Two New Perspectives for Algorithmic Meta-Theorems

Jan Dreier

November 16 2020

Everything is a graph.

1

Everything is a graph.

1

MSO on treewidth

> MSO on treewidth

FO on sparse graphs

 \bigcirc independent set of size k:

$$\exists x_1 \dots \exists x_k \bigwedge_{i,j} x_i \not\sim x_j \land x_i \neq x_j$$

 \bigcirc independent set of size k:

$$\exists x_1 \dots \exists x_k \bigwedge_{i,j} x_i \not\sim x_j \land x_i \neq x_j$$

 \bigcirc dominating set of size k:

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

 \bigcirc independent set of size k:

$$\exists x_1 \dots \exists x_k \bigwedge_{i,j} x_i \not\sim x_j \land x_i \neq x_j$$

 \bigcirc dominating set of size k:

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

○ some database queries

 \bigcirc independent set of size k:

$$\exists x_1 \dots \exists x_k \bigwedge_{i,j} x_i \not\sim x_j \land x_i \neq x_j$$

 \bigcirc dominating set of size k:

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

○ some database queries

Best algorithms on general graphs: $n^{O(k)}$

Model-Checking

Model-Checking

$MC(\mathcal{G}, L)$

Input: A graph $G \in \mathcal{G}$ and a sentence $\varphi \in L$

Parameter: $|\varphi|$

Problem: Is φ true in G?

Goal: linear FPT run time $f(|\varphi|)n$

Model-Checking

MC(\mathcal{G} , L)Input:A graph $G \in \mathcal{G}$ and a sentence $\varphi \in L$ Parameter: $|\varphi|$ Problem:Is φ true in G?

Goal: linear FPT run time $f(|\varphi|)n$

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If ${\mathcal G}$ is nowhere dense then MC(${\mathcal G},$ FO) \in FPT.

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If $\mathcal G$ is nowhere dense then MC($\mathcal G$, FO) \in FPT.

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If $\mathcal G$ is nowhere dense then MC($\mathcal G$, FO) \in FPT.

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If \mathcal{G} is nowhere dense then MC(\mathcal{G} , FO) \in FPT.

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If $\mathcal G$ is nowhere dense then MC($\mathcal G$, FO) \in FPT.

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If $\mathcal G$ is nowhere dense then MC($\mathcal G$, FO) \in FPT.

If \mathcal{G} has bounded treewidth then MC(\mathcal{G} , MSO) \in FPT.

[Courcelle 1990]

If \mathcal{G} is nowhere dense then MC(\mathcal{G} , FO) \in FPT.

APPROXIMATE EVALUATION OF FIRST-ORDER COUNTING QUERIES

Partial Dominating Set	
Input:	A graph G and $k,m\in {f N}$
Parameter:	k
Problem:	Are there \boldsymbol{k} vertices dominating \boldsymbol{m} vertices?

Partial Dominating Set		
Input:	A graph G and $k,m\in {f N}$	
Parameter:	k	
Problem:	Are there k vertices dominating m vertices?	

Cannot be expressed in first-order logic (requires $\exists y_1 \dots \exists y_m$).

Partial Dominating Set		
Input:	A graph G and $k,m \in \mathbf{N}$	
Parameter:	k	
Problem:	Are there k vertices dominating m vertices?	

Cannot be expressed in first-order logic (requires $\exists y_1 \dots \exists y_m$).

Can be solved on H-minor free graphs in time $(g(H)k)^k n^{O(1)}.$ [Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time $2^{\sqrt{k}}n^{O(1)}$. [Fomin, Lokshtanov, Raman, Saurabh, 2011]

Is W[1]-hard for 2-degenerate graphs. [Golovach, Villanger 2008]

Partial Dominating Set		
Input:	A graph G and $k,m \in \mathbf{N}$	
Parameter:	k	
Problem:	Are there k vertices dominating m vertices?	

 $FO(\{>0\}) = FO + "there are at least/most <math>m \in \mathbb{N}$ elements"

Partial Dominating Set		
Input:	A graph G and $k,m\in \mathbf{N}$	
Parameter:	k	
Problem:	Are there k vertices dominating m vertices?	

 $FO(\{>0\}) = FO + "there are at least/most <math>m \in \mathbb{N}$ elements"

$$\exists x_1 \dots \exists x_k \# y \left(\bigvee_i y \sim x_i \land y = x_i\right) \ge m$$

Partial Dominating Set		
Input:	A graph G and $k,m\in \mathbf{N}$	
Parameter:	k	
Problem:	Are there k vertices dominating m vertices?	

 $FO(\{>0\})$ = FO + "there are at least/most $m \in \mathbb{N}$ elements"

$$\exists x_1 \dots \exists x_k \, \# y \, (\bigvee_i y \sim x_i \wedge y = x_i) \ge m$$

Length of formula depends only on k (and not on m)

Definition of $FO(\{>0\})$

built recursively using

- the rules of FO
- $\circ \ \# y \ \varphi \geq m$ for every $m \in \mathbb{N}$ and FO($\{>0\}$) formula φ

Example 1: PARTIAL DOMINATING SET

$$\exists x_1 \dots \exists x_k \, \# y \, \left(\bigvee_i y \sim x_i \land y = x_i\right) \ge m$$

Example 2: *h*-Index

 $\# \mathsf{mypaper} \left(\# \mathsf{otherpaper} \ \mathsf{cite}(\mathsf{otherpaper}, \mathsf{mypaper}) \geq h \right) \geq h$

If $\mathcal G$ has bounded degree then MC($\mathcal G$, FOC) \in FPT. [Kuske, Schweikardt 2017]

If \mathcal{G} has bounded degree then MC(\mathcal{G} , FOC) \in FPT. [Kuske, Schweikardt 2017]

 $MC(\mathcal{G}, FO(\{>0\}))$ is AW[*]-hard on trees.

similar to [Grohe, Schweikardt 2018]

 \Leftrightarrow

satisfies FO({>0}) formula

 \Leftrightarrow

satisfies FO({>0}) formula

Are there k vertices dominating at least m = 5000 vertices?

Are there k vertices dominating at least m = 4983 vertices?

Are there k vertices dominating at least m = 5017 vertices?

Are there k vertices dominating at least m = 5017 vertices?

A formula φ is ε -stable on a graph G if scaling the counting literals by $(1 \pm \varepsilon)$ does not change whether φ is true in G.

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$.

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$. There exists an algorithm which takes $G \in \mathcal{G}$, $\varphi \in FO(\{>0\})$, runs in time $f(|\varphi|)n$ and returns (\circ, \circ) , or (\circ, \circ) .

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$. There exists an algorithm which takes $G \in \mathcal{G}$, $\varphi \in FO(\{>0\})$, runs in time $f(|\varphi|)n$ and returns (\circ, \circ) , or (\circ, \circ) .

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$. There exists an algorithm which takes $G \in \mathcal{G}$, $\varphi \in FO(\{>0\})$, runs in time $f(|\varphi|)n$ and returns (\circ, \circ) , or (\circ, \circ) .

Let \mathcal{G} be a graph class with bounded expansion and $\varepsilon > 0$. There exists an algorithm which takes $G \in \mathcal{G}$, $\varphi \in FO(\{>0\})$, runs in time $f(|\varphi|)n$ and returns (\circ, \circ) , or (\circ, \circ) .

 \bigcirc If e then φ is ε -unstable on G.

Partial Dominating Set: $\exists x_1 \dots \exists x_k \# y (\bigvee_i y \sim x_i \land y = x_i) \ge m$

There exists a set dominating $\geq (1 + \varepsilon)m$ vertices.

 $x_1 \dots x_k$

 $x_1 \dots x_k$

 $x_1 \dots x_k$

There exists a set dominating $\geq (1 + \varepsilon)m$ vertices.

There exists a set dominating $\geq (1 + \varepsilon)m$ vertices.

 $x_1 \dots x_k$

 $x_1 \dots x_k$

All sets dominate $< (1 - \varepsilon)m$ vertices.

How about extensions of $FO(\{>0\})$?

FO($\{>0\}$) allows comparing #y and $m \in \mathbb{N}$.

Theorem

Approximate model-checking becomes hard if also allow one of the following:

Theorem

Approximate model-checking becomes hard if also allow one of the following:

 \bigcirc comparing #y and #z

(e.g., $\#y \ \varphi > \#z \ \psi$)

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- \bigcirc comparing #y and #z
- \bigcirc counting tuples #yz

(e.g., $\#y \ \varphi > \#z \ \psi$) (e.g., $\#yz \ \varphi > m$)

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- \bigcirc comparing #y and #z
- \bigcirc counting tuples #yz
- multiplying of counting terms

(e.g., $\#y \ \varphi > \#z \ \psi$)

- (e.g., $\#yz \; arphi > m$)
- (e.g., $\#y \ \varphi \cdot \#z \ \psi > m$)

Theorem

Approximate model-checking becomes hard if also allow one of the following:

- \bigcirc comparing #y and #z
- \bigcirc counting tuples #yz
- multiplying of counting terms
- subtraction of counting terms

(e.g., $\#y \ \varphi > \#z \ \psi$)

- (e.g., $\#yz \ \varphi > m$)
- (e.g., $\#y \ \varphi \cdot \#z \ \psi > m$)
- (e.g., $\#y \ \varphi \#z \ \psi > m$)

FO($\{>0\}$) is

○ hard to solve exactly on trees,

FO($\{>0\}$) is

- hard to solve exactly on trees,
- possible to approximate on bounded expansion.

FO($\{>\!0\}$) is

- hard to solve exactly on trees,
- possible to approximate on bounded expansion.

Slight extensions of FO($\{>0\}$) are

○ hard to approximate on trees.

FO($\{>\!0\}$) is

- hard to solve exactly on trees,
- possible to approximate on bounded expansion.

Slight extensions of FO($\{>0\}$) are

○ hard to approximate on trees.

 \Rightarrow FO({>0}) seems like "the right logic" for approximation on sparse graphs

Can we generalize our results to nowhere dense graph classes?

$$m_1 \le \# x_1 \Big($$

We want to gradually simplify this formula.

$$m_1 \le \# x_1 \left(m_2 \le \# x_2 \right)$$

))

$$m_1 \le \# x_1 \left(m_2 \le \# x_2 \left(m_3 \le \# x_3 \right) \right)$$

$$m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \left(m_3 \leq \#x_3 \quad \overbrace{\varphi(x_1 x_2 x_3)}^{\text{quantifer-free FO}} \right) \right)$$

$$m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \left(\underbrace{m_3 \leq \#x_3}_{\text{replace with quantifier-free FO}} \varphi(x_1 x_2 x_3) \right) \right)$$

$$m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \quad \overbrace{\varphi'(x_1 x_2)}^{\text{quantifier-free FO}} \right)$$

We want to gradually simplify this formula.

quantifier-free FO

$$m_1 \le \# x_1 \left(\underbrace{m_2 \le \# x_2}_{\text{replace with quaptifier-free FO}} \phi'(x_1 x_2) \right)$$

replace with quantifier-free FO

We want to gradually simplify this formula.

 $\underset{m_1 \leq \# x_1}{\operatorname{quantifier-free FO}} \widetilde{\varphi''(x_1)}$

We want to gradually simplify this formula.

quantifier-free FO $m_1 \le \# x_1$ x_1

replace with quantifier-free FO

We want to gradually simplify this formula.

 $\underbrace{\#x_3\ (x_3 \sim x_1 \lor x_3 \sim x_2) \ge m}_{}$

replace with quantifier-free FO

 $\begin{array}{l} R_{\geq i}(x) \text{ true} \\ \text{iff } |N(x)| \geq i \end{array}$

$$\bigvee_{i=0}^{1/\varepsilon} R_{\geq \varepsilon mi}(x_1) \wedge R_{\geq m-\varepsilon mi}(x_2)$$

$$\bigvee_{i=0}^{1/\varepsilon} R_{\geq \varepsilon mi}(x_1) \wedge R_{\geq m-\varepsilon mi}(x_2)$$

$$\bigvee_{i=0}^{1/\varepsilon} R_{\geq \varepsilon m i}(x_1) \wedge R_{\geq m-\varepsilon m i}(x_2)$$

We assume (for simplicity) x_1 has only one x_2 with a large intersection.

We assume (for simplicity) x_1 has only one x_2 with a large intersection. We call it $f(x_1)$.

 $\begin{array}{c} Q_f(x) \text{ true} \\ \text{iff } |N(x) \cup N(f(x))| \geq m \end{array}$

 $\begin{array}{c} Q_f(x) \text{ true} \\ \text{iff } |N(x) \cup N(f(x))| \geq m \end{array}$

Final Formula:

$$\left(x_2 = f(x_1) \land Q_f(x_1)\right)$$

 $\begin{array}{c} Q_f(x) \text{ true} \\ \text{iff } |N(x) \cup N(f(x))| \geq m \end{array}$

Final Formula: $\left(x_2 = f(x_1) \land Q_f(x_1) \right) \lor$ $\left(x_2 \neq f(x_1) \land \varphi_{\text{small}}(x_1, x_2) \right)$

We want to gradually simplify this formula.

$$m_1 \leq \#x_1 \left(m_2 \leq \#x_2 \left(\underbrace{m_3 \leq \#x_3}_{\text{replace with quantifier-free FO}} \varphi(x_1 x_2 x_3) \right) \right)$$

We want to gradually simplify this formula.

$$m_1 \leq \# x_1 \left(m_2 \leq \# x_2 \quad \overbrace{\varphi'(x_1 x_2)}^{\text{quantifier-free FO}} \right)$$

We want to gradually simplify this formula.

quantifier-free FO

$$m_1 \le \# x_1 \left(\underbrace{m_2 \le \# x_2}_{\text{replace with quantifier-free FO}} \varphi'(x_1 x_2) \right)$$

replace with quantitier-free FC

We want to gradually simplify this formula.

 $\underset{m_1 \leq \# x_1}{\operatorname{quantifier-free FO}} \widetilde{\varphi''(x_1)}$

We want to gradually simplify this formula.

quantifier-free FO $m_1 \le \# x_1$ x_1

replace with quantifier-free FO

We want to gradually simplify this formula.

First-Order Model-Checking in Random Graphs and Complex Networks real world networks

Motivation

friendship networks coauthor networks internet backbone world wide web power-grid biological processes ...

real world networks

Motivation

Motivation

Some central properties:

Some central properties:

• Skewed degree distribution Fraction of vertices with degree kproportional to $k^{-\alpha}$ with $2 \le \alpha \le 3$?

Some central properties:

• Skewed degree distribution Fraction of vertices with degree kproportional to $k^{-\alpha}$ with $2 \le \alpha \le 3$?

Clustered

If we have a common friend we are likely friends as well

Some central properties:

• Skewed degree distribution Fraction of vertices with degree kproportional to $k^{-\alpha}$ with $2 \le \alpha \le 3$?

Clustered

If we have a common friend we are likely friends as well

Small-world property Everyone is close to everyone

[Grohe 2001], [Farrell et. al. 2015], [Demaine et. al. 2019], [Dreier et. al. 2020]

○ fraction of vertices with degree k is $O(k^{-3})$ real networks: typically $k^{-\alpha}$ with $2 \le \alpha \le 3$

- fraction of vertices with degree k is $O(k^{-3})$ real networks: typically $k^{-\alpha}$ with $2 \le \alpha \le 3$
- unclustered

real networks: typically clustered

- fraction of vertices with degree k is $O(k^{-3})$ real networks: typically $k^{-\alpha}$ with $2 \le \alpha \le 3$
- unclustered

real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

○ fraction of vertices with degree k is $O(k^{-3})$ real networks: typically $k^{-\alpha}$ with $2 \le \alpha \le 3$

unclustered

real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

- fraction of vertices with degree k is $O(k^{-3})$ real networks: typically $k^{-\alpha}$ with $2 \le \alpha \le 3$
- unclustered

real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

optimal

Meta-Theorem

A random graph model is *3-power-law-bounded* if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$ real networks: typically $k^{-\alpha}$ with $2 \le \alpha \le 3$
- unclustered

real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

Big Question: model-checking on clustered models?

optimal

A more direct way to get a desirable degree distribution.

30

α -power-law-boundedness

A random graph model with vertices $1, \ldots, n$ is 3-power-law-bounded if the probability that some subset of edges $E \subseteq \binom{1,\ldots,n}{2}$ is present is at most $\log(n)^{O(|E|^2)} \prod_{ij\in E} \frac{1}{\sqrt{i\cdot j}}.$

α -power-law-boundedness

A random graph model with vertices $1, \ldots, n$ is 3-power-law-bounded if the probability that some subset of edges $E \subseteq \binom{1,\ldots,n}{2}$ is present is at most $\log(n)^{O(|E|^2)} \prod_{ij\in E} \frac{1}{\sqrt{i\cdot j}}.$

- Preferential attachment model
- O Chung-Lu model

<u>)</u>...

- O Erdös-Rényi model
- Configuration model

X

- Hyperbolic random graph model
- \bigcirc random intersection model
- Watts-Strogatz model
- Kleinberg model

Ο...

Asymptotic Structure of 3-power-law-bounded models

Input: graph sampled from 3-power-law-bounded model

Algorithm

Algorithm

prune trees

prune protrusions

use brute force on core

repeat for every neighborhood

Runtime: $n^{O(1)}$.

Runtime Analysis

Runtime Analysis

Runtime Analysis

To get a run time of $f(|\varphi|)n^{O(1)}$ we bound

A random graph model is *3-power-law-bounded* if (roughly speaking):

- fraction of vertices with degree k is $O(k^{-3})$ real networks: typically $k^{-\alpha}$ with $2 \le \alpha \le 3$
- unclustered

real networks: typically clustered

Theorem

Given a first-order sentence φ and a graph G sampled from a 3-power-law-bounded model, one can decide whether φ is true on G in expected time $f(|\varphi|)n^{1+\varepsilon}$ for every $\varepsilon > 0$.

Big Question: model-checking on clustered models?

Let $\alpha > 2$. A random graph model \mathcal{G} is α -power-law-bounded if for every $n \in \mathbb{N}$ there exists an ordering v_1, \ldots, v_n of $V(\mathcal{G}_n)$ such that for all $E \subseteq \binom{\{v_1, \ldots, v_n\}}{2}$

$$\begin{split} &\Pr\big[E \subseteq E(\mathcal{G}_n)\big] \leq \\ &\prod_{v_i v_j \in E} \frac{(n/i)^{1/(\alpha-1)} (n/j)^{1/(\alpha-1)}}{n} \cdot \begin{cases} 2^{O(|E|^2)} & \text{if } \alpha > 3\\ \log(n)^{O(|E|^2)} & \text{if } \alpha = 3\\ O(n^{\varepsilon})^{|E|^2} \text{ for every } \varepsilon > 0 & \text{if } \alpha < 3. \end{cases} \end{split}$$

A graph H is an r-shallow topological minor of a graph G if a graph obtained from H by subdividing every edge up to 2r times is isomorphic to a subgraph of G. The set of all r-shallow topological minors of a graph G is denoted by $G \nabla r$.

A graph class C has bounded expansion if there exists a function $f: \mathbf{N} \to \mathbf{N}$ such that for all $r \in \mathbf{N}$ and all $G \in C$

$$\max_{H \in G \triangledown r} \frac{||H||}{|H|} \le f(r).$$