
The complexity of edge set partitioning problems
Full Version

Jean-François Couturier∗ David Eppstein† Henning Fernau‡ Joachim Kneis§

Dieter Kratsch∗ Mathieu Liedloff¶ Daniel Meister‡ Peter Rossmanith§

Somnath Sikdar§

April 21, 2011

Abstract

We study the complexity of three problems (abbreviated as TTP, PTP, and PPP, re-
spectively) that ask to partition the edge set of a given undirected graph G into two sets A,
B such that {G[A], G[B]} are (a) two trees, (2) one path and one tree, and (3) two paths,
respectively. After stating NP-completeness of these problems, we derive exact algorithms
that are based, somewhat surprisingly, on quite different algorithmic techniques.

1 Introduction

We are interested in a class of edge set partition problems. Let P and Q be graph properties.

Problem (P,Q) Edge Set Partition

Given: an undirected graph G
Question: Is there a partition (A,B) of E(G) such that

G[A] has property P and G[B] has property Q?

We investigate the complexity of the problem for properties P and Q that describe classes of
trees. Hence, both A and B form feedback edge sets, i.e., edge sets whose removal destroys all
cycles. More specifically, we consider the following three problems:
— Tree-Tree Edge Set Partition, TTP for short, asks to partition E(G) into two sets A
and B forming trees G[A] and G[B];

∗Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine, Metz, France. Emails:
couturier@univ-metz.fr, kratsch@univ-metz.fr

†Computer Science, University of California, Irvine, USA. Email: eppstein@uci.edu
‡Abteilung Informatik / Wirtschaftsinformatik, Universität Trier, Germany. Emails: fernau@uni-trier.de,

daniel.meister@uni-trier.de
§Theoretical Computer Science, RWTH Aachen University, Germany. Emails: kneis@cs.rwth-aachen.de,

rossmani@cs.rwth-aachen.de, sikdar@cs.rwth-aachen.de
¶Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, France. Email:

mathieu.liedloff@univ-orleans.fr

1

— Path-Tree Edge Set Partition, PTP for short, asks to partition E(G) into two sets A
and B forming a path G[A] and a tree G[B]; and
— Path-Path Edge Set Partition, PPP for short, asks to partition E(G) into two sets A
and B forming two paths G[A] and G[B].

The problem can be motivated from different directions. Application-wise, the general prob-
lem of partitioning the edge set of a graph into k edge-disjoint trees relates to problems in
network reliability and graph drawing [2]. Theory-wise, the problem is closely related to the
graph parameter arboricity, that asks for the smallest size of a partition of the edges set into
forests. Gabow and Westermann showed that a partition of the edge set of a given graph into
at most k forests can be computed in polynomial time [6]. The difference between arboricity
and our problem is the lack of connectivity. Biedl and Brandenburg [2] showed that the prob-
lem of partitioning the edge set of a graph into at most k trees is NP-hard for all k ≥ 2. An
improvement of this NP-hardness result is due to Pálvölgyi [9], who showed that the partition
of the edge set of a graph into two trees is NP-hard on graphs of maximum degree 4. This
hardness result naturally extends to the partition problem into at most k trees. So much about
intractability results. On the positive side, the question of whether the edge set of a given graph
can be partitioned into two spanning trees is polynomial-time solvable due to Edmonds [4].

We continue the initiated research line by refining both NP-hardness as well as feasibility
results. We study the edge set partition problem into two trees, where we also add degree-bound
restrictions. More specifically, we consider the problem of partitioning the edge set of a graph
into two trees where one or both trees need to be paths, i.e., one or both edge-induced partition
graphs must have maximum vertex degree 2. As a first group of results, we will show that despite
this strong restriction, the two edge set partition problems remain NP-hard. As a second group
of results, we will give exact algorithms for the three considered edge set partition problems.

2 Definitions and notation

We consider only undirected finite graphs, that will mostly be simple. Let G = (V,E) be a
graph, where V = V (G) is the vertex set of G and E = E(G) is the edge set of G. Edges are
denoted as uv, where u and v are vertices of G. Formally, E is a set of two-element sets of
vertices from V . A multi-graph is a construct G = (V,E), where E is a multi-set of sets of at
most two vertices from V . We will encounter multi-graphs only in intermediate steps in the
construction of the proof of Theorem 3.6 and in the algorithm presented in Sec. 4. If uv is an
edge of G then u and v are adjacent in G, and uv is incident to u and v; if uv is no edge of
G then u and v are called non-adjacent. For a vertex pair u, v of G, if u and v are adjacent,
then v is a neighbor of u. The degree of a vertex is the number of neighbors. Equivalently, for
a (simple) graph, the degree of a vertex is the number of incident edges. A set X of vertices of
G is an independent set of G if the vertices in X are pairwise non-adjacent in G. We use n to
denote the number of vertices and m to denote the number of edges of a graph unless otherwise
stated.

Let G be a graph, and let A ⊆ E(G). The subgraph of G induced by A, denoted as G[A], is
the graph (V ′, A) where V ′ is the set of vertices of G that are incident to some edge in A. For
a vertex pair u, v of G, a u, v-path in G is a sequence (x0, . . . , xr) of pairwise different vertices

2

of G such that x0 = u and xr = v and xixi+1 ∈ E(G) for every 0 ≤ i ≤ r − 1. If x0 and xr are
also adjacent, then (x0, . . . , xr) is a cycle. A graph G is connected if there is a u, v-path in G
for every vertex pair u, v of G. A connected graph that contains no cycle is called a tree. A tree
whose vertices have degree at most 2 is called a path.

3 NP-hardness results for edge set partition problems

In this paper, we consider the complexity of the following problem: given a graph G, decide
whether E(G) can be partitioned into two sets (A,B) such that A and B induce acyclic connected
subgraphs of G. Next to this general problem, we consider the two variants, where we add degree
bounds to one or both edge-induced subgraphs. In this section, we consider lower bounds on
the complexity of the three problems. It is known that the general tree-tree edge set partition
problem is NP-complete [2, 9]. We show in this section that the path-tree edge set partition
problem and the path-path edge set partition problem are NP-complete. The former result is
achieved by a reduction from a Hamilton path problem, and the latter by a reduction from a
satisfiability problem.

3.1 The path-tree edge set partition problem PTP

Recall that the path-tree edge set partition problem is, given a graph G, to decide whether E(G)
can be partitioned into two sets A and B such that G[A] is a tree and G[B] is a path. We show
that this problem is NP-complete through a reduction from the Hamilton path problem on cubic
bipartite graphs.

A graph G is called bipartite if V (G) can be partitioned into set X and Y such that X and Y
are independent in G. A graph G is called cubic if each vertex of G has degree 3 in G. A cubic
bipartite graph is a graph that is both cubic and bipartite. It is an easy observation that cubic
graphs have an even number of vertices. A perfect matching is a set A of edges of G such that
|A| = 1

2 |V (G)| and G[A] contains all vertices of G. A set B of edges of G induces a Hamilton
path if G[B] is a path and contains all vertices of G. We say that G has a Hamilton cycle if
there is B ⊆ E(G) such that G[B] contains all the vertices of G, is connected and each vertex
of G[B] has degree 2.

Lemma 3.1. Let G be a cubic bipartite graph, and let (A,B) be a partition of E(G). Then, B
induces a Hamilton cycle in G if and only if A is a perfect matching of G and G[B] is connected.

Proof. Let B induce a Hamilton cycle in G; let C = (x1, . . . , xn) be the cycle. Since B induces
a cycle, G[B] is trivially connected. We show that A is a perfect matching of G. Note for every
1 ≤ i ≤ n, A contains exactly one edge that is incident to xi. Thus, A contains no pair of
adjacent edges, and A is a matching for A. By construction, B contains exactly 2n edges, so
that A contains exactly n edges, hence, matching A is perfect. For the converse, let A be a
perfect matching of G and let G[B] be connected. Note that G[B] = G\A and that every vertex
of G has degree 2 in G[B]. A connected 2-regular graph is an induced cycle, and since every
vertex of G appears in G[B], B induces a Hamilton cycle in G.

3

u1

u3u4

u2

u6

u5

a3

a2

a1

Figure 1: Two graphs that are used in the construction of the proof of Corollary 3.3.

The problem Hamilton Cycle is, given a graph G, to decide whether G has a Hamilton
cycle. Analogously, the problem Hamilton Path is, given a graph G, to decide whether G has
a Hamilton path.

Theorem 3.2 ([1, 7]). Hamilton Cycle is NP-complete on cubic bipartite graphs.

Corollary 3.3. Hamilton Path is NP-complete on cubic bipartite graphs.

Proof. We reduce from the Hamilton cycle problem on cubic bipartite graphs, that is NP-
hard due toTheorem 3.2. Our reduction is in two steps. Let G be a cubic bipartite graph, and
let a be an arbitrary vertex of G. We obtain G′ from G by replacing vertex a by a chordless
cycle (u1, . . . , u6) on six vertices and making the edges of G incident to a incident to u2, u4, u6

in G. A schematic drawing of this local replacement is given on the left-hand side of Figure 1,
where a1, a2, a3 are the neighbors of a in G. It is important to note that G′ is bipartite and
contains only vertices of degree 2 or 3, and the vertices of degree 2 are exactly u1, u3, u5. Let
G1, G2, G3 be three vertex-disjoint copies of G′. If x is a vertex in G′, then xi refers to the copy
of x in Gi. We obtain the graph G∗ as follows:

– V (G∗) =def V (G1) ∪ V (G2) ∪ V (G3), and

– E(G∗) =def E(G1) ∪ E(G2) ∪ E(G3) ∪ {u1
5u

2
1, u

2
5u

3
1}.

We claim that G contains a Hamilton cycle if and only if G∗ contains a Hamilton path.
Namely, assume (w.l.o.g., due to symmetry) that (a, a2, . . . , a1, . . . , a3) describes the Hamil-
ton cycle in G. Then, (u1

1, u
1
2, u

1
3, u

1
4, a

1
2, . . . , a

1
1, . . . , a

1
3, u

1
6, u

1
5, u

2
1, . . . , u

2
4, a

2
2, . . . , a

2
1, . . . , a

2
3, u

2
6, u

2
5,

u3
1, . . . , u

3
4, a

3
2, . . . , a

3
1, . . . , a

3
3, u

3
6, u

3
5) describes a Hamilton path in G∗. This situation is described

using thick edges on the left-hand side of Figure 1. Conversely, observe that there is no Hamil-
ton path in G∗ with a contiguous sub-path that contains all vertices from {ui

1, . . . , u
i
6} for any

i = 1, 2, 3, because the edges u1
5u

2
1, u

2
5u

3
1 must be used in any Hamilton path as bridges between

the subgraphs G1, G2 and G3. Therefore and because of the special role of degree-2 vertices,
the Hamilton path has one end in {u1

1, u
1
3} and the other end in {u3

3, u
3
5}. Observing the initial

path from u ∈ {u1
1, u

1
3} to u1

5 naturally describes a Hamilton cycle in G.

For completing the proof, we have to deal with the vertices of degree 2 of G∗. Note that
these are exactly the following vertices: u1

1, u
1
3, u

2
3, u

3
3, u

3
5. We replace each vertex and its two

incident edges by the graph that is depicted on the right-hand side of Figure 1. It remains a
small observation that the resulting graph has a Hamilton path if and only if G∗ has a Hamilton
path, which proves the claimed hardness result.

4

In the Path Feedback Edge Set problem, PFES for short, we are given an undirected
graph G = (V,E) and the question is whether there exists a path P in G whose edges E(P)
form a feedback edge set, i.e., G[E − E(P)] is acyclic.

Theorem 3.4. Path Feedback Edge Set and Path-Tree Edge Set Partition are NP-
complete on bipartite graphs of maximum degree at most 4.

Proof. Since testing whether a graph is a tree or a path is easy, the two problems are clearly
in NP.

For the NP-hardness of the problem, we reduce from Hamilton Path on cubic bipartite
graphs, that is NP-hard due to Corollary 3.3. Let G = (X,Y,E) be a cubic bipartite graph.
Each vertex of G has exactly three neighbors, that we denote as νu(1), νu(2), νu(3). The index
of each neighbor is chosen completely arbitrarily. Based on G, we construct a new graph G∗.
Vertices of G are represented by vertex gadgets, that can be of two types. The two types are
given in Figure 2. Vertices from X are represented by the vertex gadget on sixteen vertices,
vertices from Y are represented by the vertex gadget on nine vertices. For a vertex u of G,
Xu denotes the set of vertices of the vertex gadget for u. Each of the vertex gadgets has three
connecting vertices, that are drawn as larger cycles in Figure 2; they provide connection between
different vertex gadgets. For a vertex u of G, the three connecting vertices of its gadget are
named as u1, u2, u3. The assignment between name and vertex can be chosen arbitrarily. The
large vertex gadgets have an explicitly named vertex u0 for u ∈ X. These vertices are connected
by a tree structure, as shown in Figure 2. The set of these tree vertices is denoted by K. It
remains to define edges that connect the vertex gadgets. Let uv be an edge of G, and let i, j
be such that u = νv(j) and v = νu(i). Then, G∗ contains edge uivj. These edges are called
terminal edges in the course of the proof. This completes the definition of G∗. It is not difficult
to see that G∗ is a bipartite graph whose vertices have degree at most 4.

We can show that G has a Hamilton path if and only if E(G∗) admits a partition into
sets A and B such that G∗[A] is a tree and G∗[B] is a path. This proves the NP-hardness
of PTP. NP-hardness of the second problem is shown by simply employing the graph G∗ \K.
For the first direction, assume that G has a Hamilton path. Since G is bipartite and has an
even number of vertices, it is a simple observation that X and Y contain the same number of
vertices. Let n =def |X| = |Y |, and let P = (x1, . . . , x2n) be a Hamilton path in G. We construct
a partition (A,B) of E(G∗). We begin with the terminal edges. For 1 ≤ i ≤ 2n − 1, where
u = xi and v = xi+1 and u = νv(q) and v = νu(p), {upvq} ⊆ B; all other terminal edges are
in A. Intuitively, B is the set of edges on P , and A contains the edges of G that are not used
by P . Observe that for every vertex but two, namely x1 and x2n, exactly two terminal edges
are selected for B and the third terminal edge is contained in A. For each of x1 and x2n, one
terminal edge is selected for B and the two other terminal edges are contained in A. Using the
configurations for the vertex gadgets as depicted in Figure 2, it is not difficult to see that the
definition of (A,B) can be completed to satisfy the claimed properties, that G∗[A] is a tree and
G∗[B] is a path. Note here that A contains all edges of G∗ that are incident to vertices in K.
For PFES, it suffices to observe that (G∗[B]) \K = G∗[B] and that G∗[A] \K is a forest, thus
acyclic.

For the converse, let (A,B) be a partition of E(G∗) such that G∗[A] is a tree and G∗[B] is
an induced path. Let P = (x1, . . . , xr) be the path in G∗ that is induced by B. We show two

5

k w, 1

k w, 3k w, 2

w0

u2
u3u1

Figure 2: The figure shows to result of the reduction in the proof of Theorem 3.4 for a cubic
bipartite graph on four vertices in each color class. The grey areas represent the two types of
vertex gadgets.

auxiliary results about the structure of P . Let u, v be a vertex pair of G and let i < i + 1 < j
be such that xixi+1 ∈ E(G∗[Xu]) and xjxj+1 ∈ E(G∗[Xv]). Suppose for a contradiction that
{xi, . . . , xj} ∩K 6= ∅. Since G∗[K] is a tree, it is not difficult to see that this situation requires
(w0, kw,2, kw,1) for some w ∈ X to be a subgraph of G∗[B], thus isolating the edge kw,2kw,3. So,
{xi, . . . , xj} ⊆

⋃

u∈V (G)Xu. Assume that there is i < t < j such that {xi, . . . , xt} ⊆ Xu and

{xt+1, . . . , xj+1} ⊆ Xv. Since G∗[B] is a path, xtxt+1 ∈ E(G∗). This means that xtxt+1 is a
terminal edge, and therefore, u and v are adjacent in G. We show now that P can be used to
construct a Hamilton path in G.

Since B contains an edge from every cycle of G∗, the following is an easy observation: for
every u ∈ V (G), B∩E(G∗[Xu]) 6= ∅. So, for every vertex u of G, there is a smallest index i such
that xixi+1 ∈ E(G∗[Xu]); denote this number by a(u). Let 〈z1, . . . , z2n〉 be the vertex ordering
for G that satisfies a(z1) < a(z2) < · · · < a(z2n). We show that Q = (z1, . . . , z2n) corresponds
to a Hamilton path for G. Due to construction, each vertex of G appears exactly once on Q,
so it remains to consider pairs of consecutive vertices. We essentially show that zizi+1 ∈ E(G)
for every 1 ≤ i ≤ 2n − 1, with at most one exception. We show the claim by induction. Let
1 ≤ i ≤ 2n− 1. Let p′ =def a(z

i) and q =def a(z
i+1). Additionally to the claim, we assume that

for every vertex z2, . . . , zi−1, two of its terminal edges appear on the path (y1, . . . , yp′). Let p
be largest such that {yp′ , . . . , yp} ⊆ Xzi . We consider the yp, yq-path (yp, . . . , yq) in G∗[B]. If
q = p+1, then ypyq is a terminal edge and zizi+1 ∈ E(G) due to the above auxiliary result. In the
other case, assume that q ≥ p+2. We consider the yp, yq-path (yp, . . . , yq) in G∗[B]. Remember
that {yp, . . . , yq} ⊆

⋃

u∈V (G)Xu. Let u ∈ V (G) be such that yp+1 ∈ Xu. By the choice of p, it

holds that u 6= zi. The construction of G∗ requires that yp+2 is a vertex from Xu, too. Thus,

6

yp+1yp+2 ∈ E(G∗[Xu]). Due to the definition of a(u) and Q, it follows that u 6∈ {zi+1, . . . , z2n},
so that u ∈ {z1, . . . , zi−1}. Let p+ 2 ≤ t ≤ q be largest such that {yp+1, . . . , yt} ⊆ Xu. Clearly,
yt+1 6∈ Xu. Now, observe that ypyp+1 and ytyt+1 are terminal edges for u. Note that these two
terminal edges could not have been used before, and thus, u = z1. Let v ∈ V (G) be such that
yt+1 ∈ Xv. If v 6= zi+1 then, with the same arguments, v is a vertex from {z1, . . . , zi}. However,
(y1, . . . , yt) contains at least two of the three terminal edges of each of the vertices z1, . . . , zi,
which yields a contradiction. Thus, if q ≥ p+2 then ziz1 and z1zi+1 are edges of G. We conclude
that Q is a path of G or that there is 2 ≤ j ≤ 2n− 1 such that (z2, . . . , zj , z1, zj+1, . . . , z2n) is a
path of G. Thus, G contains a Hamilton path.

For PFES, observe that the connectedness property for G∗[A] was used only in proving the
first auxiliary result, when being applied to edges incident to vertices from K. Thus, starting
from an appropriate partition of E(G∗ \K) yields the desired result. This completes the proof
of the theorem.

3.2 The path-path edge set partition problem PPP

The path-path edge set partition problem is, given a graph G, to decide whether E(G) can
be partitioned into sets A and B such that G[A] and G[B] are trees and each vertex in G[A]
and in G[B] has at most two neighbors. We show that this problem is NP-complete through a
reduction from a variant of the satisfiability problem.

A 3-CNF formula is a formula of propositional logic in conjunctive normal form where each
clause contains exactly three literals. An assignment β is also considered as mapping formulas to
truth values, hence identifying it with the induced interpretation function. The problem Not-

all-equal-3-Sat, Nae-3Sat for short, is the problem, given a 3-CNF formula ϕ, to decide
whether ϕ has a truth-value assignment β so that each clause of ϕ contains a literal that is
true under assignment β and a literal that is false under assignment β. Such an assignment β
satisfies ϕ if and only if the complementary assignment of β satisfies ϕ.

Theorem 3.5 ([10]). Nae-3Sat is NP-complete.

Theorem 3.6. Path-Path Edge Set Partition is NP-complete.

Proof. We show the result by reducing from Nae-3Sat [10]. Given a 3-CNF formula, our
construction will mainly use special graphs as clause gadgets and connect the gadgets. For
the beginning, we study properties of the designated clause gadget graph. Consider the top
graph in Figure 3, that we denote as K. Note that K is a multi-graph, since there are multiple
edges between vertex pairs. We will later derive a simple graph by subdividing these edges.
Structurally, it is important to observe that K contains six cycles of length 2 and two cycles
of length 6. We consider an arbitrary graph G that contains K as an induced subgraph, and
we assume that G admits a partition of E(G) into two set, A, B, such that G[A] and G[B] are
paths. Since G[A] and G[B] are acyclic, every cycle of K must have an edge in A and an edge
in B. Due to the symmetry of K, we can assume, without loss of generality, that A contains the
edges of K that are drawn as thick red in Figure 3 and B contains the edges that are thin green.
The dotted edges are yet to be decided. We can show that the situation for the remaining edges
is completely determined by this beginning, through a sequence of implications:

7

1

2

3

4 5

6

7

8

9

10

11

12

A

B

C F

E

D

Figure 3: The above multi-graph defines the clause gadget used in the proof of Theorem 3.6.
The colors of the edges, alternatively represented as thick, thin and dotted segments, stand for
a subsolution of a partition into two subgraphs of degree at most 2. Depending on the actual
choice of the partition, the three colored graphs below show the unique full partitions.

1) edges 1 and 2 are adjacent to two green edges, so they must be red; otherwise, G[B] would
contain a vertex with more than two neighbors

2) edges 3, 4, 5, 6 are adjacent to two red edges, so they must be green; otherwise, G[A]
would contain a vertex with more than two neighbors

3) edges 7 and 8 are adjacent to two green edges, and edge 9 is adjacent to two red edges, so
7 and 8 must be red and 9 must be green

4) analogously, 10 and 11 must be green and 12 must be red.

The final result is depicted in the middle graph on the bottom line of Figure 3. The important
property that we conclude is the following:

Fact: If edge 1 is red and edges 4 and 6 are green, then edge 12 is red and edges 10 and 11 are
green.

Due to the symmetry of K, the following is a direct consequence of the above Fact.

Result: Assume that exactly one of the three edges 6, 1, 4 is red and the other two are green.
Then, exactly one of the edges 10, 11, 12 is red, and the following holds: if 6 is red then 11 is
red, if 1 is red then 12 is red, and if 4 is red then 10 is red.
The corresponding edge set partitions are shown on the bottom line of Figure 3.

We draw the following important corollary, that is the basis for our reduction: if K represents
a clause of a 3-CNF formula, then the variable assignment information can pass through gadget
K. This can be also seen in the example described in Figure 4.

We are ready for giving the reduction more formally. Let ϕ be a 3-CNF formula. Let
x1, . . . , xn be the variables that appear in ϕ and let L1, . . . , Lm be the clauses of ϕ. By definition,
every clause contains exactly three literals, and every clause contains at least two different

8

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

A B C

D E F

2 3 4 51

Figure 4: The figure shows the result of the construction of the proof of Theorem 3.6, applied to
the formula ϕ = (x1∨x2∨¬x3)∧(x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4)∧(x1∨x3∨x4)∧(x2∨¬x3∨¬x4).
In addition, the colors of the edges define a partition of the edge set into two paths. One color
connects all true literals, and the other color connects all false literals for the given assignment β,
where β(x1) = β(x2) = β(x3) = 1 and β(x4) = 0. The clause gadgets, a copy for each of the
five clauses, are schematically drawn as grey areas.

variables. If a variable appears as positive and as negative literal in the same clause then every
assignment satisfies this clause, and the clause can safely be deleted. For every 1 ≤ i ≤ j, denote
the literals of Li as ai, bi, ci, where the actual assignment is arbitrary.

From ϕ, we construct a multi-graph Hϕ. Let K1, . . . ,Km be m copies of K, where Ki shall
correspond to Li. Denote the distinguished vertices A,B,C,D,E, F of K in Ki as Ai, . . . , Fi.
Let ψ : {x1,¬x1, x2, . . . ,¬xn}×{1, . . . ,m} → {1, . . . ,m} be the function that assigns to every
literal occurrence the “closest” clause with another occurrence of the same literal. Formally,
for x ∈ {x1, . . . ,¬xn} and 1 ≤ i ≤ m where x ∈ {ai, bi, ci}, if literal x occurs in some of the
clauses Li+1, . . . , Lm then let ψ(x, i) =def j for j smallest with i < j ≤ m and x ∈ {aj , bj , cj},
and if x 6∈ {aj , bj , cj : i < j ≤ m} then let ψ(x, i) =def i. We incrementally define the target
graph Hϕ. We begin with the disjoint union of the graphs K1, . . . ,Km; we add the following
vertices and edges:

– For every 1 ≤ i ≤ n, add the new vertices αi and ωi.

– Let 1 ≤ l ≤ n and x ∈ {xl,¬xl} and 1 ≤ i ≤ m, where x ∈ {ai, bi, ci}; let i ≤ j ≤ m be
with ψ(x, i) = j:
if x = ai, then let u =def Ei; if x = bi, then let u =def Fi; if x = ci, then let u =def Di;
if x = aj , then let v =def Aj; if x = bj , then let v =def Bj; if x = cj , then let v =def Cj ;

9

if i < j, then add edge uv; and
if i = j, then add edge uωl.

– Let 1 ≤ l ≤ n.
If xl occurs in ϕ, then let j be smallest such that xl ∈ {aj , bj , cj};
if xl = aj, then add edge αlAj ; if xl = bj , then add edge αlBj ; if xl = cj , then add
edge αlCj.

– Let 1 ≤ l ≤ n.
If ¬xl occurs in ϕ, then add αlAj or αlBj or αlCj analogous to the preceding case.

– Let 1 ≤ l ≤ n.
If xl or ¬xl does not occur in ϕ, then add edge αlωl.

– For every 1 ≤ i < n, add two copies of edge ωiαi+1.

– Add four new vertices and make two of them adjacent to α1 and the others adjacent to
ωn.

This completes the construction of Hϕ. An example for a formula with five clauses is given in
Figure 4. For later considerations, the following observations are important. For 1 ≤ i ≤ n,
there is an αi, ωi-path in Hϕ that connects all occurrences of literal xi, and there is an αi, ωi-path
in Hϕ that connects all occurrences of literal ¬xi. We will refer to the two paths as the xi-path
and the ¬xi-path. The two paths are not unique, but the edges incident to αi and ωi are unique
for each path.

We show that ϕ has a satisfying assignment with the correct property if and only ifHϕ admits
a partition of E(Hϕ) into two paths. Let H =def Hϕ. First, let β be a satisfying assignment
for ϕ such that each clause of ϕ has a true and a false literal. It is as simple as important that
Iβ(x1) is true if and only if Iβ(¬xi) is false. We describe a partition of E(H) into A and B.
Intuitively, we partition the edges along the two paths connecting αi and ωi such that one path
is completely in A and the other is completely in B. We first partition the edges of the clause
gadgets. For 1 ≤ i ≤ m, if the literal associated with Ai is true with respect to Iβ then the
incident edge in Ki is in A, otherwise it is in B; analogously for Bi and Ci. Due to the properties
of β, it follows that exactly two of the three edges are either in A or in B. Following the cases in
Figure 3, this pre-partition uniquely extends to all edges of Ki. We can extend the partition of
the edges of the clause gadgets to complete xi- and ¬xi-paths. We obtain a partition into two
paths. An example partition is given in Figure 4.

For the converse, assume that E(H) admits a partition (A,B) such that H[A] and H[B]
are paths. Note that each of H[A] and H[B] contains exactly one of the two pending edges
that are incident to α1 and ωn. Due to the previously established results, (A,B) on each
of the clause gadgets corresponds to one of the three situations in Figure 3. We color the
vertices A1, B1, C1, . . . , Am, Bm, Cm as “red” and “green” as follows: for every 1 ≤ j ≤ m, if
the edge of Kj incident to Aj is in A then Aj is colored “red”, otherwise, the edge is in B, Aj

is colored “green”; analogously for Bj and Cj . We show that this coloring is consistent, which
means that colored vertices that represent the same literal have the same color, and vertices

10

that represent complementary literals, i.e., xi and ¬xi, have different colors. For an illustration
of the arguments, we also refer to the example in Figure 4.

First, we consider α1, . . . , αn. Observe that α1 is adjacent to two pending vertices, and
the two incident edges must belong to different partition classes (otherwise, one of the two
partition classes would consist of exactly two edges, which contradicts the properties for the
clause gadgets). Thus, the two other edges that are incident to α1 must also belong to two
different color classes. Now, consider αi for 2 ≤ i ≤ n. The two edges connecting ωi−1 and αi

form a cycle and therefore belong to different partition classes, and thus, the two other edges
incident to αi belong to two different partition classes.

Next, consider a clause gadget Kj and a vertex X for X ∈ {Aj , Bj , Cj,Dj , Ej , Fj}. Note
that X has degree 2 and cannot be a vertex of degree 1 in H[A] or H[B]. Thus, the two incident
edges must belong to the same partition class. Let 1 ≤ i ≤ n be such that both literals of xi – xi

and ¬xi – appear in ϕ. Let 1 ≤ j, j′ ≤ m be smallest such that xi appears in Lj and ¬xi appears
in Lj′ . Let X ∈ {Aj , Bj , Cj} and X ′ ∈ {Aj′ , Bj′ , Cj′} be such that X and X ′ correspond to
respectively xi and ¬xi. Due to the above definition and shown properties, X is colored “red”
if and only if X ′ is colored “green”. Now, let 2 ≤ j ≤ m be arbitrary and let Y ∈ {Aj , Bj , Cj}.
As remarked above, Y is incident to exactly two edges. Assume that Y is not adjacent to a
vertex αi. Then, there is 1 ≤ j′ < j and Z ∈ {Dj′ , Ej′ , Fj′} such that Y and Z are adjacent.
Note that the three edges that are incident to Y and Z belong to the same partition class. By
the shown auxiliary result, it directly follows

– if Z = Ej′ then Y and Aj′ represent the same literal and they have the same color

– if Z = Fj′ then Y and Bj′ represent the same literal and they have the same color

– if Z = Dj′ then Y and Cj′ represent the same literal and they have the same color.

By induction, the claimed results holds, and the coloring of the vertices A1, B1, . . . , Cm is indeed
consistent.

We define truth-value assignment β as follows. Let 1 ≤ i ≤ n, and assume that literal xi

appears in ϕ. Let 1 ≤ j ≤ m be smallest such that literal xi appears in Lj. Let β(xi) =def 1
if the vertex of Kj corresponding to xi, so, one of Aj , Bj , Cj , is colored “red”; otherwise, let
β(xi) =def 0. If literal xi does not occur in ϕ then literal ¬xi occurs in ϕ, and, analogous
to the previous case, we let β(xi) =def 1 if and only if the corresponding vertex in the first
clause gadget is colored “green”. Remember that the vertex coloring is consistent. Due to the
definition of β and the consistency, it follows for every 1 ≤ j ≤ m that Iβ(aj) = 1 if and only if
Aj is colored “red”; analogously for bj and cj . Due to the auxiliary result, for every 1 ≤ j ≤ m,
one of Aj , Bj , Cj is colored “red” and one of them is colored “green”. We conclude that β is a
satisfying assignment for ϕ of the desired form.

To complete the proof, we have to transform H into a simple graph by resolving the multiple
edges. We obtain the final graph H∗ by subdividing multiple edges. It is not difficult to see
that a subdivision operation introduces a vertex of degree 2, that can be either the beginning
of the two paths or the two incident edges must belong to the same path. Since H∗ has exactly
four vertices of degree 1, that must form the four endpoints of the two paths, the two edges
incident to a subdivision vertex must belong to the same partition set. Thus, the above shown

11

equivalence between satisfiability of ϕ in the desired sense and the existence of a partition of
E(H) into two paths directly translates to H∗.

Biedl and Brandenburg considered the complexity of deciding whether a given graph G
admits an edge set partition into k trees for k some fixed integer. They showed that this
problem is NP-complete for every k ≥ 2 [2]. A similar result holds for the case of partitioning
the edge set of a given graph into k paths, where k ≥ 2; we apply the reduction of the proof of
Theorem 3.6 and add k − 2 isolated edges. Each of these edges must form a single path in a
possible partition, and thus, the construction of Theorem 3.6 directly extends to arbitrary k.

4 Partition into two paths

In this section, we present a Monte Carlo algorithm for the Path-Path Edge Set Partition

problem with a running time of O(1.784n). Then, we show that this algorithm can be adapted
to design a deterministic O(1.8906n)-time algorithm for the problem. We start with a simple
property of graphs whose edge set admits such a partition.

Lemma 4.1. Let G be a graph that is not a path. If E(G) can be partitioned into sets A and
B such that G[A] and G[B] are paths, then G has maximum vertex degree 4 and G has at most
four vertices of odd degree. The number of odd-degree vertices is always even. If it is zero, then
both paths have the same endpoints. If it is two, then both paths share exactly one endpoint.

Proof. Let (A,B) be a partition of E(G) such that G[A] and G[B] are paths. Since G is not
a path, A and B must be non-empty. Each vertex of G[A] has degree 1 or 2 and each vertex
of G[B] has degree 1 or 2. Thus, each vertex of G has degree at most 4. Furthermore, since
exactly two vertices of G[A] and of G[B] have degree 1, at most four vertices of G can have odd
degree. If the two paths do not share any endpoints, then exactly four vertices of G have odd
degree. If the two paths share exactly one endpoint, then that shared (endpoint) vertex has
degree two, while the other two endpoints are at vertices of odd degree. If the two paths have
the same endpoints, then these shared (endpoint) vertices have degree two, so there are no odd
degree vertices.

Given a graph G = (V,E), an instance to the problem, we first regularize it in Phase 0 that
consists of two steps:
1. If G has two vertices of odd degree, then create from G at most n many instances by selecting
a vertex v of degree two and attaching a new pendant vertex (v′) to v. If G has zero vertices of
odd degree, then create from G at most n2 − n many instances by selecting two vertices u, v of
degree two and attaching a new pendant vertex (u′ resp. v′) to u resp. v. Continue with Step
2. of Phase 0 (and the following phases) for each of the created instances (which we refer to as
G in the following for simplicity).
2. Apply the following reduction rules as long as possible.

Rule 1. If u is a vertex of degree two with neighbors x and y, delete u and add an edge
between x and y.

Rule 2. If u is a vertex of degree three, add a new vertex u′ and connect it to u.

12

Rule 3. If there are at least three edges between two vertices or if there is a loop, i.e., an edge
connecting a vertex x with itself, the given instance is a no-instance.

The rules create an equivalent loopless multi-graph with (possible) double edges between
vertices that has exactly four vertices of odd degree, and this degree is one. So, it is known
where the paths start.

Let G1 be the (multi-)graph obtained by repeatedly applying Rule 1 until no longer possible.
Clearly, E(G1) can be partitioned into two paths iff E(G) can be partitioned into two paths. By
Lemma 4.1, if E(G1) indeed admits a partition into two paths, the endpoints of these paths are
either of degree one or three. Reduction Rule 2 simply ensures that the endpoints are always of
degree one.

In broad brush-strokes the algorithm now works as follows. It colors the edges alternately
red and green and after it has finished coloring all edges, checks whether the edges of each color
induce a path. If yes, the algorithm outputs the paths; else, it starts afresh (i.e., at the begining
of Phase 1), coloring the edges alternately all over again. Call a 2-coloring of the edges of a graph
a good coloring if the edges of both colors induce a path. We show that, given a yes-instance,
the algorithm runs in time O(1.784n) and finds a good 2-coloring with high probability.

The algorithm colors the graph in three phases, which we now describe. At the end of each
phase, the following invariant is preserved:

Invariant. Every vertex of degree four either has all its incident edges colored or
exactly two of its incident edges colored with an equal number of edges colored red
and green.

In Phase 1, the algorithm starts at an arbitrary vertex u of degree one and colors the edge uv
incident to it red. It then moves to vertex v and considers the edges incident to v. At any
given point in Phase 1, when the algorithm reaches a vertex w via an edge xw, there are three
possibilities. Vertex w is of degree four with three uncolored edges incident to it, in which
case the algorithm picks an uncolored edge wz with probability 1/3 and colors it red or green
depending on whether xw is green or red, and moves to vertex z. Vertex w is of degree four and
two of its edges are colored. In this case, one of these edges is colored red and the other green.
Suppose the algorithm reached w via edge xw and that the edge wy is as yet uncolored. If the
algorithm colored xw red, then it colors wy green and red, otherwise. Finally, vertex w could
be of degree one, in which case the algorithm proceeds to Phase 2.

At the end of Phase 1, exactly two vertices u, v of degree one have been visited by the
algorithm and the edges eu, ev incident to both of these have been assigned colors. Phase 2
starts at a vertex x of degree one which has not yet been visited in the previous phase. The
edge ex incident to this vertex receives a color that depends on the colors assigned to eu, ev . If
both eu, ev are colored red, edge ex is colored green; if both eu, ev are colored green, edge ex is
assigned red; otherwise ex is assigned red or green with equal probability. The algorithm now
proceeds as in Phase 1. If it reaches a vertex y via edge e, then there are three possibilities.
Either y is of degree four and all its incident edges are uncolored, or it has two incident edges that
are colored, or y is a vertex of degree one. In the first case, the algorithm picks an uncolored
edge with probability 1/3 and assigns it a color different from that of e. In the second, the
algorithm assigns the remaining uncolored edge a color such that vertex y has two red and two

13

green edges. Finally if y has degree one, Phase 2 is complete. Note that the invariant continues
to hold at the end of Phase 2.

At the end of Phase 2, edges incident to vertices of degree one have been assigned colors. At
the beginning of Phase 3, the algorithm does a simple sanity check: there must be two red edges
and two green edges incident to the vertices of degree one. If this is not the case, the algorithm
abandons this coloring and starts afresh. Otherwise if all edges have been assigned colors, the
algorithm checks whether the edges of each color induce a path. If they do, the algorithm
outputs these two paths and halts; else, it starts coloring the edges afresh. If, however, all edges
have not been assigned colors, the algorithm does the following. It first assigns colors red and
green to the edges of 2-cycles. Recall that the graph that we are dealing with is possibly a
multi-graph and 2-cycles can occur in the graph. This assignment of colors is valid because both
edges of a 2-cycle cannot belong to the same path. Again the invariant continues to hold after
all 2-cycles are colored.

There may still be edges that have not yet received a color. The algorithm now works in a
sequence of subphases. In each subphase, it picks an uncolored edge xy arbitrarily and colors
it red or green with equal probability. It then moves to vertex y (say) and sees if there are
any edges left to color. In this case, we call vertex x the initial vertex of the subphase. If all
edges incident to y are uncolored, the algorithm picks one of the uncolored edges with equal
probability (say, yz) and colors it with a color different from the one assigned to xy and moves
to z. If y has two of its incident edges colored then these must be differently colored by the
invariant. It colors the last uncolored edge (say, yw) red or green so that there are an equal
number of red and green edges incident to y and moves to w. Note that vertex x may have two
of its incident edges colored or none of them colored prior to the beginning of the subphase. By
coloring xy, we have a vertex x that has either only three incident edges colored or one incident
edge colored. In either case, we have a vertex where the invariant does not hold, but this is the
only vertex where it happens.

The algorithm continues coloring edges alternately until it gets “stuck”, that is, reaches a
vertex which has all its incident edges colored. This can happen only when the algorithm reaches
the initial vertex x. The algorithm checks whether x has the same number of red and green
edges; if not, the algorithm aborts this coloring and starts afresh. Therefore, in each subphase
the algorithm colors edges that are part of (possibly non-simple) cycles. If all edges are still not
yet colored, the algorithm starts another subphase by picking another uncolored edge x′y′, and
coloring it red or green with equal probability and proceeding in this fashion till all edges are
colored. Note that at the end of each subphase, the invariant continues to hold. This concludes
the explanation of how the algorithm works.

The following result allows to infer that Phase 3 deals with cycles of a certain minimal length,
which is important for the estimate of the running time.

Lemma 4.2. In each subphase of Phase 3, the algorithm colors the edges of a (possibly non-
simple) cycle of length at least four.

Proof. The fact that in each subphase the algorithm colors edges of a cycle is clear, because
the only way a subphase ends is when the algorithm reaches a vertex which has all its incident
edges colored. That is, prior to the algorithm having visited that vertex, three of its incident
edges have already been assigned colors. From the algorithm description, we have seen that in

14

p q

x y z

r g

r g

r

Figure 5: The algorithm picks edge xy at the beginning of a subphase; vertex x is the initial
vertex.

each subphase the initial vertex is the only vertex where the invariant is not maintained. This
shows that for a subphase to end, the algorithm must cycle back to the initial vertex. This cycle
cannot be of length two, as all such cycles have already been colored at the beginning of Phase 3.
If this cycle is of length three, then we have the situation depicted in Figure 5. Suppose the
algorithm starts a subphase by picking edge xy, colors three edges alternately, and is unable to
proceed, because it has reached x once again. This means that the edges xp and xq had already
been assigned colors prior to the starting of this subphase. Since the invariant holds at the end
of Phases 1 and 2 and at the end of each subphase, this means that one of them is colored red
and the other is colored green. Hence, x has three edges incident to it which are of the same
color, a situation in which the algorithm aborts the coloring and starts afresh.

Theorem 4.3. If G is a yes-instance of the Path-Path Edge Set Partition problem, then
the algorithm runs in time O(1.784n) and fails to find a partition (A,B) of E(G) such that G[A]
and G[B] induce paths with exponentially small probability.

Proof. When the algorithm is at a vertex, three of whose incident edges are uncolored, two
of these edges must belong to the same path. Hence, the algorithm correctly guesses the color
with probability 2/3. If the algorithm is at a vertex which has two of its incident edges colored,
then the color of the fourth edge is automatically decided and no guessing is required. Finally,
in each subphase of Phase 3, algorithm guesses the color of an uncolored edge and correctly does
so with probability 1/2. However by Lemma 4.2 along with the fact that there are no 2-cycles,
in each subphase, the algorithm colors the edges of a cycle of length at least four. Let n1 be
the number of vertices of degree four that are visited by the algorithm in Phases 1 and 2. Then
each of these n1 vertices has at least two incident edges that receive colors. Therefore, the total
number of edges that receive colors in Phases 1 and 2 is at least n1 − 2, as the colored edges
may induce at most two connected components. The number of edges that are yet to receive
colors is at most (2n− 6)− (n1 − 2). This follows, because the graph has exactly four vertices of
degree one and n− 4 vertices of degree four which puts the number of edges to 2n− 6. Now in
each subphase of Phase 3, the algorithm makes one guess (with probability 1/2) and colors at
least four edges and hence the number of subphases is at most (2n−n1 − 4)/4. The probability
that the algorithm succeeds in finding a correct 2-coloring of the edges is at least

(

2

3

)n1
(

1

2

)(2n−n1−4)/4

.

For n ∈ N and 0 ≤ n1 ≤ n, define f(n, n1) = 1.5n1 · 2(2n−n1−4)/4. Now log2 f(n, n1) ≤
0.335n1 + 0.5n ≤ 0.835n and hence f(n, n1) ≤ 20.835n < 1.784n. Hence, if we run the algorithm

15

for c · f(n, n1) times for some constant c, the probability that the algorithm fails to obtain a
good 2-coloring on a yes-instance is at most

(

1 −
1

f(n, n1)

)c·f(n,n1)

<

(

1 −
1

1.784n

)c·1.784n

<

(

1

e

)c

.

By choosing c to be large enough, we can make the error probability exponentially small.

To conclude this section, we show that the idea of the previously described algorithm can be
reused to derive a desterministic algorithm.

Theorem 4.4. There is a deterministic algorithm solving PPP in time O(1.8906n).

Proof. Our deterministic algorithm is based on the randomized one given above. However,
rather than randomly assigning some colors to some uncolored edges, this algorithm tries all
possible assignments.

Let G = (V,E) be a graph. By Lemma 4.1, the maximum degree of G is at most 4, since
otherwise we face a no-instance. Assume that G is a yes-instance and let A and B be a partition
of E(G) such that G[A] and G[B] are paths. Assume that the edges of A are colored red and the
ones of B are colored green. In the following, given a vertex v, we denote by d̃(v) the number
of uncolored edges incident to v.

Description of the algorithm. By Lemma 4.1, G has at most 4 vertices of odd degree. Our
algorithm starts by exhaustively coloring all edges incident to vertices of odd degree. If G has no
vertices of odd degree, the algorithm arbitrarily picks an edge uv which is colored red. In each
step, it recursively applies the following reduction rules (their correctness is straightforward) to
obtain a reduced instance:

Red1. If u is a vertex with d(u) = 2 and d̃(u) = 1, then its unique uncolored incident edge is
colored red (resp. green) if its colored incident edge is red (resp. green).

Red2. If u is a vertex with d(u) = 4 and d̃(u) = 1, then its unique uncolored incident edge
is colored by the unique possible color (which is determined by the color of the colored
incident edges).

Red3. If u is a vertex with d(u) = 4 and d̃(u) = 2 such that its two colored incident edges have
the same color, then the two uncolored incident edges are colored by the opposite color.

As soon as we have a reduced instance, the algorithm picks a vertex v with exactly one
incident colored edge, if one exists. W.l.o.g., we assume that the color of this edge is red. Let
v1, v2 and v3 be the neighbors of v such that the edges vv1, vv2 and vv3 are uncolored. The
algorithm branches on the following two possible cases which are then recursively solved:

(A) edge vv1 is colored red, and both vv2 and vv3 are colored green;

(B) edge vv1 is colored green and both vv2 and vv3 are still uncolored.

16

If no such vertex v having exactly one incident colored edge exists, then by application of
Red3, the graph induced by the uncolored edges consists of a collection of cycles. If a solution
(extending the current partially colored instance) exists, these cycles have to be alternately
colored with the two colors. Thus, the length of these cycle is even and is at least 4. Otherwise,
the current partially colored instance is a no-instance and the algorithm stops the exploration
of this subproblem. For each cycle, the algorithm tries the two possible alternating coloring.

Running time analysis. To analyse the running-time, let us consider the measure µ =
w2 ·n2 +w3 ·n3 +w4 ·n4, where ni denotes the number of vertices in any reduced instance being
incident to exactly i uncolored edges, 2 ≤ i ≤ 4, and w2 = 1

3 , w3 = 2
3 and w4 = 1.

Let T (µ) be an upper-bound on the worst-case running time. We note that the three reduc-
tion rules cannot increase the measure.

First assume that v is a vertex with 3 uncolored incident edges. The algorithm branches into
two sub-problems (A) and (B) and we have :

T
(

µ
)

≤ T
(

µ− wd̃(v) −
∑

x∈{v1,v2,v3}

(wd̃(x) − wd̃(x)−1)
)

+ T
(

µ−
∑

x∈{v,1}

(wd̃(x) − wd̃(x)−1)
)

Assume now that we face a collection of vertex-disjoint uncolored cycles of length at least 4.
Then, there exists two possible coloring of these cycles and we have

T
(

µ
)

≤ 2 · T
(

µ− 4 · w2

)

.

Solving these recurrences for all possible values of d̃(x), and noting that µ ≤ n, gives O(1.8906n)
as a running time upper bound.

5 Partition into two trees

Let us recall the definition of TTP: Given a graph G = (V,E), decide whether the edge set E
can be partitioned into two sets A and B such that both the edge set A and the edge set B
induce a tree in G. Clearly, since A and B induce a tree in G, both sets contain at most n− 1
edges. Consequently, the number of edges of G must satisfy m = |E| ≤ 2n − 2. Otherwise, G
cannot have such a partition and is rejected. Thus, we may assume m ≤ 2n− 2. Thus, a brute
force algorithm testing, for every possible partition (A,B) of E, whether both A and B induce
a tree, has running time O∗(2m) = O∗(4n).

Now, we present an algorithm for Tree-Tree Edge Set Partition that significantly
improves upon the running time of Θ∗(4n) and relies heavily on the use of matroids. In the
first step, the algorithm simply chooses, for each vertex of G, whether it is part of the first tree,
the second tree, or both and this in all possible ways; there are 3n different choices and in each
choice we label the vertices of G as follows: If a vertex only belongs to T1, it is labeled 1, if
a vertex only belongs to T2, it is labeled 2, finally if a vertex belongs to both trees, then it is
labeled 3. Hence, if a vertex is labeled 1, then all its incident edges in G belong to T1. If a
vertex is labeled 2, then all its incident edges in G belong to T2. Finally if a vertex is labeled
3, then in a corresponding and valid edge partition of G it is incident to at least one edge of
T1 and at least one edge of T2. We claim that it can be checked in polynomial time whether

17

there is an edge partition into two trees T1 and T2 for a given 1, 2, 3-labeling of G. This would
immediately imply that our algorithm has running time O∗(3n).

Consider a graph G = (V,E) and a 1, 2, 3-labeling L. Let Vi, i = 1, 2, 3, be the set of
vertices of label i. Assume the edge set of G can be partitioned into two trees T1 and T2

respecting the labeling such that for i = 1, 2, E(Ti) is the edge set of Ti. Hence for i = 1, 2,
|E(Ti)| = |Vi|+ |V3| − 1; and consequently m = |V1|+ |V2|+ 2|V3| − 2. If this is not satisfied, the
labeling L is not valid and the algorithm rejects this choice respectively labeling immediately.

Now, let us partition the edges of the graph G into three subsets: E1 is the set of edges which
have (at least) an endpoint labeled 1, E2 is the set of edges which have (at least) an endpoint
labeled 2, and E3 is the set of edges for which both endpoints have label 3. Clearly, all edges of
E1 must belong to T1 and all edges of E2 must belong to T2. If either E1 or E2 induces a cycle
in G, which is easy to detect, then we reject the labeling L.

To decide whether the edges of E3 can be partitioned into C1 and C2 such that E1 ∪C1 and
E2 ∪C2 induce a tree in G, we form two graphs G1 and G2 from G. G1 is obtained by deleting
all the edges in E2 and contracting all the edges in E1. G2 is formed by deleting all the edges in
E1 and contracting all the edges in E2. Both G1 and G2 have edge sets that are in one-to-one
correspondence with E3, but they may have different vertex sets. Now, C1 ⊆ E3 must induce
a spanning tree of G1, since G1 contains no edges of E2 and decontracting the edges of E1 in
G1 gives the tree T1. Similarly, C2 ⊆ E3 must induce a spanning tree of G2. This requires that
|E(G1)| + |E(G2)| = |V (G1)| + |V (G2)| − 2. If this is not the case, we reject the labeling.

To complete our algorithm, we are using a well-known polynomial-time algorithm for the
Matroid Partitioning Problem. For more information on matroids and algorithms on matroids we
refer the interested reader to [8]. The matroid partition problem for two matroids M1 = (E,I1)
and M2 = (E,I2) asks whether there are independent sets A1 ∈ I1 and A2 ∈ I2 such that A1

and A2 is a partition of E. All what remains to solve our problem for a fixed labeling L is to
solve a partition problem on two graphic matroids. Recall that the graphic matroid M = (E,I)
of a graph G = (V,E) has as ground set the edge set of G and that any subset A of edges of G
is an independent set of the matroid, A ∈ I, if A induces a forest, i.e., an acyclic graph, in G.
Let M1 = (E3,I1) be the graphic matroid of G1 and let M2 = (E3,I2) be the graphic matroid
of G2. Now we need to partition E3 into two sets C1 and C2 such that C1 ∈ I1 and C2 ∈ I2.
This is the matroid partition problem which has been shown to be polynomial-time solvable by
Edmonds [4, 5]. In our case, the only possible partition is into a basis C1 of M1 and a basis
C2 of M2, since C1 must induce a spanning tree of G1 and and C2 must induce a spanning tree
of G2. Consequently, if the matroid partition of M1 and M2 is not possible, then we reject the
labeling L. Otherwise, the solution C1 and C2 of the matroid partition problem can easily be
transformed into an edge partition of the graph G into two trees respecting the given labeling.

Finally, we show how to modify and speed up the algorithm. In our algorithm, we need to
label the vertices with labels 1, 2 or 3, and partition the vertex set of the input graph G for
some 1, 2, 3-labeling into three subsets V1, V2 and V3. This requires that the two trees T1 and
T2 that we are searching satisfy: the vertices in V1 belong to T1 but not to T2, the vertices of V2

belong to T2 but not to T1, and the vertices of V3 belong to T1 and T2. Consequently, as already
pointed out, m = |V1| + |V2| + 2|V3| − 2.

We modify the algorithm as follows. If m ≤ 1.5n, then we simply check each partition of

18

the edge set whether both subsets induce a tree. The running time is O∗(2m) = O∗(21.5n).
Otherwise, m > 1.5n. m = |V1| + |V2| + 2|V3| − 2 and |V1| + |V2| ≤ n implies that V3 has to
include at least half of the vertices of G. Consequently, we may restrict to labelings of G in
which at least n/2 vertices have label 3. How many labelings are this? Suppose we choose
t ≤ n/2 vertices to be labeled 1 or 2 and then we choose for each such vertex whether its label
is 1 or 2. Doing this for all t ≤ n/2, we obtain all labelings that need to be checked and these
are at most

n/2
∑

t=0

(

n

t

)

2t ≤ n2n2n/2.

Since each labeling can be tested in polynomial time, the above described algorithm runs in
time O∗(21.5n). Thus, the overall running time of the modified algorithm is O∗(21.5n).

Theorem 5.1. There is an algorithm solving TTP in time O(2.8285n).

6 Conclusions and Final Remarks

We finally observe that, based on a very simple branching algorithm, the problem of partitioning
the edge set into a path and a tree PTP can be solved in time O∗(32n/3) = O(2.0810n). The
whole idea is to start the path by arbitrarily choosing an edge, and then, in each recursive step,
to extend the path in every possible way.

Theorem 6.1. PTP can be solved in O∗(32n/3)-time.

Proof. Let G = (V,E) be a graph. Let us assume thatG is not a tree; otherwise, we immediately
solve the problem by answering “yes”. Also, we assume that |E| ≤ 2n − 2; otherwise, we
immediately answer “no”. To solve the problem, our algorithm enumerates all possible paths P
in G and then checks whether the remaining edges form a tree.

We use a typical branching approach to enumerate all the possible paths. Let call P the
current path that our algorithm is constructing. First it starts by choosing an endpoint u of P
and an edge uv of that path. There are at most n(n− 1) such edges. Let call uv the active edge
which is the last edge appended to the current path. Given an active edge uv, the algorithm
either decides (i) that P ends at vertex v, or (ii) that P is extended to a new active edge vw,
where w 6∈ P and vw ∈ E. Once it has been decided that two edges uv and vw belong to P ,
the other edges incident to v have to belong to the tree. We note that, as soon as the algorithm
decides that P ends at some vertex v then it checks in polynomial-time whether the edges being
not in P induce a tree, and it returns the corresponding answer.

Denoting T (m) the running-time of the algorithm on a graph with m edges, and denoting
d(v) the degree of v, the following recurrence described the running time :

T (m) = 1 + (d(v) − 1) · T (m− d(v) + 1).

A classical analysis show that T (m) = O∗(3m/3) = O∗(32n/3) since m < 2n for any yes-instance.

Notice that if we partition the vertex set instead of the edge set, the questions tackled in this
paper do not make much sense; rather, forbidden graphs should be looked at, as undertaken in
[3].

19

It might be also interesting to consider the question of solving PFES on subcubic graphs.
Is that problem still NP-hard? Notice that the possibly related question of finding a feedback
vertex set of minimum size is polynomial-time solvable on subcubic graphs, while it is NP-hard
in the general case. Furthermore, we did not move into finding exact algorithms for PFES.

References

[1] T. Akiyama, T. Nishizeki, N. Saito. NP-completeness of the Hamiltonian Cycle Problem
for bipartite graphs. Journal of Information Processing, 3:73–76, 1980.

[2] T. Biedl and F.-J. Brandenburg. Partitions of graphs into trees. GD 2006, Springer LNCS,
4372:430–439, 2007.

[3] H. Broersma, F. V. Fomin, J. Kratochv́ıl, and G. J. Woeginger. Planar graph coloring avoid-
ing monochromatic subgraphs: trees and paths make it difficult. Algorithmica, 44(4):343–
361, 2006.

[4] J. Edmonds. Minimum partition of a matroid into independent subsets. J. Res. Nat. Bur.
Standards, 69B, 1965, 67-72.

[5] J. Edmonds. Lehman’s switching game and a theorem of Tutte and Nash-Williams. J. Res.
Nat. Bur. Standards, 69B, 1965, 73-77.

[6] H. N. Gabow and H. H. Westermann. Forests, frames, and games: algorithms for matroid
sums and applications. Algorithmica, 7:465–497, 1992.

[7] D. A. Holton, B. Manvel, B. D. McKay. Hamiltonian Cycles in cubic 3-connected bipartite
planar graphs. Journal of Combinatorial Theory, Series B, 38:279–297, 1985.

[8] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston,
1976.

[9] D. Pálvölgyi. Partitionability to two trees is NP-complete. arXiv:1002.3937v1, 2010.

[10] T. J. Schaefer. The complexity of satisfiability problems. STOC 1978, pp. 216–226, 1978.

20

