x_{2}\right)}^{\text {quantifier-free FO }}}_{\text {replace with quantifier-free FO }})
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

$$
m_{1} \leq \# x_{1} \overbrace{\varphi^{\prime \prime}\left(x_{1}\right)}^{\text {quantifier-free FO }}
$$

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.

Proof Sketch - Quantifier Elimination

We want to gradually simplify this formula.
quantifier-free FO
$\overbrace{\varphi^{\prime \prime \prime}}^{\prime}$

First-Order Model-Checking in Random Graphs and Complex NETWORKS

Motivation

real world

networks

Motivation

Motivation

\(\left.$$
\begin{array}{c}\begin{array}{c}\text { friendship networks } \\
\text { coauthor networks } \\
\text { internet backbone } \\
\text { world wide web } \\
\text { power-grid } \\
\text { biological processes }\end{array}
$$

··· .\end{array}\right\}\)| real world |
| :---: |
| networks |$\xrightarrow{$| network |
| :---: |
| science |$} \xrightarrow{\text { random }}$| graph |
| :---: |
| models |

Motivation

Motivation

Motivation

The Real World

The Real World

Some central properties:

The Real World

Some central properties:

- Skewed degree distribution

Fraction of vertices with degree k proportional to $k^{-\alpha}$ with $2 \leq \alpha \leq 3$?

The Real World

Some central properties:

- Skewed degree distribution

Fraction of vertices with degree k proportional to $k^{-\alpha}$ with $2 \leq \alpha \leq 3$?

Clustered
If we have a common friend we are likely friends as well

The Real World

Some central properties:
Skewed degree distribution
Fraction of vertices with degree k proportional to $k^{-\alpha}$ with $2 \leq \alpha \leq 3$?

Clustered
If we have a common friend we are likely friends as well

Small-world property
Everyone is close to everyone

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

expected degree $\approx \sqrt{\frac{n}{i}}$

Previous Results

[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]

Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):

Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):
fraction of vertices with degree k is $O\left(k^{-3}\right)$ real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$

Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):
fraction of vertices with degree k is $O\left(k^{-3}\right)$ real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$
\bigcirc unclustered
real networks: typically clustered

Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):
fraction of vertices with degree k is $O\left(k^{-3}\right)$
real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$
\bigcirc unclustered
real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|) n^{1+\varepsilon}$ for every $\varepsilon>0$.

Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):
fraction of vertices with degree k is $O\left(k^{-3}\right)$ real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$
\bigcirc unclustered
real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|) n^{1+\varepsilon}$ for every $\varepsilon>0$.

Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):
fraction of vertices with degree k is $O\left(k^{-3}\right)$ real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$
\bigcirc unclustered
real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|) n^{1+\varepsilon}$ for every $\varepsilon>0$.

Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):
fraction of vertices with degree k is $O\left(k^{-3}\right)$ real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$
\bigcirc unclustered
real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|) n^{1+\varepsilon}$ for every $\varepsilon>0$.

Example: Chung-Lu Model

A more direct way to get a desirable degree distribution.

α-power-law-boundedness

A random graph model with vertices $1, \ldots, n$ is
3-power-law-bounded if the probability that some subset of edges

$$
\begin{gathered}
E \subseteq\binom{1, \ldots, n}{2} \text { is present is at most } \\
\log (n)^{O\left(|E|^{2}\right)} \prod_{i j \in E} \frac{1}{\sqrt{i \cdot j}} .
\end{gathered}
$$

α-power-law-boundedness

A random graph model with vertices $1, \ldots, n$ is
3-power-law-bounded if the probability that some subset of edges

$$
\begin{aligned}
& E \subseteq\binom{1, \ldots, n}{2} \text { is present is at most } \\
& \qquad \log (n)^{O\left(|E|^{2}\right)} \prod_{i j \in E} \frac{1}{\sqrt{i \cdot j}}
\end{aligned}
$$

- Preferential attachment model
- Chung-Lu model
- Erdös-Rényi model
- Configuration model
- Hyperbolic random graph model
- random intersection model
- Watts-Strogatz model
- Kleinberg model

Asymptotic Structure of 3-power-law-bounded models

Algorithm

Input: graph sampled from 3-power-law-bounded model

Algorithm

Algorithm

Algorithm

Gaifman's theorem: consider only neighborhoods

Algorithm

approximately find core

Algorithm

prune trees

Algorithm

prune protrusions

Algorithm

use brute force on core

Algorithm

repeat for every neighborhood

Runtime Analysis

Runtime: $n^{O(1)}$.

Runtime Analysis

Runtime Analysis

Runtime: $n^{O(1)} \cdot \sum_{x=1}^{n} \operatorname{Pr}[\rightarrow=x] \cdot x^{|\varphi|}$

Runtime Analysis

To get a run time of $f(|\varphi|) n^{O(1)}$ we bound

Summary

A random graph model is 3-power-law-bounded if (roughly speaking):
fraction of vertices with degree k is $O\left(k^{-3}\right)$ real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$
\bigcirc unclustered
real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|) n^{1+\varepsilon}$ for every $\varepsilon>0$.

Let $\alpha>2$. A random graph model \mathcal{G} is α-power-law-bounded if for every $n \in \mathbf{N}$ there exists an ordering v_{1}, \ldots, v_{n} of $V\left(\mathcal{G}_{n}\right)$ such that for all $E \subseteq\binom{\left\{v_{1}, \ldots, v_{n}\right\}}{2}$

$$
\operatorname{Pr}\left[E \subseteq E\left(\mathcal{G}_{n}\right)\right] \leq
$$

$\prod_{v_{i} v_{j} \in E} \frac{(n / i)^{1 /(\alpha-1)}(n / j)^{1 /(\alpha-1)}}{n} \cdot \begin{cases}2^{O\left(|E|^{2}\right)} & \text { if } \alpha>3 \\ \log (n)^{O\left(|E|^{2}\right)} & \text { if } \alpha=3 \\ O\left(n^{\varepsilon}\right)^{|E|^{2}} \text { for every } \varepsilon>0 & \text { if } \alpha<3 .\end{cases}$

A graph H is an r-shallow topological minor of a graph G if a graph obtained from H by subdividing every edge up to $2 r$ times is isomorphic to a subgraph of G. The set of all r-shallow topological minors of a graph G is denoted by $G \nabla r$.

A graph class \mathcal{C} has bounded expansion if there exists a function $f: \mathbf{N} \rightarrow \mathbf{N}$ such that for all $r \in \mathbf{N}$ and all $G \in \mathcal{C}$

$$
\max _{H \in G \nabla r} \frac{\|H\|}{|H|} \leq f(r)
$$

