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Many problems can be expressed in first-order (FO) logic.

O independent set of size k:
dzq ... dzy, /\az’i b \NTp #F T
Y]
O dominating set of size k:
dxq ... dap Yy \/ywwi\/y:xi

)

O some database queries

Best algorithms on general graphs: n©*)
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Model-Checking

k-independent set

T

k-dominatingset ———  logic = ——— model-checking

@ =3xy...Jzg...] f(ehn
length depends on & algorithm
MC(G, L)
Input: A graph G € G and asentence ¢ € L

Parameter: ||
Problem: Is p truein G?

Goal: linear FPT run time f(|¢|)n 4
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APPROXIMATE EVALUATION OF
FIRST-ORDER COUNTING QUERIES
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Counting Problems

PARTIAL DOMINATING SET

Input: Agraph Gand k,m € N

Parameter: k

Problem:  Are there k vertices dominating m vertices?

Cannot be expressed in first-order logic (requires Jy; . . . Jy,,).

Can be solved on H-minor free graphs in time (g(H)k)*n®M),
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2V*,,0(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]
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Counting Problems

PARTIAL DOMINATING SET
Input: AgraphGandk,m € N

Parameter: k
Problem:  Are there k vertices dominating m vertices?

FO({>0}) = FO + “there are at least/most m € N elements’

3%1...3xk#y(\/y~xi/\y:wi) >m

7

Length of formula depends only on % (and not on m)



Counting Logic

Definition of FO({> 0})

built recursively using

o the rules of FO
o #y ¢ > m forevery m € N and FO({>0}) formula ¢

Example 1: PARTIAL DOMINATING SET

dry ... dxr #y (\/ywxi/\y:xi) >m

Example 2: h-Index
#mypaper (#otherpaper cite(otherpaper, mypaper) > h) >h
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Somewhere Dense
<
Nowhere Dense
T
Bounded Expansion
T
(Top.) Minor Free
— ) ~
Planar Bounded Degree Bounded Treewidth

If G has bounded degree then MC(G, FOC) € FPT.
[Kuske, Schweikardt 2017]

MC(G, FO({>0})) is AW[x]-hard on trees.
similar to [Grohe, Schweikardt 2018] 10
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contains k-clique satisfies FO({>0}) formula
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Stability

Are there k vertices dominating at least m = 5017 vertices?

> 5017

I1...Tk

A formula ¢ is e-stable on a graph G if scaling the counting literals

by (1 + ¢) does not change whether ¢ is true in G.
12
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Approximate Model-Checking

Theorem

Let G be a graph class with bounded expansion and € > 0.
There exists an algorithm which takes G € G, ¢ € FO({>0}),

runs in time f(||)n and returns ‘ , or ‘
O If ‘ then ¢ is true on G.
o If ‘ then ¢ is false on G.

O If ‘ then ¢ is e-unstable on G.
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Approximate Model-Checking

PARTIAL DOMINATING SET: 31 ... Joy, #y (\/ Yy~ ziANy =) >m

)

There exists a set dominating
> (14 €)m vertices.

All sets dominate < (1 + ¢)m vertices
& and there exists a set dominating
> (1 — e)m vertices.

il ool ‘ All sets dominate < (1 — &)m vertices.
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How about extensions of FO({> 0})?

FO({>0}) allows comparing #y and m € N.

Approximate model-checking becomes hard if also allow one of
the following:

O comparing #y and #z (eg. #y o > #z 1)
O counting tuples #yz (e.g, #yz ¢ > m)
O multiplying of counting terms (g, #y v - #z1 >m)
O subtraction of counting terms (e.g., #y p — #z ¢ > m)
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FO({>0})is

O hard to solve exactly on trees,

O possible to approximate on bounded expansion.

Slight extensions of FO({>0}) are

O hard to approximate on trees.

= FO({>0}) seems like “the right logic” for
approximation on sparse graphs



Somewhere Dense
<
Nowhere Dense
0
Bounded Expansion
1
(Top.) Minor Free
— T ~
Planar Bounded Degree Bounded Treewidth

Can we generalize our results to nowhere dense graph classes?

17
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"
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Proof Sketch — Domination

#as (xg~x1 VI3 ~x2) >mM

replace with quantifier-free FO

N
N(z1) ‘ N(zz) >m
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. relatively small To
intersection

N
N(z1) ‘ N (x2) % m

T T2

N
N@)  +  N@) zm

R>i(x) true
iff |N(z)| >4
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Proof Sketch — Small Intersection

. relatively small T
intersection

)
i) ‘ N(z2) % m

I 79

N
N(z1) + N(z2) % m

\/ R>i(21) A Rom—i(22) iﬁﬁi)tlr;ei

i € {0em, lem,2em, ..., m}
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Proof Sketch — Small Intersection

1/e
\/ Roemi(71) A R>m—emi(z2)
1=0
Oem  lem  2em 4dem  bem  Gem Tem -+ m

unstable
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many T2 with
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Z1
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Proof Sketch — Large Intersection

relatively
x1. large o
intersection

N(:cl) N(.’IIQ)

many 2 with large 1-subdivided

large intersection = clique
T T2
T2
T2
T2
T2
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relatively
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N
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many Z2 with — large 1-subdivided not bounded
large intersection clique expansion
Z1 X9

We assume (for simplicity) 1 has only one T2
with a large intersection.
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Proof Sketch — Large Intersection

relatively

xi. large T
intersection ( 1)

N

NG (YOIN(f@@0) & m
many Z2 with — large 1-subdivided not bounded
large intersection clique expansion
Z1 X9

We assume (for simplicity) 1 has only one T2
with a large intersection.
We callit f(z1).

22
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Proof Sketch — Large Intersection

relatively

xi. large T
intersection ( 1)

Qf(x) true
if [N (2) UN(f(2))] = m

Final Formula:
(x?, — f(z1) A Qf(:cl))v
(arz # f(x1) A wsman(arl,arz))

22
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Proof Sketch — Quantifier Elimination

We want to gradually simplify this formula.

quantifier-free FO

"
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FIRST-ORDER MODEL-CHECKING IN
RANDOM GRAPHS AND COMPLEX
NETWORKS
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The Real World

Some central properties:

O Skewed degree distribution
Fraction of vertices with degree &
proportional to k£~ with 2 < o < 37

? i" O Clustered
If we have a common friend we are
likely friends as well

F" © Small-world property
Everyone is close to everyone

26



Example: Preferential Attachment Model

Introduced by Barabasi and Albert in 1999 to explain the structure
of the world wide web.
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Example: Preferential Attachment Model

Introduced by Barabasi and Albert in 1999 to explain the structure
of the world wide web.
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expected degree =~



Previous Results

some are here ——  Somewhere Dense
¢
Nowhere Dense
0
and some here —— Bounded Expansion
0
(Top.) Minor Free
— T ~
Planar Bounded Degree Bounded Treewidth

[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]
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Example: Chung-Lu Model

A more direct way to get a desirable degree distribution.

1
Vi g

n
expected degree =~ \/j
) 30




a-power-law-boundedness

A random graph model with vertices 1, ..., nis
3-power-law-bounded if the probability that some subset of edges
E C ("5 is present is at most

log(n)QUE®) H b

Z]EE
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a-power-law-boundedness

A random graph model with vertices 1, ..., nis
3-power-law-bounded if the probability that some subset of edges
E C ("5 is present is at most

log(n)QUE®) H b

zgeE
v X
O Preferential attachment O Hyperbolic random graph
model model
O Chung-Lu model O random intersection model
O Erdos-Rényi model O Watts-Strogatz model
O Configuration model O Kleinberg model
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Asymptotic Structure of 3-power-law-bounded models
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Asymptotic Structure of 3-power-law-bounded models
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Asymptotic Structure of 3-power-law-bounded models




Input: graph sampled from 3-power-law-bounded model
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Algorithm




Gaifman's theorem:
consider only
neighborhoods

-
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Gaifman's theorem: ) \ /
consider only .

neighborhoods

\

-
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Algorithm
approximately find core \\
‘\\\ \\\\ \
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prune trees
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prune protrusions
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use brute force on core
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repeat for every neighborhood




Runtime Analysis

Runtime: n°W .
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Runtime Analysis

Runtime: n®® . Pr[ = =z -
2 o
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Runtime Analysis

Runtime: n°0) . ) " Pr[ = = 2] - ¥l
2@
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Runtime Analysis

Runtime: n°0) . ) " Pr[ = = 2] - ¥l
2@

To get a run time of f(|y|)n°") we bound

Pr| .}‘ > ] for every z.
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Summary

A random graph model is 3-power-law-bounded if
(roughly speaking):
O fraction of vertices with degree k is O(k=3)

real networks: typically £~ with2 < a <3

O unclustered

real networks: typically clustered

Theorem

Given a first-order sentence v and a graph G sampled from a
3-power-law-bounded model, one can decide whether ¢ is true on G
in expected time f(|p|)n'*< for every ¢ > 0.

Big Question: model-checking on clustered models? 35
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Let o > 2. Arandom graph model G is a-power-law-bounded if for
every n € N there exists an ordering vy, . . ., v, of V(G,,) such that
forall E C ({“1"'2"”"})

Pr[E C E(Qn)} <

) - 20(IE?) if >3
N1/ (a—1 N\1/(a—1

H (/i) én/]) ¢ log(n)CUER) ifaa=3
viv; EE 0(n8)|E\2 foreverye >0 ifa<3.
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A graph H is an r-shallow topological minor of a graph G if a graph
obtained from H by subdividing every edge up to 2r times is
isomorphic to a subgraph of G. The set of all r-shallow topological
minors of a graph G is denoted by GVr.

A graph class C has bounded expansion if there exists a function
f: N — Nsuch thatforallr € NandallG € C

max ——— < f(r).

HeGvr |H| —
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