
Motivation Main Theorem Proof Overview Summary

Lower Bounds on the Complexity of MSO1

Model-Checking

Somnath Sikdar

Joint work with
Robert Ganian Petr Hliněný Alexander Langer
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Algorithmic Meta Theorems

Theorems that identify tractable problem classes.

Example

All graph properties expressible in MSO2 can be decided in
linear time on graphs of bounded treewidth [Courcelle, 1990].

All problems in MAX SNP have constant-factor approximation
algorithms [Papadimitriou and Yannakakis, 1991].

Compact parameterized problems expressible in CMSO admit
polynomial kernels on graphs of bounded genus [Bodlaender
et al, 2010].

Uses

Quick way of checking whether a problem admits an algorithm
of a particular kind.
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Courcelle’s Theorem

(rephrased in the parlance of parameterized complexity)

Theorem (Courcelle, 1990)

Let ϕ ∈ MSO2 and let C be the class of all graphs. Then MSO2

model-checking problem MC(MSO2, C): “Does G |= ϕ?” is
fixed-parameter tractable wrt the parameter |ϕ|+ tw (G).

No lower bounds were known till recently.
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Courcelle’s Theorem: Lower Bounds

Are there classes of unbounded treewidth for which Courcelle’s
Theorem holds?

YES!

Graph classes with very slowly growing treewidth (log∗ n, for
instance).

Question

How fast must the treewidth grow for Courcelle’s Theorem to fail?

Kreutzer and Tazari show that Courcelle’s Theorem fails for graph
classes with moderately unbounded treewidth.
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Graph Classes with Moderately Unbounded Treewidth

Definition (Kreutzer and Tazari)

The treewidth of a graph class C is polylogarithmically unbounded
if for all c > 1 the following holds: for all n ∈ N there exists
Gn ∈ C with

logc(|Gn|) ≤ tw (Gn) (unboundedness);

|Gn| = 2o(n) (small size);

Gn can be constructed in time 2o(n) (constructibility).
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Courcelle’s Theorem: A Lower Bound

Theorem (Kreutzer and Tazari, 2010)

Let C be a graph class that is

closed under subgraphs, and

has polylogarithmically unbounded treewidth.

Then given

G ∈ C, ϕ ∈ MSO with |ϕ| as parameter,

deciding whether G |= ϕ is not in XP, unless SAT can be solved in
subexponential time.
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High-level Proof Idea

Reduce Sat to MC(MSO2, C).

Input: A SAT formula F of length n.

Question: Is F satisfiable?

Reduction

1 Construct Gn ∈ C s.t. logc(|Gn|) < tw (Gn) and |Gn| = 2o(n).
2 Encode F in a subgraph of Gn.

Using closure under subgraphs.

3 Define an MSO-formula ϕ (independent of F ) s.t. F
satisfiable iff Gn |= ϕ.

Deciding Gn |= ϕ in XP takes time 2o(n)·f(|ϕ|), subexponential
in |F |.



Motivation Main Theorem Proof Overview Summary

Aspects of Kreutzer & Tazari’s Theorem

Threshold for treewidth is more-or-less strict.

∃ subgraph-closed classes with tw (G) = log |G| that can be
model-checked in XP-time [Makowski and Mariño, 2003].

The proof requires certain witnesses to be constructed
efficiently.

Constructibility is part of the definition.
Proofs are very technical and spread over several papers.
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Main Theorem

Theorem

Let C be a graph class that is

closed under subgraphs;

has polylogarithmically unbounded treewidth.

Then the MSO1 model-checking problem on vertex labeled graphs
from C is not in XP, unless 3-Colorability is in time 2o(n) with
subexponential advice.

The labels are from a fixed, finite set.

Nonuniform ETH: SAT, 3-Colorability are not in 2o(n) time
with subexponential advice.
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Major Differences Between the Two Results

1 We use a different logic.

Our result: applies to MSO1 model-checking on
vertex-labeled graphs.
K & T’s result: applies to MSO2 model-checking on
unlabeled graphs.

The two logic classes not comparable: consider Hamiltonian
Cycle and Red Blue Dominating Set.

2 We assume that witnesses are given as advice:

No constructibility requirement;
Stronger complexity assumption: Nonuniform ETH;
Since our proof does not require constructibility, it is much
shorter and easier.
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On the Constructibility Clause

Our definition of polylogarithmically unbounded treewidth:

Definition

The treewidth of a graph class C is polylogarithmically unbounded
if for all c > 1 the following holds. For all n ∈ N there exists
Gn ∈ C with

logc(|Gn|) ≤ tw (Gn) (unboundedness);

|Gn| = 2o(n) (small size).

No constructibility requirement.
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ETH versus Nonuniform ETH (NETH)

Exponential Time Hypothesis [Impagliazzo, Paturi, and Zane,
2001]:

n-variable 3-SAT cannot be solved in 2o(n) time.

Can be formulated using other problems such as Vertex Cover
or 3-Colorability.

NETH: n-variable 3-SAT not solvable in 2o(n) time using:

a family of algorithms, one for each input length;

a circuit-family F s.t. for each input length n, ∃Cn ∈ F with
|Cn| ≤ 2o(n);

an algorithm that receives oracle advice which depends only
on the input length n and has 2o(n) bits.

Can be formulated in terms of Vertex Cover or 3-Colorability.
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Main Theorem

Theorem

Let C be a graph class s.t.

C is closed under subgraphs;

C has polylogarithmically unbounded treewidth.

Then the MSO1 model-checking problem on vertex labeled graphs
from C is not in XP, unless 3-Colorability is in time 2o(n) with
subexponential advice.

Proof. A multistage reduction from 3-Colorability.
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Proof Outline
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Step 1: Reducing to a Subcubic Planar Graph

Given

ϕ: MSO1 formula expressing 3-Colorability.

H: n-vertex graph, instance of 3-Colorability.

Reduce (H,ϕ)→ (H̃, ϕ̃) in polynomial-time “preserving”
parameters:

Equivalence: H |= ϕ iff H̃sub |= ϕ̃ for every subdivision H̃sub

of H̃.

Parameter-Preserving: ϕ̃ depends only on ϕ and
|ϕ̃| = O(|ϕ|);

H is {1, 3}-planar.

H̃ may not be in the class C but we want a graph in C that
“contains” H̃.
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Step 2: Finding a Graph in C containing H̃

|H| = n and |H̃| ≤ nb, for some constant b.
Polylogarithmic unboundedness of tw (C)

∃G ∈ C s.t. logc |G| ≤ tw (G) and |G| = 2n
ε
.

Grid-like subgraphs [Reed and Wood, 2008]

logc |G| ≤ tw (G) and |G| = 2n
ε

implies nO(1) ≤ tw (G).

nO(1) ≤ tw (G) implies G contains a grid-like subgraph Γn
of order n: Γn “contains” a subdivision H̃sub of H̃.

Closure of C under subgraphs

Γn ∈ C.

Summary so far

Can “embed” H̃ in a graph from C of size 2o(n).
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Step 3: Using Subexponential Advice

Supexponential advice

Γn has size 2o(n) and depends only on n: supplied as advice.

Using vertex labels to identify Hsub in Γn
Γn “contains” Hsub: can construct a vertex labeling λ and a
formula ψ ∈ MSO1[L] s.t.

Hsub |= ϕ iff (Γn, λ) |= ψ.

Model-checking C in XP implies

deciding (Γn, λ) |= ψ in |Γn|f(|ψ|) time;

thereby deciding H |= ϕ in |Γn|f(|ψ|) = 2o(n)·f(|ψ|) = 2o(n)

time, contradicting nonuniform ETH.
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Summary

Main Contribution

Strengthen and simplify Kreutzer and Tazari’s impressive
result.

Extending to Unlabeled MSO1?

Open. Is there is a (nontrivial) graph class where
model-checking MSO1 is easy but MSO1[L] is hard?

This indicates that the result might be extendable to
unlabeled MSO1.
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Thank You!
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