TWO NEW PERSPECTIVES FOR ALGORITHMIC META-THEOREMS

Jan Dreier

November 16 2020
Algorithmic Meta-Theorems

Everything is a graph.
Algorithmic Meta-Theorems

Everything is a graph.
“All problems expressible in a certain logic can be solved efficiently on certain graphs”
Algorithmic Meta-Theorems

“All problems expressible in a certain logic can be solved efficiently on certain graphs”

MSO on treewidth
“All problems expressible in a certain logic can be solved efficiently on certain graphs”
“All problems expressible in a certain logic can be solved efficiently on certain graphs”
“All problems expressible in a certain logic can be solved efficiently on certain graphs”

- MSO on treewidth
- FO on sparse graphs
- FO(>{0}) for approximation on sparse graphs
- FO on unclustered complex networks
Many problems can be expressed in first-order (FO) logic.
Many problems can be expressed in first-order (FO) logic.

- independent set of size k:

$$
\exists x_1 \ldots \exists x_k \bigwedge_{i,j} x_i \not\sim x_j \land x_i \neq x_j
$$

- dominating set of size k:
Many problems can be expressed in first-order (FO) logic.

- independent set of size k:

 $$
 \exists x_1 \ldots \exists x_k \wedge_{i,j} x_i \not\sim x_j \wedge x_i \neq x_j
 $$

- dominating set of size k:

 $$
 \exists x_1 \ldots \exists x_k \forall y \bigvee_i y \sim x_i \lor y = x_i
 $$
Many problems can be expressed in first-order (FO) logic.

- independent set of size k:
 \[\exists x_1 \ldots \exists x_k \bigwedge_{i,j} x_i \not \sim x_j \land x_i \neq x_j \]

- dominating set of size k:
 \[\exists x_1 \ldots \exists x_k \forall y \bigvee_i y \sim x_i \lor y = x_i \]

- some database queries
Many problems can be expressed in first-order (FO) logic.

- independent set of size k:
 \[\exists x_1 \ldots \exists x_k \bigwedge_{i,j} x_i \not\sim x_j \land x_i \neq x_j \]

- dominating set of size k:
 \[\exists x_1 \ldots \exists x_k \forall y \bigvee_i y \sim x_i \lor y = x_i \]

- some database queries

Best algorithms on general graphs: $n^{O(k)}$
$\phi = \exists x_1 \ldots \exists x_k$ (length depends on k)

k-independent set

k-dominating set

...
Model-Checking

κ-independent set

κ-dominating set

logic

model-checking

...
Model-Checking

\[\phi = \exists x_1 \ldots \exists x_k [...] \]

length depends on \(k \)

\[f(|\phi|)n \]

Algorithm

MC(\(G, L \))

Input: A graph \(G \in G \) and a sentence \(\phi \in L \)

Parameter: \(|\phi|\)

Problem: Is \(\phi \) true in \(G \)?

Goal: linear FPT run time \(f(|\phi|)n \)
Sparse Graph Classes

If G has bounded treewidth then $\text{MC}(G, \text{MSO}) \in \text{FPT}$.

[Courcelle 1990]
If \mathcal{G} has bounded treewidth then $MC(\mathcal{G}, \text{MSO}) \in \text{FPT}$.

[Courcelle 1990]
If \mathcal{G} has bounded treewidth then $\text{MC}(\mathcal{G}, \text{MSO}) \in \text{FPT}$.

[Courcelle 1990]
If \mathcal{G} has bounded treewidth then $MC(\mathcal{G}, \text{MSO}) \in \text{FPT}$.

[Courcelle 1990]

If \mathcal{G} is nowhere dense then $MC(\mathcal{G}, \text{FO}) \in \text{FPT}$.

[Grohe, Kreutzer, Sieberz 2011]
If \(G \) has bounded treewidth then \(MC(G, MSO) \in FPT \).

[Courcelle 1990]

If \(G \) is nowhere dense then \(MC(G, FO) \in FPT \).

[Grohe, Kreutzer, Sieberz 2011]
If \mathcal{G} has bounded treewidth then $MC(\mathcal{G}, \text{MSO}) \in \text{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $MC(\mathcal{G}, \text{FO}) \in \text{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]
If \mathcal{G} has bounded treewidth then $\text{MC}(\mathcal{G}, \text{MSO}) \in \text{FPT}$.

[Courcelle 1990]

If \mathcal{G} is nowhere dense then $\text{MC}(\mathcal{G}, \text{FO}) \in \text{FPT}$.

[Grohe, Kreutzer, Sieberz 2011]
Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $MC(\mathcal{G}, \text{MSO}) \in \text{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $MC(\mathcal{G}, \text{FO}) \in \text{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]
Sparse Graph Classes

If \mathcal{G} has bounded treewidth then $\text{MC}(\mathcal{G}, \text{MSO}) \in \text{FPT}$.
[Courcelle 1990]

If \mathcal{G} is nowhere dense then $\text{MC}(\mathcal{G}, \text{FO}) \in \text{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]
If G has bounded treewidth then $\text{MC}(G, \text{MSO}) \in \text{FPT}$.
[Courcelle 1990]

If G is nowhere dense then $\text{MC}(G, \text{FO}) \in \text{FPT}$.
[Grohe, Kreutzer, Sieberz 2011]
Approximate Evaluation of First-Order Counting Queries
Partial Dominating Set

Input: A graph G and $k, m \in \mathbb{N}$

Parameter: k

Problem: Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires $\exists y_1 \ldots \exists y_m$).

Can be solved on H-minor free graphs in time $(g(H)k)^{k n^{O(1)}}$.

[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time $2^{\sqrt{k}n^{O(1)}}$.

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.

[Golovach, Villanger 2008]
Partial Dominating Set

Input: A graph G and $k, m \in \mathbb{N}$

Parameter: k

Problem: Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires $\exists y_1 \ldots \exists y_m$).
Partial Dominating Set

Input: A graph G and $k, m \in \mathbb{N}$

Parameter: k

Problem: Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires $\exists y_1 \ldots \exists y_m$).

Can be solved on H-minor free graphs in time $(g(H)k)^k n^{O(1)}$.

[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time $2\sqrt{k} n^{O(1)}$.

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.

[Golovach, Villanger 2008]
Partial Dominating Set

Input: A graph G and $k, m \in \mathbb{N}$

Parameter: k

Problem: Are there k vertices dominating m vertices?

\[
\exists x_1 \ldots \exists x_k \# y (\bigvee_i y \sim x_i \land y = x_i) \geq m
\]

Length of formula depends only on k (and not on m)

\[\text{FO}\{>0\} = \text{FO} + \text{“there are at least/most } m \in \mathbb{N} \text{ elements”}\]
Partial Dominating Set

Input: A graph G and $k, m \in \mathbb{N}$

Parameter: k

Problem: Are there k vertices dominating m vertices?

$\text{FO}(\{>0\}) = \text{FO} + \text{“there are at least/most } m \in \mathbb{N} \text{ elements”}$

$$\exists x_1 \ldots \exists x_k \#y \left(\bigvee_i y \sim x_i \land y = x_i \right) \geq m$$
Partial Dominating Set

Input: A graph G and $k, m \in \mathbb{N}$

Parameter: k

Problem: Are there k vertices dominating m vertices?

$FO(\{>0\}) = FO + \text{“there are at least/most } m \in \mathbb{N} \text{ elements”}$

$$\exists x_1 \ldots \exists x_k \#y (\bigvee_i y \sim x_i \land y = x_i) \geq m$$

Length of formula depends only on k (and not on m)
Counting Logic

Definition of $\text{FO}(\{>0\})$:

Built recursively using:
- The rules of FO
- $\#y \varphi \geq m$ for every $m \in \mathbb{N}$ and $\text{FO}(\{>0\})$ formula φ

Example 1: PARTIAL DOMINATING SET

$$\exists x_1 \ldots \exists x_k \#y \left(\bigvee_{i} y \sim x_i \land y = x_i \right) \geq m$$

Example 2: h-Index

$$\#\text{mypaper} \left(\#\text{otherpaper cite(otherpaper, mypaper)} \geq h \right) \geq h$$
If \mathcal{G} has bounded degree then $\text{MC}(\mathcal{G}, \text{FOC}) \in \text{FPT}$.

[Kuske, Schweikardt 2017]
If \mathcal{G} has bounded degree then $\text{MC}(\mathcal{G}, \text{FOC}) \in \text{FPT}$.

[Kuske, Schweikardt 2017]

$\text{MC}(\mathcal{G}, \text{FO}(\{> 0\}))$ is $\text{AW}[\ast]$-hard on trees.

similar to [Grohe, Schweikardt 2018]
Bad News

contains k-clique

\(\iff\)

satisfies FO(\(>0\)) formula
Bad News

contains k-clique

\iff
satisfies FO(\{>0\}) formula
Bad News

contains k-clique

satisfies FO(\{>0\}) formula
Bad News

contains k-clique

satisfies FO(\{>0\}) formula
Are there k vertices dominating at least $m = 5000$ vertices?
Are there \(k \) vertices dominating at least \(m = 4983 \) vertices?
Are there k vertices dominating at least $m = 5017$ vertices?
Are there \(k \) vertices dominating at least \(m = 5017 \) vertices?

A formula \(\varphi \) is \(\varepsilon \)-stable on a graph \(G \) if scaling the counting literals by \((1 \pm \varepsilon) \) does not change whether \(\varphi \) is true in \(G \).
Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$.
Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$. There exists an algorithm which takes $G \in \mathcal{G}$, $\varphi \in \text{FO}(\{>0\})$, runs in time $f(|\varphi|)n$ and returns 😊, 😐, or 😞.
Approximate Model-Checking

Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$. There exists an algorithm which takes $G \in \mathcal{G}$, $\varphi \in \text{FO}(\{>0\})$, runs in time $f(|\varphi|)n$ and returns ☻, ☹, or ☹.

- If ☻ then φ is true on G.

- If ☹ then φ is false on G.

- If ☹ then φ is ε-unstable on G.

Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$. There exists an algorithm which takes $G \in \mathcal{G}$, $\varphi \in \text{FO}(\{ > 0 \})$, runs in time $f(\|\varphi\|)n$ and returns \bigcirc, \bigcirc, or \bigcirc.

- If \bigcirc then φ is true on G.
- If \bigcirc then φ is false on G.
Theorem

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$. There exists an algorithm which takes $G \in \mathcal{G}$, $\varphi \in \text{FO}(\{>0\})$, runs in time $f(|\varphi|)n$ and returns $\begin{cases} \text{green}, & \text{if true} \\ \text{yellow}, & \text{if false} \\ \text{red}, & \text{if } \varepsilon \text{-unstable} \end{cases}$.

- If $\begin{cases} \text{green}, & \text{true} \\ \text{red}, & \text{false} \end{cases}$ then φ is true on G.
- If $\begin{cases} \text{yellow}, & \text{false} \end{cases}$ then φ is false on G.
- If $\begin{cases} \text{red}, & \text{true} \end{cases}$ then φ is ε-unstable on G.
PARTIAL DOMINATING SET: \(\exists x_1 \ldots \exists x_k \#y \left(\bigvee_i y \sim x_i \land y = x_i \right) \geq m \)
Partial Dominating Set: \(\exists x_1 \ldots \exists x_k \#y (\bigvee_i y \sim x_i \land y = x_i) \geq m \)

There exists a set dominating \(\geq (1 + \varepsilon)m \) vertices.
Partial Dominating Set: \(\exists x_1 \ldots \exists x_k \#y \left(\bigvee_i y \sim x_i \land y = x_i \right) \geq m\)

There exists a set dominating \(\geq (1 + \varepsilon)m\) vertices.

All sets dominate \(< (1 - \varepsilon)m\) vertices.
Partial Dominating Set: \(\exists x_1 \ldots \exists x_k \# y \left(\bigvee_i y \sim x_i \land y = x_i \right) \geq m \)

There exists a set dominating \(\geq (1 + \varepsilon)m \) vertices.

All sets dominate \(< (1 + \varepsilon)m \) vertices and there exists a set dominating \(\geq (1 - \varepsilon)m \) vertices.

All sets dominate \(< (1 - \varepsilon)m \) vertices.
How about extensions of $\text{FO}(\{>0\})$?

$\text{FO}(\{>0\})$ allows comparing $\#y$ and $m \in \mathbb{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- Comparing $\#y$ and $\#z$ (e.g., $\#y \phi > \#z \psi$)
- Counting tuples $\#yz$ (e.g., $\#yz \phi > m$)
- Multiplying of counting terms (e.g., $\#y \phi \cdot \#z \psi > m$)
- Subtraction of counting terms (e.g., $\#y \phi - \#z \psi > m$)
How about extensions of $\text{FO} \{> 0\}$?

$\text{FO} \{> 0\}$ allows comparing $\# y$ and $m \in \mathbb{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- comparing $\# y$ and $\# z$
 (e.g., $\# y \varphi > \# z \psi$)
How about extensions of $\text{FO}(\{\geq 0\})$?

$\text{FO}(\{\geq 0\})$ allows comparing $\#y$ and $m \in \mathbb{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- comparing $\#y$ and $\#z$
 (e.g., $\#y \varphi > \#z \psi$)
- counting tuples $\#yz$
 (e.g., $\#yz \varphi > m$)
How about extensions of FO($\{\geq 0\}$)?

FO($\{\geq 0\}$) allows comparing $\#y$ and $m \in \mathbb{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- comparing $\#y$ and $\#z$ (e.g., $\#y \varphi > \#z \psi$)
- counting tuples $\#yz$ (e.g., $\#yz \varphi > m$)
- multiplying of counting terms (e.g., $\#y \varphi \cdot \#z \psi > m$)
How about extensions of FO(\{ > 0 \})?

FO(\{ > 0 \}) allows comparing \#y and \(m \in \mathbb{N} \).

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- comparing \#y and \#z
 (e.g., \#y \varphi > \#z \psi)
- counting tuples \#yz
 (e.g., \#yz \varphi > m)
- multiplying of counting terms
 (e.g., \#y \varphi \cdot \#z \psi > m)
- subtraction of counting terms
 (e.g., \#y \varphi - \#z \psi > m)
Summary

$\text{FO}\{>0\}$ is

- hard to solve exactly on trees,
Summary

$\text{FO}(\{ > 0 \})$ is

- hard to solve exactly on trees,
- possible to approximate on bounded expansion.
Summary

$\text{FO}(\{>0\})$ is

- hard to solve exactly on trees,
- possible to approximate on bounded expansion.

Slight extensions of $\text{FO}(\{>0\})$ are

- hard to approximate on trees.
FO($\{ > 0 \}$) is

- hard to solve exactly on trees,
- possible to approximate on bounded expansion.

Slight extensions of FO($\{ > 0 \}$) are

- hard to approximate on trees.

⇒ FO($\{ > 0 \}$) seems like “the right logic” for approximation on sparse graphs
Can we generalize our results to nowhere dense graph classes?
Proof Sketch – Quantifier Elimination

We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \left(\right) \]
Proof Sketch – Quantifier Elimination

We want to gradually simplify this formula.

\[m_1 \leq \# x_1 \left(m_2 \leq \# x_2 \left(\quad \right) \right) \]
We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \left(m_3 \leq \#x_3 \right) \right) \]
Proof Sketch – Quantifier Elimination

We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \left(m_3 \leq \#x_3 \varphi(x_1x_2x_3) \right) \right) \]
We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \left(m_3 \leq \#x_3 \varphi(x_1x_2x_3) \right) \right) \]

replace with quantifier-free FO

quantifier-free FO
Proof Sketch – Quantifier Elimination

We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \quad \phi'(x_1 x_2) \right) \]
We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \left[\varphi'(x_1x_2) \right] \right) \]

replace with quantifier-free FO
We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \quad \phi''(x_1) \]
We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \quad \forall \varphi''(x_1) \quad \text{replace with quantifier-free FO} \]
We want to gradually simplify this formula.

quantifier-free FO

\varphi'\prime\prime\prime
Proof Sketch – Domination

\[\#x_3 \ (x_3 \sim x_1 \lor x_3 \sim x_2) \geq m \]

replace with quantifier-free FO

\[N(x_1) \cap N(x_2) \geq m \]
Proof Sketch – Small Intersection

\[\approx m \]

\[N(x_1) \cap N(x_2) \]

relatively small intersection
Proof Sketch – Small Intersection

\[N(x_1) \cap N(x_2) \approx m \]

\[N(x_1) + N(x_2) - \text{relatively small intersection} \approx m \]
Proof Sketch – Small Intersection

\[N(x_1) \quad \text{relatively small intersection} \quad N(x_2) \]

\[\geq m \]

\[N(x_1) \quad + \quad N(x_2) \]

\[\geq m \]
Proof Sketch – Small Intersection

\[N(x_1) \approx m \]

\[\approx m \]

\[R_{\geq i}(x) \text{ true} \]

iff \[|N(x)| \geq i \]
Proof Sketch – Small Intersection

\[x_1 \quad \text{relatively small intersection} \quad x_2 \]

\[N(x_1) \quad \nleftrightarrow \quad m \quad \nleftrightarrow \quad N(x_2) \]

\[x_1 \quad \nleftrightarrow \quad m \quad \nleftrightarrow \quad x_2 \]

\[N(x_1) \quad + \quad N(x_2) \quad \nleftrightarrow \quad m \]

\[\bigvee_{i \in \{0, 1, 2, \ldots, m\}} R_{\geq i}(x_1) \land R_{\geq m-i}(x_2) \quad \text{iff} \quad |N(x)| \geq i \]

\[R_{\geq i}(x) \text{ true} \]
Proof Sketch – Small Intersection

\[
\vee \quad R_{\geq i}(x_1) \land R_{\geq m-i}(x_2)
\]

\[i \in \{0 \varepsilon m, 1 \varepsilon m, 2 \varepsilon m, \ldots, m\}\]

\[\text{iff } |N(x)| \geq i\]
Proof Sketch – Small Intersection

\[\frac{1}{\varepsilon} \bigvee_{i=0}^{1/\varepsilon} R_{\geq \varepsilon m_i}(x_1) \land R_{\geq m - \varepsilon m_i}(x_2) \]
Proof Sketch – Small Intersection

\[\frac{1}{\varepsilon} \bigvee_{i=0}^{\frac{1}{\varepsilon}} R_{\geq \varepsilon m_i}(x_1) \land R_{\geq m - \varepsilon m_i}(x_2) \]
Proof Sketch – Small Intersection

\[
\frac{1}{\varepsilon} \bigvee_{i=0}^{R_{\geq \varepsilon mi}(x_1) \land R_{\geq m-\varepsilon mi}(x_2)}
\]

Diagram showing the intersection of regions with points \(x_1\) and \(x_2\).
Proof Sketch – Small Intersection

$$\frac{1}{\epsilon} \bigvee_{i=0}^{n} R_{\geq \epsilon m i}(x_1) \land R_{\geq m - \epsilon m i}(x_2)$$
Proof Sketch – Small Intersection

\[
\frac{1}{\varepsilon} \bigvee_{i=0}^{\varepsilon m} R_{\geq \varepsilon m i}(x_1) \land R_{\geq m - \varepsilon m i}(x_2)
\]
Proof Sketch – Small Intersection

\[\frac{1}{\varepsilon} \bigvee_{i=0}^{\frac{1}{\varepsilon} \varepsilon m} R_{\geq \varepsilon m_i}(x_1) \land R_{\geq m - \varepsilon m_i}(x_2) \]
Proof Sketch – Small Intersection

\[\frac{1}{\varepsilon} \bigvee_{i=0}^{1/\varepsilon} R_{\geq \varepsilon m}(x_1) \land R_{\geq m-\varepsilon m}(x_2) \]

Diagram:

-
 -
 -
 -
 -
 -
 -

- \(x_1 \)
- \(x_2 \)

unstable
Proof Sketch – Large Intersection

\[N(x_1) \cap N(x_2) \geq m \]

relatively large intersection
Proof Sketch – Large Intersection

\[N(x_1) \cap N(x_2) \supseteq m \]

many \(x_2 \) with large intersection

\(x_1 \)
Proof Sketch – Large Intersection

\[\forall \exists m \]

Many \(x_2 \) with large intersection \(\implies \) large 1-subdivided clique
Proof Sketch – Large Intersection

relatively large intersection

$N(x_1) \bigcap N(x_2) \cong m$

many x_2 with large intersection \implies large 1-subdivided clique \implies not bounded expansion

$\exists x_1$

$\exists x_2$
Proof Sketch – Large Intersection

\[N(x_1) \cap N(x_2) \supseteq m \]

We assume (for simplicity) \(x_1 \) has only one \(x_2 \) with a large intersection.

Many \(x_2 \) with large intersection \(\implies \) large 1-subdivided clique \(\implies \) not bounded expansion

\[x_1 \]

\[x_2 \]

\[x_2 \]

\[x_2 \]

\[x_2 \]
We assume (for simplicity) x_1 has only one x_2 with a large intersection. We call it $f(x_1)$.

\[\Rightarrow m \]

| many x_2 with large intersection | \Rightarrow large 1-subdivided clique | \Rightarrow not bounded expansion |
Proof Sketch – Large Intersection

\[\forall x_1: N(x_1) \cap N(f(x_1)) \geq m \]

\[Q_f(x) \text{ true if and only if } |N(x) \cup N(f(x))| \geq m \]
Proof Sketch – Large Intersection

\[x_1 \text{ relatively large intersection } f(x_1) \]

\[N(x_1) \cap N(f(x_1)) \ni m \]

\[Q_f(x) \text{ true iff } |N(x) \cup N(f(x))| \geq m \]

Final Formula:

\[(x_2 = f(x_1) \land Q_f(x_1)) \]
Proof Sketch – Large Intersection

\[x_1 \text{ relatively large intersection } f(x_1) \]

\[N(x_1) \cap N(f(x_1)) \supseteq m \]

\[Q_f(x) \text{ true iff } |N(x) \cup N(f(x))| \geq m \]

Final Formula:

\[
\left(x_2 = f(x_1) \land Q_f(x_1) \right) \lor \\
\left(x_2 \neq f(x_1) \land \varphi_{\text{small}}(x_1, x_2) \right)
\]
Proof Sketch – Quantifier Elimination

We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \left(m_3 \leq \#x_3 \varphi(x_1x_2x_3) \right) \right) \]

replace with quantifier-free FO

quantifier-free FO
We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \right) \left(\varphi'(x_1 x_2) \right) \]

quantifier-free FO
We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \theta'(x_1x_2) \right) \]

replace with quantifier-free FO

quantifier-free FO
Proof Sketch – Quantifier Elimination

We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \quad \phi''(x_1) \]

quantifier-free FO
We want to gradually simplify this formula.

\[m_1 \leq \#x_1 \phi''(x_1) \]

replace with quantifier-free FO
Proof Sketch – Quantifier Elimination

We want to gradually simplify this formula.

quantifier-free FO

ϕ′′′
First-Order Model-Checking in Random Graphs and Complex Networks
Motivation

real world networks
real world networks

friendship networks
coauthor networks
internet backbone
world wide web
power-grid
biological processes
...
Motivation

real world networks

network science

random graph models

friendship networks
coauthor networks
internet backbone
world wide web
power-grid
biological processes
...

...
Motivation

- friendship networks
- coauthor networks
- internet backbone
- world wide web
- power-grid
- biological processes

real world networks

random graph models

first-order model-checking
Motivation

real world networks

friendship networks
coauthor networks
internet backbone
world wide web
power-grid
biological processes
...

random graph models

network science

practical algorithms?

engineering

first-order model-checking

...
Motivation

friendship networks
cosauthor networks
internet backbone
world wide web
power-grid
biological processes
...

real world networks

network science

random graph models

first-order model-checking

profit?

engineering

practical algorithms?
The Real World

Some central properties:

- **Skewed degree distribution**: Fraction of vertices with degree \(k \) proportional to \(k^{-\alpha} \) with \(2 \leq \alpha \leq 3 \).

- **Clustered**: If we have a common friend, we are likely friends as well.

- **Small-world property**: Everyone is close to everyone.
The Real World

Some central properties:

- Skewed degree distribution
 - Fraction of vertices with degree k proportional to $k^{-\alpha}$ with $2 \leq \alpha \leq 3$

- Clustered
 - If we have a common friend we are likely friends as well

- Small-world property
 - Everyone is close to everyone
Some central properties:

- **Skewed degree distribution**
 Fraction of vertices with degree k proportional to $k^{-\alpha}$ with $2 \leq \alpha \leq 3$?
The Real World

Some central properties:

- **Skewed degree distribution**
 Fraction of vertices with degree k proportional to $k^{-\alpha}$ with $2 \leq \alpha \leq 3$?

- **Clustered**
 If we have a common friend we are likely friends as well.
Some central properties:

- **Skewed degree distribution**
 Fraction of vertices with degree k proportional to $k^{-\alpha}$ with $2 \leq \alpha \leq 3$?

- **Clustered**
 If we have a common friend we are likely friends as well

- **Small-world property**
 Everyone is close to everyone
Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Example: Preferential Attachment Model

Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.
Introduced by Barabási and Albert in 1999 to explain the structure of the world wide web.

\[
\text{expected degree } \approx \sqrt{\frac{n}{i}}
\]
Previous Results

Some are here → Somewhere Dense

Nowhere Dense

and some here → Bounded Expansion

(Top.) Minor Free

Planar Bounded Degree Bounded Treewidth

[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]
Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):

\[\frac{\text{fraction of vertices with degree } k}{k^3} \] is typically

- real networks: typically clustered
- optimal unclustered real networks:

Big Question: model-checking on clustered models?
Meta-Theorem

A random graph model is \textit{3-power-law-bounded} if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$
- \textbf{real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$}
Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$

 real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$

- unclustered

 real networks: typically clustered
Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$
 real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$

- unclustered
 real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.
Meta-Theorem

A random graph model is \textit{3-power-law-bounded} if (roughly speaking):

- fraction of vertices with degree \(k \) is \(\mathcal{O}(k^{-3}) \)

 real networks: typically \(k^{-\alpha} \) with \(2 \leq \alpha \leq 3 \)

- unclustered

 real networks: typically clustered

Theorem

\textit{Given a first-order sentence} \(\varphi \) \textit{and a graph} \(G \) \textit{sampled from a 3-power-law-bounded model, one can decide whether} \(\varphi \) \textit{is true on} \(G \) \textit{in expected time} \(f(|\varphi|)n^{1+\varepsilon} \) \textit{for every} \(\varepsilon > 0 \).
Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$

 real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$

- unclustered

 real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.
Meta-Theorem

A random graph model is 3-power-law-bounded if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$
 - real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$ (optimal)

- unclustered
 - real networks: typically clustered (???)

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

Big Question: model-checking on clustered models?
Example: Chung–Lu Model

A more direct way to get a desirable degree distribution.

\[
\frac{1}{\sqrt{i \cdot j}}
\]

\[
\text{expected degree} \approx \sqrt{\frac{n}{i}}
\]
A random graph model with vertices $1, \ldots, n$ is 3-power-law-bounded if the probability that some subset of edges $E \subseteq \binom{1, \ldots, n}{2}$ is present is at most

$$\log(n)^O(|E|^2) \prod_{i,j \in E} \frac{1}{\sqrt{i \cdot j}}.$$
A random graph model with vertices 1, \ldots, n is \textit{3-power-law-bounded} if the probability that some subset of edges $E \subseteq \binom{1, \ldots, n}{2}$ is present is at most

$$\log(n)^O(|E|^2) \prod_{i,j \in E} \frac{1}{\sqrt{i \cdot j}}.$$
Asymptotic Structure of 3-power-law-bounded models
Asymptotic Structure of 3-power-law-bounded models

radius: r
Asymptotic Structure of 3-power-law-bounded models
Asymptotic Structure of 3-power-law-bounded models
Asymptotic Structure of 3-power-law-bounded models

radius: r
Input: graph sampled from 3-power-law-bounded model
Algorithm
Gaifman’s theorem: consider only neighborhoods
Gaifman’s theorem: consider only neighborhoods
approximately find core
Algorithm

prune trees
prune protrusions
Algorithm

use brute force on core
repeat for every neighborhood
Runtime Analysis

Runtime: $n^{O(1)}$.
Runtime Analysis

Runtime: \(n^{O(1)} \cdot \sum_{x=1}^{n} \Pr[x = x] \).
Runtime Analysis

Runtime: \(n^{O(1)} \cdot \sum_{x=1}^{n} \Pr\left[\, \right] \cdot x |\varphi| \)
Runtime Analysis

Runtime: \(n^{O(1)} \cdot \sum_{x=1}^{n} \Pr[x \geq x] \cdot x \cdot |\varphi| \)

To get a run time of \(f(|\varphi|)n^{O(1)} \) we bound

\(\Pr[x \geq x] \) for every \(x \).
A random graph model is 3-power-law-bounded if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$
 - real networks: typically $k^{-\alpha}$ with $2 \leq \alpha \leq 3$

- unclustered
 - real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

Big Question: model-checking on clustered models?
Let $\alpha > 2$. A random graph model G is α-power-law-bounded if for every $n \in \mathbb{N}$ there exists an ordering v_1, \ldots, v_n of $V(G_n)$ such that for all $E \subseteq \binom{\{v_1, \ldots, v_n\}}{2}$

$$
\Pr[E \subseteq E(G_n)] \leq \prod_{v_i v_j \in E} \frac{(n/i)^{1/(\alpha-1)}(n/j)^{1/(\alpha-1)}}{n} \cdot \begin{cases}
2^{O(|E|^2)} & \text{if } \alpha > 3 \\
\log(n)^{O(|E|^2)} & \text{if } \alpha = 3 \\
O(n^\epsilon |E|^2) & \text{for every } \epsilon > 0 \text{ if } \alpha < 3.
\end{cases}
$$
A graph H is an r-shallow topological minor of a graph G if a graph obtained from H by subdividing every edge up to $2r$ times is isomorphic to a subgraph of G. The set of all r-shallow topological minors of a graph G is denoted by $G \triangledown r$.

A graph class \mathcal{C} has bounded expansion if there exists a function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for all $r \in \mathbb{N}$ and all $G \in \mathcal{C}$

$$\max_{H \in G \triangledown r} \frac{||H||}{|H|} \leq f(r).$$