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Abstract

We present an alternative proof of a theorem by Courcelle, Makowski and

Rotics [7] which states that problems expressible in MSO1 are solvable in lin-

ear time for graphs of bounded rankwidth. Our proof uses a game-theoretic

approach and has the advantage of being self-contained. In particular, our pre-

sentation does not assume any background in logic or automata theory. We

believe that it is good to have alternative proofs of this important result. More-

over our approach can be generalized to prove other results of a similar flavor,

for example, that of Courcelle’s Theorem for treewidth [4].

1. Introduction1

In this paper we give an alternate proof of the theorem by Courcelle, Makow-2

ski and Rotics [7]: Every decision or optimization problem expressible in MSO13

is linear time solvable on graphs of bounded cliquewidth. We prove the same4

theorem for graphs of bounded rankwidth. Since rankwidth and cliquewidth are5

equivalent width measures in the sense that a graph has bounded rankwidth iff6

it has bounded cliquewidth, it does not matter which of these width measures7

is used to state the theorem [24].8

IThis work is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
RO 927/8.

IIA short version of this paper appeared in the proceedings of TAMC 2011 [22]
Email addresses: langer@cs.rwth-aachen.de (Alexander Langer),

rossmani@cs.rwth-aachen.de (Peter Rossmanith), sikdar@cs.rwth-aachen.de (Somnath
Sikdar)

Preprint submitted to Elsevier October 27, 2011



The proof by Courcelle et al. [7, 8] makes use of the Feferman-Vaught Theo-9

rem [11] adapted to MSO (cf. [16, 15]) and MSO transductions (cf., [5]). Under-10

standing this proof requires a reasonable background in logic and as such this11

proof is out of reach of many practicing algorithmists. An alternative proof of12

this theorem has been recently published by Ganian and Hliněný [12] who use13

an automata-theoretic approach to prove the theorem. Our approach to proving14

this theorem is game-theoretic, an outline of which follows.15

It is known that any graph of rankwidth t can be represented by a t-labeled16

parse tree [12]. Given any integer q, one can define an equivalence relation17

on the class of all t-labeled graphs as follows: t-labeled graphs G1 and G2 are18

equivalent, denoted G1 ≡MSO
q G2, iff for every MSO1-formula ϕ of quantifier19

rank at most q, we have: G1 |= ϕ iff G2 |= ϕ, i.e., no formula with at most q20

nested quantifiers can distinguish them. Here is a sketch of our proof.21

• The number of equivalence classes of the relation ≡MSO
q on the class of22

t-labeled graphs depends only on the quantifier rank q and the number of23

labels t.24

• Each equivalence class can be represented by a tree-like structure of size25

f(q, t), where f is a computable function of q and t only. This tree-like26

representative of an equivalence class, called a reduced characteristic tree27

of depth q and denoted by RCq(G), captures all model-checking games28

(defined later) that can be played on graphs G in that equivalence class29

and formulas of quantifier rank at most q.30

• One can construct a reduced characteristic tree of depth q given a t-labeled31

parse tree of an n-vertex graph in time O(f ′(q, t) · n).32

• Finally to decide whether G |= ϕ, for some MSO1-formula ϕ of quantifier33

rank at most q, we simply simulate the model checking game on ϕ and G34

using RCq(G). This takes an additional O(f(q, t)) time and shows that35

one can decide whether G |= ϕ in time O(f ′′(q, t)·n), proving the theorem.36

The notions of q-equivalence ≡MSO
q and related two-player pebble games (such37
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as the Ehrenfeucht-Fräıssé game) are fundamental to finite model theory and38

can be found in any book on the subject (cf. [10]). However for understanding39

this paper, one does not need any prior knowledge of these concepts.40

The rest of the paper is organized as follows. Section 2 recaps the basic41

definitions and properties of rankwidth. Section 3 is a brief introduction to42

monadic second order logic for those who wish to see it, and has been included43

to make the paper self-contained. In Section 4, we introduce the equivalence44

relation ≡MSO
q , model-checking games and characteristic trees of depth q. In45

this section we prove that reduced characteristic trees of depth q for t-labeled46

graphs indeed characterize the equivalence relation ≡MSO
q on the class of all47

t-labeled graphs, and that they have size at most f(q, t), for some computable48

function of q and t alone. In Section 5 we show how to construct reduced49

characteristic trees of depth q for an n-vertex graph given its t-labeled parse50

tree decomposition in time O(f ′(q, t) · n). We then use all the ingredients to51

prove the main theorem. We conclude in Section 6 with a brief discussion of52

this approach and how it can be used to obtain other results.53

2. Rankwidth: Definitions and Basic Properties54

Rankwidth is a graph width measure that expresses the structural complex-55

ity of graphs. It was introduced by Oum and Seymour to study cliquewidth,56

another graph width measure [24]. Their main objective was to investigate57

whether there is an algorithm that takes a graph G and an integer k as input,58

and decides whether G has cliquewidth at most k in time O(f(k) · |V (G)|O(1)).59

In the parlance of parameterized complexity this means that deciding whether60

a graph has cliquewidth at most k is fixed-parameter tractable (FPT) w.r.t. k.61

This question is still open but Oum and Seymour showed that rankwidth and62

cliquewidth are equivalent width measures in the sense that a graph has bounded63

rankwidth if and only if it has bounded cliquewidth. They obtained the follow-64

ing relationship between rankwidth and cliquewidth:65

rankwidth ≤ cliquewidth ≤ 21+rankwidth − 1.

3



Moreover they also showed that there does indeed exist an algorithm that de-66

cides whether a graph G has rankwidth at most k in time O(f(k) · |V (G)|3).67

That is, deciding whether a graph has rankwidth at most k is fixed-parameter68

tractable w.r.t. k.69

We shall briefly recap the basic definitions and properties of rankwidth. The70

presentation follows [12, 23]. To define rankwidth, it is advantageous to first71

consider the notion of branchwidth since rankwidth is usually defined in terms72

of branchwidth.73

Branchwidth. Let X be a finite set and let λ be an integer-valued function74

on the subsets of X. We say that the function λ is symmetric if for all Y ⊆75

X we have λ(Y ) = λ(X \ Y ). A branch-decomposition of λ is a pair (T, µ),76

where T is a subcubic tree (a tree with degree at most three) and µ : X →77

{ t | t is a leaf of T }. For an edge e of T , the connected components of T \ e78

partition the set of leaves of T into disjoint sets L1 and L2. The width of the79

edge e of the branch-decomposition (T, µ) is λ(µ−1(L1)). The width of (T, µ) is80

the maximum width over all edges of T . The branchwidth of λ is the minimum81

width of all branch-decompositions of λ.82

The branchwidth of a graph G, for instance, is defined by letting X = E(G)83

and λ(Y ) to be the number of vertices that are incident to an edge in Y and84

in E(G) \ Y in the above definition.85

Rankwidth. Given a graph G = (V,E) and a bipartition (Y1, Y2) of the ver-86

tex set V , define a binary matrix A[Y1, Y2] with rows indexed by the vertices87

in Y1 and columns indexed by the vertices in Y2 as follows: the (u, v)th entry88

of A[Y1, Y2] is 1 if and only if {u, v} ∈ E. The cut-rank function of G is the89

function ρ : 2V → Z defined as follows: for all Y ⊆ V90

ρ(Y ) = rank(A[Y, V \ Y ]).

The cut-rank function is clearly symmetric. A rank-decomposition of G is a91

branch-decomposition of the cut-rank function on V (G) and the rankwidth of G92

is the branch-width of the cut-rank function.93
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An important result concerning rankwidth is that there is an FPT-algorithm94

that constructs a width-k rank-decomposition of a graph G, if there exists one,95

in time O(n3) for a fixed value of k.96

Theorem 1. [19] Let k be a constant and n ≥ 2. Given an n-vertex graph G,97

one can either construct a rank-decomposition of G of width at most k or confirm98

that the rankwidth of G is larger than k in time O(n3).99

2.1. Rankwidth and Parse Tree Decompositions100

The definition of rankwidth in terms of branchwidth is the one that was101

originally proposed by Oum and Seymour in [24]. It is simple and it allows one102

to prove several properties of rankwidth including the fact that rankwidth and103

cliquewidth are, in fact, equivalent width measures in the sense that a graph104

has bounded rankwidth if and only if it has bounded cliquewidth. However this105

definition is not very useful from an algorithmic point-of-view and this prompted106

Courcelle and Kanté [6] to introduce an equivalent formulation of rankwidth in107

terms of certain algebraic operations on labeled graphs. This was restated by108

Ganian and Hliněný [12] in terms of labeling joins and parse trees which we109

briefly describe here.110

t-labeled graphs. A t-labeling lab of a graph G is a mapping lab : V (G) → 2[t]
111

which assigns to each vertex of G a subset of [t] = {1, . . . , t}. A t-labeled graph112

is a pair (G, lab), where lab is a labeling of G and is denoted by Ḡ. Since a113

t-labeling function may assign the empty label to each vertex, an unlabeled114

graph is considered to be a t-labeled graph for all t ≥ 1. A t-labeling of G115

may also be interpreted as a mapping from V (G) to the t-dimensional binary116

vector space GF(2t) by associating the subset X ⊆ [t] with the t-bit vector x =117

x1 . . . xt, where xi = 1 if and only if i ∈ X. Thus one can represent a t-118

labeling lab of an n-vertex graph as an n× t binary matrix. This interpretation119

will prove useful later on when t-joins are discussed.120

A t-relabeling is a linear transformation from the space GF(2t) to GF(2t)121

and one can therefore represent a t-relabeling by a t× t binary matrix Tf . We122
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represent a t-relabeling f as a function f : 2[t] → 2[t]. For a t-labeled graph Ḡ =123

(G, lab), we define f(Ḡ) to be the t-labeled graph (G, f ◦ lab), where (f ◦ lab)(v)124

is the vector in GF(2t) obtained by applying the linear transformation f to the125

vector lab(v). It is easy to see that the labeling lab′ = f ◦ lab is the matrix126

product lab × Tf .127

We now define three operators on t-labeled graphs that will be used to128

define parse tree decompositions of t-labeled graphs. These operators were129

first described by Ganian and Hliněný in [12]. The first operator is denoted �130

and represents a nullary operator that creates a new graph vertex with the131

label 1. The second operator is the t-labeled join and is defined as follows.132

Let Ḡ1 = (G1, lab1) and Ḡ2 = (G2, lab2) be t-labeled graphs. The t-labeled join133

of Ḡ1 and Ḡ2, denoted Ḡ1 ⊗ Ḡ2, is defined as taking the disjoint union of G1134

and G2 and adding all edges between vertices u ∈ V (G1) and v ∈ V (G2) such135

that |lab1(u) ∩ lab2(v)| is odd. The resulting graph is unlabeled.136

Note that |lab1(u)∩ lab2(v)| is odd if and only if the scalar product lab1(u)•137

lab2(v) = 1, that is, the vectors lab1(u) and lab2(v) are not orthogonal in the138

space GF(2t). For X ⊆ V (G1), the set of vectors γ(Ḡ1, X) = { lab1(u) | u ∈ X }139

generates a subspace 〈γ(Ḡ1, X)〉 of GF(2t). The following result shows which140

pairs of vertex subsets do not generate edges in a t-labeled join operation.141

Proposition 1. [13] Let X ⊆ V (G1) and Y ⊆ V (G2) be arbitrary nonempty142

subsets of t-labeled graphs Ḡ1 and Ḡ2. In the join graph Ḡ1⊗Ḡ2 there is no edge143

between any vertex of X and a vertex of Y if and only if the subspaces 〈γ(Ḡ1, X)〉144

and 〈γ(Ḡ2, Y )〉 are orthogonal in the vector space GF(2t).145

The third operator is called the t-labeled composition and is defined using the146

t-labeled join and t-relabelings. Given three t-relabelings g, f1, f2 : 2[t] → 2[t],147

the t-labeled composition ⊗[g|f1, f2] is defined on a pair of t-labeled graphs Ḡ1 =148

(G1, lab1) and Ḡ2 = (G2, lab2) as follows:149

Ḡ1 ⊗[g|f1, f2] Ḡ2 := H̄ = (Ḡ1 ⊗ g(Ḡ2), lab),

where lab(v) = fi ◦ labi(v) for v ∈ V (Gi) and i ∈ {1, 2}. Thus the t-labeled150

composition first performs a t-labeling join of Ḡ1 and g(Ḡ2) and then relabels151

6



the vertices of G1 using f1 and the vertices of G2 with f2. Note that a t-152

labeling composition is not commutative and that {u, v} is an edge of H̄ if and153

only if lab1(u) • (lab2(v) × Tg) = 1, where Tg is the matrix representing the154

linear transformation g.155

Definition 1 (t-labeled Parse Trees). A t-labeled parse tree T is a finite, ordered,156

rooted subcubic tree (with the root of degree at most two) such that157

1. all leaves of T are labeled with the � symbol, and158

2. all internal nodes of T are labeled with a t-labeled composition symbol.159

A parse tree T generates the graph G that is obtained by the successive leaves-160

to-root application of the operators that label the nodes of T .161

The next result shows that rankwidth can be defined using t-labeled parse162

trees.163

Theorem 2 (Rankwidth Parsing Theorem [6, 12]). A graph G has rankwidth at164

most t if and only if some labeling of G can be generated by a t-labeled parse tree.165

Moreover, a width-t rank-decomposition of an n-vertex graph can be transformed166

into a t-labeled parse tree on Θ(n) nodes in time O(t2 · n2).167

We now proceed to show the following.168

The Main Theorem. [7, 12] Let ϕ be an MSO1-formula with qr(ϕ) ≤ q. There169

is an algorithm that takes as input a t-labeled parse tree decomposition T of a170

graph G and decides whether G |= ϕ in time O(f(q, t) · |T |), where f is some171

computable function and |T | is the number of nodes in T .172

Here is how the sequel is organized. In Section 3 we briefly introduce monadic173

second order logic. In Section 4 we introduce a construct that plays a key174

role in our proof of the Main Theorem. This construct, called a characteristic175

tree of depth q, is important for three reasons. Firstly, a characteristic tree of176

depth q for a graph G allows one to test whether an MSO formula ϕ of quantifier177

rank at most q holds in G. Secondly, a characteristic tree has small size and,178

thirdly, it can be efficiently constructed for graphs of bounded rankwidth. The179
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construction of characteristic trees is described in Section 5, where we also prove180

the main theorem.181

3. An Introduction to MSO Logic182

In this section, we present a brief introduction to monadic second order logic.183

We follow Ebbinghaus and Flum [10]. Monadic second-order logic (MSOL) is184

an extension of first-order logic which allows quantification over sets of objects.185

To define the syntax of MSO, fix a vocabulary τ which is a finite set of relation186

symbols P,Q,R, . . . each associated with a natural number known as its arity.187

A structure A over vocabulary τ (also called a τ -structure) consists of a188

set A called the universe of A and a p-ary relation RA ⊆ A× · · ·×A (p times)189

for every p-ary relation symbol R in τ . If the universe is empty then we say that190

the structure is empty. Graphs can be expressed in a natural way as relational191

structures with universe the vertex set and a vocabulary consisting of a single192

binary (edge) relation symbol. To express a t-labeled graph G, we may use a193

vocabulary τ consisting of the binary relation symbol E (representing, as usual,194

the edge relation) and t unary relation symbols L1, . . . , Lt, where Li represents195

the set of vertices labeled i.196

A formula in MSO is a string of symbols from an alphabet that consists of197

• the relation symbols of τ198

• a countably infinite set of individual variables x1, x2, . . .199

• a countably infinite set of set variables X1, X2, . . .200

• ¬, ∨, ∧ (the connectives not, or, and)201

• ∃, ∀ (the existential quantifier and the universal quantifier)202

• = (the equality symbol)203

• (, ) (the bracket symbols).204
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The formulas of MSO over the vocabulary τ are strings that are obtained205

from finitely many applications of the following rules:206

1. If t1 and t2 are individual (respectively, set) variables then t1 = t2 is a207

formula.208

2. If R is an p-ary relation symbol in τ and t1, . . . , tr are individual variables,209

then Rt1, . . . , tr is a formula.210

3. If X is a set variable and t is an individual variable then Xt is a formula.211

4. If ϕ is a formula then ¬ϕ is a formula.212

5. If ϕ and ψ are formulas then (ϕ ∨ ψ) is a formula.213

6. If ϕ and ψ are formulas then (ϕ ∧ ψ) is a formula.214

7. If ϕ is a formula and x an individual variable then ∃xϕ is a formula.215

8. If ϕ is a formula and x an individual variable then ∀xϕ is a formula.216

9. If ϕ is a formula and X a set variable then ∃Xϕ is a formula.217

10. If ϕ is a formula and X a set variable then ∀Xϕ is a formula.218

The formulas obtained by 1, 2, or 3 above are atomic formulas. Formulas of219

types 6, 8, and 10 are called universal, and formulas of types 5, 7, and 9 are220

existential.221

The quantifier rank qr(ϕ) of a formula ϕ is the maximum number of nested222

quantifiers occurring in it.223

qr(ϕ) := 0, if ϕ is atomic; qr(∃xϕ) := qr(ϕ) + 1;

qr(¬ϕ) := qr(ϕ); qr(∃Xϕ) := qr(ϕ) + 1;

qr(ϕ ∨ ψ) := max{qr(ϕ), qr(ψ)}; qr(∀xϕ) := qr(ϕ) + 1.

qr(∀Xϕ) := qr(ϕ) + 1;

A variable in a formula is free if it is not within the scope of a quantifier. A224

formula without free variables is called a sentence. By free(ϕ) we denote the set225

of free variables of ϕ.226

We now assign meanings to the logical symbols by defining the satisfaction227

relation A |= ϕ. Let A be a τ -structure. An assignment in A is a function α228

that assigns individual variables values in A and set variables subsets of A.229
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For an individual variable x and an assignment α, we let α[x/a] denote an230

assignment that agrees with α except that it assigns the value a ∈ A to x. The231

symbol α[X/B] has the same meaning for a set variable X and a set B ⊆ A.232

We define the relation A |= ϕ[α] (ϕ is true in A under α) as follows:233

A |= t1 = t2[α] iff α(t1) = α(t2)

A |= Rt1 . . . tn[α] iff RA α(t1) . . . α(tn)

A |= ¬ϕ[α] iff not A |= ϕ[α]

A |= (ϕ ∨ ψ)[α] iff A |= ϕ[α] or A |= ψ[α]

A |= (ϕ ∧ ψ)[α] iff A |= ϕ[α] and A |= ψ[α]

A |= ∃xϕ[α] iff there is an a ∈ A such that A |= ϕ[α[x/a]]

A |= ∀xϕ[α] iff for all a ∈ A it holds that A |= ϕ[α[x/a]]

A |= ∃Xϕ[α] iff there exists B ⊆ A such that A |= ϕ[α[X/B]]

A |= ∀Xϕ[α] iff for all B ⊆ A it holds that A |= ϕ[α[X/B]]

234

4. The ≡MSO
q -Relation and its Characterization235

Given a vocabulary τ and a natural number q, one can define an equivalence236

relation on the class of τ -structures as follows. For τ -structures A and B237

and q ∈ N, define A ≡MSO
q B (q-equivalence) if and only if A |= ϕ⇐⇒ B |= ϕ238

for all MSO sentences ϕ of quantifier rank at most q. In other words, two239

structures are q-equivalent if and only if no sentence of quantifier rank at most q240

can distinguish them.241

We provide a characterization of the relation ≡MSO
q using objects called242

characteristic trees of depth q. We show that two τ -structures A and B have243

identical characteristic trees of depth q if and only if A ≡MSO
q B. We shall see244

that characteristic trees are specially useful because their size is “small” and for245

graphs of bounded rankwidth can be constructed efficiently given their parse246

tree decomposition. However before we can do that, we need a few definitions.247

Definition 2 (Induced Structure and Sequence). Let A a τ -structure with uni-248

verseA and let c̄ = c1, . . . , cm ∈ Am. The structure A ′ = A [c̄] = A [{c1, . . . , cm}]249
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induced by c̄ is a τ -structure with universe A′ = {c1, . . . , cm} and interpreta-250

tions PA ′ := PA ∩ {c1, . . . , cm}r for every relation symbol P ∈ τ of arity r.251

For a set U ⊆ A, we let c̄[U ] be the subsequence of c̄ that contains only objects252

in U .253

Definition 3 (Intersection, Union and Concatenation of Sequences). Let A be254

a set and U ⊆ A; let c̄ = c1, . . . , cm ∈ Am, C̄ = C1, . . . , Cp, D̄ = D1, . . . , Dp255

where Ci, Di ⊆ A. We let C̄ ∩ U , C̄ ∩ c̄ and C̄ ∩ D̄ to denote (respectively)256

the sequences C1 ∩ U, . . . , Cp ∩ U , C1 ∩ {c1, . . . , cm}, . . . , Cp ∩ {c1, . . . , cm} and257

C1∩D1, . . . , Cp∩Dp. We let C̄ ∪ D̄ to denote C1∪D1, . . . , Cp∪Dp. For a ∈ A,258

we let c̄ · a the concatenation of the sequence c̄ with a. We usually omit the ·259

while writing concatenations.260

Therefore when it comes to the union and intersection of sequences, we always261

mean their componentwise union or intersection.262

Definition 4 (Partial Isomorphism). Let A and B be structures over the263

vocabulary τ with universes A and B, respectively, and let π be a map such264

that domain(π) ⊆ A and range(π) ⊆ B. The map π is said to be a partial265

isomorphism from A to B if266

1. π is one-to-one and onto;267

2. for every p-ary relation symbol R ∈ τ and all a1, . . . , ap ∈ domain(π),268

RA a1, . . . , ap iff RBπ(a1), . . . , π(ap).

If domain(π) = A and range(π) = B, then π is an isomorphism between A269

and B and A and B are isomorphic.270

Let (A , C̄) and (B, D̄) be tuples, where C̄ = A1, . . . , As and D̄ = B1, . . . , Bs,271

s ≥ 0, such that for all 1 ≤ i ≤ s, we have Ai ⊆ A and Bi ⊆ B. We say that π272

is a partial isomorphism between (A , C̄) and (B, D̄) if273

1. π is a partial isomorphism between A and B,274

2. for each a ∈ domain(π) and all 1 ≤ i ≤ s, it holds that a ∈ Ai iff π(a) ∈ Bi.275
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The tuples (A , C̄) and (B, D̄) are isomorphic if π is an isomorphism between276

A and B and, in addition, condition (2) above holds.277

In Definition 2 of an induced structure we ignore the order of the elements278

in c̄. For the purposes in this paper, the order in which the elements are chosen279

is important because it is used to map variables in the formula to elements in the280

structure. Moreover, elements could repeat in the vector c̄ and this fact is lost281

when we consider the induced structure A [c̄]. To capture both the order and282

the multiplicity of the elements in vector c̄ in the structure A [c̄], we introduce283

the notion of an ordered induced structure.284

Let U be a set and ≡ be an equivalence relation on U . For u ∈ U , we285

let [u]≡ = {u′ ∈ U | u ≡ u′ } be the equivalence class of u under ≡, and286

U/≡ = { [u]≡ | u ∈ U} be the quotient space of U under ≡.287

A vector c̄ = c1, . . . , cm ∈ Am defines a natural equivalence relation ≡c̄ on288

the set [m] = {1, . . . ,m}: for i, j ∈ [m], we have i ≡c̄ j if and only if ci = cj .289

For simplicity, we shall write [i]c̄ for [i]≡c̄ .290

Definition 5 (Ordered Induced Structure). Let A be a τ -structure with uni-291

verse A and c̄ = c1, . . . , cm ∈ Am. The ordered structure induced by c̄ is the292

τ -structure H = Ord(A , c̄) with universe H = [m]/≡c̄ such that the map293

h : ci 7→ [i]c̄, 1 ≤ i ≤ m, is an isomorphism between A [c̄] and H .294

Let C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p. Then we let

Ord(A , c̄, C̄) :=
(
Ord(A , c̄), h̄, h(C̄ ∩ c̄)

)
,

where h : ci 7→ [i]c̄, 1 ≤ i ≤ m, h̄ = h(c1), . . . , h(cm) and h(C̄ ∩ c̄) = h(C1 ∩295

c̄), . . . , h(Cp ∩ c̄).296

Thus an ordered structure H = Ord(A , c̄) induced by c̄ is simply the struc-297

ture A [c̄] with element ci being called [i]c̄. See Figure 1 for an example.298

4.1. Model Checking Games and Characteristic Trees299

Testing whether a non-empty structure models a formula can be specified by300

a model checking game (also known as Hintikka game, see [18, 14]). Let A be a301
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a1

a2

a3a4

a5
{1, 5}

{2}

{3, 4}

c̄

Figure 1: The vector c̄ = a5a2a3a3a5 lists vertices in the graph G on the left. The resulting

ordered induced structure Ord(G , c̄) is depicted in black on the right. Note that essentially

each vertex in G [c̄] is renamed to the set of positions in which it appears in the vector c̄.

τ -structure with universe A. Let ϕ be a formula and α be an assignment to the302

free variables of ϕ. The game is played between two players called the verifier303

and the falsifier. The verifier tries to prove that A |= ϕ[α] whereas the falsifier304

tries to disprove this. We assume without loss of generality that ϕ is in negation305

normal form, i.e., negations in ϕ appear only at the atomic level. This can always306

be achieved by applying simple rewriting rules such as ¬∀xϕ(x) ∃x¬ϕ(x).307

The model checking game MC(A , ϕ, α) is positional with positions (ψ, β),308

where ψ is a subformula of ϕ and β is an assignment to the free variables309

of ψ. The game starts at position (ϕ, α). At a position (∀Xψ(X), β), the falsi-310

fier chooses a subset D ⊆ A, and the game continues at position (ψ, β[X/D]).311

Similarly, at a position (∀xψ(x), β) or (ψ1 ∧ ψ2, β), the falsifier chooses an ele-312

ment d ∈ A or some ψ := ψi for some 1 ≤ i ≤ 2 and the game then continues313

at position (ψ, β[x/d]) or (ψ, β), respectively. The verifier moves analogously314

at existential formulas. Note that since the structure of the formula determines315

which player gets to make a move, it might well be that a player has to make316

several moves before the second has the right to make a move. If an element is317

chosen then the move is called a point move; if a set is chosen then the move318

is a set move. The game ends once a position (ψ, β) is reached, such that ψ is319

an atomic or negated formula. The verifier wins if and only if A |= ψ[β]. We320

say that the verifier has a winning strategy if they win every play of the game321

irrespective of the choices made by the falsifier. In what follows, we identify a322

position (ψ, β) of the game MC(A , ϕ, α) with the game MC(A , ψ, β).323
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It is well known that the model checking game characterizes the satisfaction324

relation |=. The following lemma can easily be shown by induction over the325

structure of ϕ.326

Lemma 1 (cf., [14]). Let A be a τ -structure, let ϕ be an MSO formula, and let327

α be an assignment to the free variables of ϕ. Then A |= ϕ[α] if and only if the328

verifier has a winning strategy on the model checking game on A , ϕ, and α.329

A model checking game on a τ -structure A and a formula ϕ with quantifier330

rank q can be represented by a tree of depth q in which the nodes represent331

positions in the game and the edges represent point and set moves made by the332

players. Such a tree is called a game tree and is used in combinatorial game333

theory for analyzing games (see [2], for instance).334

For our purposes, we define a notion related to game trees called full charac-335

teristic trees which are finite rooted trees, where the nodes represent positions336

and edges represent moves of the game. A node is a tuple that represents the337

sets and elements that have been chosen thus far. The node can be thought338

of as a succinct representation of the state of the game played till the position339

represented by that node. However, note that a full characteristic tree depends340

on the quantifier rank q and not on a particular formula.341

Definition 6 (Full Characteristic Trees). Let A be a τ -structure with uni-342

verse A and let q ∈ N. For elements c̄ = c1, . . . , cm ∈ Am, sets C̄ = C1, . . . , Cp343

with Ci ⊆ A, 1 ≤ i ≤ p, let T = FCq(A , c̄, C̄) be a finite rooted tree such that344

1. root(T ) = (A [c̄], c̄, C̄ ∩ c̄),345

2. if m+ p+ 1 ≤ q then the subtrees of the root of FCq(A , c̄, C̄) is the set{
FCq(A , c̄d, C̄)

∣∣ d ∈ A} ∪ {FCq(A , c̄, C̄D)
∣∣ D ⊆ A}.

The full characteristic tree of depth q for A , denoted by FCq(A ), is defined346

as FCq(A , ε, ε), where ε is the empty sequence.347

Let T = (V,E) be a rooted tree. We let root(T ) be the root of T and

for u ∈ V we let

childrenT (u) = { v ∈ V | (u, v) ∈ E and distT (root(T ), u) < distT (root(T ), v) },
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where dist(x, y) denotes the length of the shortest path between x and y. We also348

let subtreeT (u) be a subtree of T rooted at u, and subtrees(T ) = { subtreeT (u) |349

u ∈ childrenT (root(T )) }.350

We now define a model checking game MC(F,ϕ, x̄, X̄) on full characteristic351

trees F = FCq(A , c̄, C̄) and formulas ϕ with qr(ϕ) ≤ q, where x̄ = x1, . . . , xm352

are the free object variables of ϕ, X̄ = X1, . . . , Xp are the free set variables353

of ϕ, c̄ = c1, . . . , cm ∈ Am, and C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p.354

The rules are similar to the classical model checking game MC(A , ϕ, α). The355

game is positional and played by two players called the verifier and the fal-356

sifier and is defined over subformulas ψ of ϕ. However instead of choosing357

sets and elements explicitly, the tree F is traversed top-down. At the same358

time, we “collect” the variables the players encountered, such that we can make359

the assignment explicit once the game ends. The game starts at the posi-360

tion (ϕ, x̄, X̄, root(F )). Let (ψ, ȳ, Ȳ , v) be the position at which the game is361

being played, where v = (H , d̄, D̄) is a node of FCq(A , c̄, C̄), and ψ is a sub-362

formula of ϕ with free(ψ) = ȳ ∪ Ȳ . At a position (∀Xϑ(X), ȳ, Ȳ , v) the falsifier363

chooses a child u = (H , d̄, D̄D) of v, where D ⊆ A, and the game continues364

at position (ϑ, ȳ, Ȳ X, u). Similarly, at a position (∀xϑ(x), ȳ, Ȳ , v) the falsi-365

fier chooses a child u = (H ′, d̄d, D̄), where d ∈ A, and the game continues366

in (ϑ, ȳx, Ȳ , u), and at a position (ϑ1 ∧ ϑ2, ȳ, Ȳ , v), the falsifier chooses some367

1 ≤ i ≤ 2, and the game continues at position (ϑi, ȳ, Ȳ , v). The verifier moves368

analogously at existential formulas.369

The game stops once an atomic or negated formula has been reached. Sup-370

pose that a particular play of the game ends at a position (ψ, ȳ, Ȳ , v), where ψ371

is a negated atomic or atomic formula with372

free(ψ) = {y1, . . . , ys, Y1, . . . , Yt}

and v = (H , d̄, D̄) some node of F , where d̄ = d1, . . . , ds and D̄ = D1, . . . , Dt.373

Let α be an assignment to the free variables of ϕ, such that α(yi) = di, 1 ≤ i ≤ s,374

and α(Yi) = Di, 1 ≤ i ≤ t. The verifier wins the game if and only if H |= ψ[α].375

The verifier has a winning strategy if and only if they can win every play of376
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the game irrespective of the choices made by the falsifier. In what follows, we377

identify a position (ψ, ȳ, Ȳ , v) of the game MC(FCq(A , c̄, C̄), ϕ, x̄, X̄), where378

v = (H , d̄, D̄), with the game MC(FCq(A , d̄, D̄), ψ, ȳ, Ȳ ).379

Lemma 2. Let A be a τ -structure and let ϕ be an MSO formula with qr(ϕ) ≤ q380

and free variables {x1, . . . , xm, X1, . . . , Xm}. Let α be an assignment to the free381

variables of ϕ. Then the verifier has a winning strategy in the model checking382

game MC(A , ϕ, α) if and only if the verifier has a winning strategy in the383

model checking game MC(FCq(A , c̄, C̄), ϕ, x̄, X̄), where c̄ = α(x1), . . . , α(xm)384

and C̄ = α(X1), . . . , α(Xp).385

Proof. The proof consists in observing that any play of the model checking386

game MC(A , ϕ, α) can be simulated in MC(FCq(A , c̄, C̄), ϕ, x̄, X̄) and vice387

versa.388

For assume that qr(ϕ) = q (otherwise, pad ϕ with quantifiers). The proof is389

by an induction on q−m−p and the structure of ϕ. If q = 0 and ϕ is an atomic390

or negated atomic formula, then the verifier wins MC(A , ϕ, α) if and only if391

A |= ϕ[α] if and only if A [c̄] |= ϕ[α], where root(FCq(A , c̄, C̄)) = (A[c̄], c̄, C̄∩c̄),392

and hence if and only if the verifier wins MC(FCq(A , c̄, C̄), ϕ, x̄, X̄).393

If q > 0 and ϕ = ∀xψ(x), then the verifier has a winning strategy for394

MC(A , ϕ, α) if and only if they have a winning strategy for MC(A , ψ, α[x/a])395

for all a ∈ A. For each such a ∈ A, by the induction hypothesis the verifier396

has a winning strategy in MC(A , ψ, α[x/a]) if and only they have a winning397

strategy in the model checking gameMC(FCq(A , c̄a, C̄), ψ, x̄x, X̄). At position398

(∃xψ(x), x̄, X̄, v), where v = root(FCq(A , c̄, C̄)), the falsifier chooses a child u =399

(H , c̄a, C̄) of v, where a ∈ A, and the game continues at position (ψ, x̄x, X̄, u).400

Hence, the verifier has a winning strategy in MC(FCq(A , c̄, C̄), ϕ, x̄, X̄) if and401

only if they have a winning strategy on MC(FCq(A , c̄a, C̄), ϕ, x̄x, X̄), and the402

claim follows.403

The remaining cases follow analogously.404

405

Lemma 2 showed that a full characteristic tree of depth q for a structure A406
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can be used to simulate the model checking game on A and any formula ϕ of407

quantifier rank at most q. However the size of such a tree is of the order (2n+n)q,408

where n is the number of elements in the universe of A . We now show that409

one can “collapse” equivalent branches of a full characteristic tree to obtain410

a much smaller labeled tree (called a reduced characteristic tree) that is in411

some sense equivalent to the original (full) tree. We will then show that for a412

graph G of rankwidth at most t, the reduced characteristic tree of G is efficiently413

computable given a t-labeled parse tree decomposition of G. We achieve this414

collapse by replacing the induced structures A [c̄] in the full characteristic tree415

by a more generic, implicit representation — that of their ordered induced416

substructures Ord(A , c̄).417

Definition 7 (Reduced Characteristic Trees). Let A be a τ -structure and let418

q ∈ N. For elements c̄ = c1, . . . , cm ∈ Am and sets C̄ = C1, . . . , Cp with Ci ⊆ A,419

1 ≤ i ≤ p, we let RCq(A , c̄, C̄) be a finite rooted tree such that420

1. root(RCq(A , c̄, C̄)) = Ord(A , c̄, C̄),421

2. if m+ p+ 1 ≤ q then the subtrees of the root of RCq(A , c̄, C̄) is the set

{RCq(A , c̄d, C̄) | d ∈ A } ∪ {RCq(A , c̄, C̄D) | D ⊆ A }.

The reduced characteristic tree of depth q for the structure A , denoted by422

RCq(A ), is defined to be RCq(A , ε, ε), where ε is the empty sequence.423

See Figure 2 for an example. One can define the model checking game424

MC(R,ϕ, x̄, X̄) on a tree R = RCq(A , c̄, C̄) in exactly the same manner as425

MC(FCq(A , c̄, C̄), ϕ, x̄, X̄). As mentioned before, our interest in RCq(A , c̄, C̄)426

lies in that:427

1. they are equivalent to FCq(A , c̄, C̄),428

2. they are “small”; and,429

3. they are efficiently computable if A is a graph of rankwidth at most t and430

such a rank decomposition is provided.431

We first show that the reduced characteristic tree RCq(A , c̄, C̄) is equivalent432

to its full counterpart FCq(A , c̄, C̄).433
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∅, ε, ε

∅, ε, ∅

∅, ε, ∅

∅, ε, ∅

({{1}}), {1}, ε

∅, ε, ∅∅

({{1}}), {1}, ∅

∅, ε, ∅∅

({{1}}), {1}, {{1}}

∅, ε, ∅∅

({{1}}), {1}, {{1}}

({{1}}), {1}, ∅

({{1}}), {1}, ∅

({{1}}), {1}, {{1}}

({{1, 2}}), {1, 2}{1, 2}, ε

({{1}, {2}}), {1}{2}, ε

Figure 2: The tree RC2(A ) for a τ -structure A with τ = ∅ and A = {a1, a2}. Here, ∅

denotes an empty structure, and ∅∅ is the sequence of two empty sets. The bottom right

node (H , c̄, C̄) =
`
({{1}, {2}}), {1}{2}, ε

´
represents, at the same time, the identical sub-

trees RC2(A , a1a2, ε) and RC2(A , a2a1, ε). The universe of H is H = {[1]a1a2 , [2]a1a2} =

{[1]a2a1 , [2]a2a1} = {{1}, {2}}, since elements a1, a2 and a2, a1, respectively, have been cho-

sen in this order. No set has been chosen, hence the empty sequence C̄ = ε. Similarly, the

next node in that column,
`
({{1, 2}}), {1, 2}{1, 2}, ε

´
, represents the trees RC2(A , a1a1, ε)

and RC2(A , a2a2, ε). Here the universe is {{1, 2}} since the same element has been cho-

sen twice. Note that the root node has only four subtrees in total, since RC2(A , ε, {a1}) =

RC2(A , ε, {a2}) (third subtree from the top), and RC2(A , a1, ε) = RC2(A , a2, ε) (bottom

subtree).
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Lemma 3. Let A be a τ -structure and let q ∈ N. Let c̄ = c1, . . . , cm ∈434

Am and C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p. Let F = FCq(A , c̄, C̄)435

and R = RCq(A , c̄, C̄). Then the verifier has a winning strategy in the model436

checking game MC(F,ϕ, x̄, X̄) if and only if the verifier has a winning strategy437

in the game MC(R,ϕ, x̄, X̄), where ϕ ∈ MSO(τ) with qr(ϕ) ≤ q with free object438

variables x̄ = x1, . . . , xm and free set variables X̄ = X1, . . . , Xp.439

Proof. Without loss of generality, we assume qr(ϕ) = q (otherwise, pad ϕ with

quantifiers). The proof is by an induction on q −m− p and the structure of ϕ.

If q = 0, then

root(F ) = (A [c̄], c̄, C̄ ∩ c̄) ∼=

(H , h(c1) . . . h(cm), h(C̄ ∩ c̄)) = Ord(A , c̄, C̄) = root(R),

where h : ci 7→ [i]c̄, 1 ≤ i ≤ m is an isomorphism between (A [c̄], C̄ ∩ c̄) and440

(H , h(C̄ ∩ c̄)). The lemma therefore holds since MSO formulas cannot distin-441

guish isomorphic structures.442

Therefore assume that q > 0. If ϕ = (ψ1 ∧ ψ2) or ϕ = (ψ1 ∨ ψ2), then443

the claim immediately follows by the induction hypothesis for ψi, 1 ≤ i ≤ 2.444

Assume therefore that ϕ = ∃Xψ(X) and suppose that the verifier has a winning445

strategy in one of the games, say, in MC(R,ϕ, x̄, X̄). Then there is a position446

(ψ, x̄, X̄X, u), where u ∈ childrenR(root(R)), such that the verifier has a winning447

strategy in MC(subtreeR(u), ψ, x̄, X̄X) where subtreeR(u) = RCq(A , c̄, C̄D)448

for someD ⊆ A. By the induction hypothesis, the verifier has a winning strategy449

in MC(F ′, ψ, x̄, X̄X), where F ′ = FCq(A , c̄, C̄D) ∈ subtrees(F ). The verifier450

can therefore win MC(F,ϕ, x̄, X̄) by choosing a position (ψ, x̄, X̄X, root(F ′)),451

which implies the claim.452

If ϕ = ∀xψ(x), and the verifier has a winning strategy in one of the games,453

say inMC(R,ϕ, x̄, X̄), consider a move of the falsifier to a position (ψ, x̄x, X̄, u)454

in MC(F,ϕ, x̄, X̄), where u = root(FCq(A , c̄d, C̄))) for some d ∈ A. Let R′ =455

RCq(A , c̄d, C̄) be a subtree of the root of R. The verifier has a winning strategy456

in the game MC(R′, ψ, x̄x, X̄), and therefore, by the induction hypothesis, in457
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MC(FCq(A , c̄d, C̄), ψ, x̄x, X̄).458

The remaining cases follow analogously.459

460

From Lemmas 1, 2, and 3, we obtain the important fact that reduced char-461

acteristic trees are in fact equivalent to their full counterparts and characterize462

the equivalence relation ≡MSO
q .463

Corollary 1. Let A and B be τ -structures and q ∈ N. Then RCq(A ) =464

RCq(B) iff A ≡MSO
q B.465

The next lemma shows that reduced characteristic trees have small size.466

For i ∈ N, we define exp(i)(·) as: exp(0)(x) = x, exp(1)(x) = 2x and exp(i)(x) =467

22 exp(i−1)(x) for i ≥ 2.468

Lemma 4. Let A be a τ -structure with universe A such that each relation sym-469

bol in τ has arity at most r, and q ∈ N. Then the number of reduced character-470

istic trees RCq(A , c̄, C̄) for all possible choices of c̄, C̄ is at most exp(q+1)(|τ | ·471

qr + q log q + q2). The size of a reduced characteristic tree RCq(A , c̄, C̄) is at472

most (exp(q)(|τ | · qr + q log q + q2))4.473

Proof. For integers m, p let N(A ,m, p) be the number of trees RCq(A , c̄, C̄),474

where c̄ = c1, . . . , cm ∈ Am and C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p. Define475

S(A ,m, p) = max
c̄,C̄
|RCq(A , c̄, C̄)|,

where the maximum is taken over all strings c̄ and C̄ such that |c̄| = m and |C̄| =476

p. Also define f(τ, q) = |τ | · qr + q log q + q2.477

If m+p = q then RCq(A , c̄, C̄) has one node for all c̄, C̄ and S(A ,m, p) = 1.478

The number of distinct trees N(A ,m, p), however, depends on the number of479

structures on a universe of size at most m ≤ q over a vocabulary with |τ |480

relation symbols each of arity at most r. The number of such structures is at481

most 2|τ |·q
r

, and since there are at most qq · 2q2
vectors c̄, C̄ over the m+ p ≤ q482

elements, we have that N(A ,m, p) ≤ 2f(τ,q) ≤ exp(1)(f(τ, q)). If m + p < q483

then the root of RCq(A , c̄, C̄) can have as children any of the N(A ,m + 1, p)484
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reduced characteristic trees corresponding to point moves and N(A ,m, p + 1)485

trees corresponding to set moves. Hence N(A ,m, p) ≤ 2N(m+1,p)+N(m,p+1). By486

induction hypothesis, each of N(A ,m + 1, p) and N(A ,m, p + 1) is at most487

exp(q−(m+p))(f(τ, q)) and hence488

N(A ,m, p) ≤ 22·exp(q−(m+p))(f(τ,q)) = exp(q−(m+p)+1)(f(τ, q)).

Hence N(A , 0, 0) ≤ exp(q+1)(f(τ, q)) as claimed.489

The size of a reduced characteristic tree is one if m+ p = q. Otherwise

S(A ,m, p) ≤ 1 + S(A ,m+ 1, p)N(A ,m+ 1, p) +

S(A ,m, p+ 1)N(A ,m, p+ 1),

since any such tree consists of a single root vertex and at most N(A ,m+ 1, p)490

trees (corresponding to point moves) each of size S(A ,m + 1, p) and at most491

N(A ,m, p + 1) trees (corresponding to set moves) of size N(A ,m, p + 1). By492

induction hypothesis, each of the terms S(A ,m+ 1, p) and S(A ,m, p+ 1) is at493

most (exp(q−(m+p+1))(f(τ, q)))4 and hence494

S(A ,m, p) ≤ 1 + 2 exp(q−(m+p))(f(τ, q)) · (exp(q−(m+p+1))(f(τ, q)))4.

One can show that the right hand side of the above inequality is at most495

(exp(q−(m+p))(f(τ, q)))4, thereby proving the claimed size bound.496

497

5. Constructing Characteristic Trees498

In this section, we show how to construct reduced characteristic trees of499

depth q for a graph G of rankwidth t when given a t-labeled parse tree decom-500

position of G. A t-labeled graph may be represented as τ -structure where τ =501

{E,L1, . . . , Lt}. The symbol E is a binary relation symbol representing the edge502

relation and Li for 1 ≤ i ≤ t is a unary relation symbol representing the set of503

vertices with label i. In what follows, whenever we talk about a τ -structure A ,504

we mean a graph viewed as a structure over the vocabulary {E,L1, . . . , Lt}.505
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Lemma 5. Let A be a τ -structure with |A| = 1. Let q ≥ 0 and c̄ ∈ Am and506

C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p. Then RCq(A , c̄, C̄) can be constructed507

in constant time for each fixed q.508

Proof. Note that, in this case, FCq(A , c̄, C̄) has size at most O((21 + 1)q) =509

O(3q). Hence for each fixed q, RCq(A , c̄, C̄) can be constructed in constant510

time.511

512

In what follows, we let A1,A2 and A = A1 ⊗ A2 be τ -structures, where513

⊗ = ⊗[g|f1, f2] for t-relabelings g, f1, and f2. Recall that if A = A1 ⊗ A2,514

then we assume that A1 and A2 (the universes of A1 and A2, respectively) are515

disjoint. Furthermore for a fixed constant q ≥ 0, let m and p be nonnegative516

integers such that m+ p ≤ q, c̄ = c1, . . . , cm ∈ (A1 ∪A2)m and C̄ = C1, . . . , Cp,517

where Cj ⊆ A1∪A2, 1 ≤ j ≤ p. For i ∈ {1, 2}, we let c̄i = ci,1, . . . , ci,mi
= c̄[Ai].518

In the remainder of this section, we show how to construct RCq(A , c̄, C̄)519

given RCq(A1, c̄1, C̄ ∩ c̄1) and RCq(A2, c̄2, C̄ ∩ c̄2). For the construction, as will520

be clear later on, we need to know the order in which the elements in c̄1 and521

c̄2 appear in c̄. This motivates us to define the notion of an indicator vector522

ind(A1, A2, c̄).523

Definition 8. The indicator vector of c̄ = c1, . . . , cm, denoted ind(A1, A2, c̄),524

is the vector d̄ = d1, . . . , dm, such that for i ∈ {1, 2} and all 1 ≤ j ≤ m it525

holds that dj = (i, k) iff cj is the kth element in the vector c̄i = c̄[Ai]. If526

d̄ = d1, . . . , dm and (i, k) ∈ {1, 2} × [m + 1], then we use d̄(i, k) = d̄ · (i, k) to527

denote the vector d1, . . . , dm+1, where dm+1 = (i, k).528

Example 1. Let A1 = {a1, a2}, A2 = {b1, b2, b3, b4} and let c̄ be the string

a1b1b2a2b3b4a2b3a1. Then we get:

c̄ = a1 b1 b2 a2 b3 b4 a2 b3 a1

c̄[A1] = a1 a2 a2 a1

c̄[A2] = b1 b2 b3 b4 b3

ind(A1, A2, c̄) = (1, 1) (2, 1) (2, 2) (1, 2) (2, 3) (2, 4) (1, 3) (2, 5) (1, 4)
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Given c̄[A1], c̄[A2], and d̄ = d1, . . . , dm = ind(A1, A2, c̄), one can now recon-529

struct c̄. For example, c8 = b3, since d8 = (2, 5), which tells us that c8 is the530

fifth element in c̄2.531

Constructing R = RCq(A , c̄, C̄) when given R1 = RCq(A1, c̄1, C̄ ∩ c̄1), R2 =532

RCq(A2, c̄2, C̄ ∩ c̄2), and d̄ = ind(A1, A2, c̄) consists of the following two steps:533

1. construct the label for root(R) = Ord(A , c̄, C̄), and then534

2. recursively construct its subtrees.535

Since Ord(A , c̄) ∼= A [c̄] and Ai[c̄i] ∼= Ord(Ai, c̄i), one easily sees that

Ord(A , c̄) ∼= Ord(A1, c̄1)⊗Ord(A2, c̄2).

For the first step, we therefore just need to rename elements in Ord(A1, c̄1) ⊗536

Ord(A2, c̄2) in an appropriate way. The information on how elements are to be537

renamed is stored in the indicator vector d̄ of c̄. See Figure 3 for an example.538

The formal definition of the renaming operator ⊗d̄ and Lemma 6 are technical539

and may be skipped if the reader believes that one can construct Ord(A , c̄)540

from Ord(A1, c̄1) and Ord(A2, c̄2) using d̄.541

Definition 9. For i ∈ {1, 2}, let Ord(Ai, c̄i, C̄ ∩ Ai) = (Hi, c̄
′
i, C̄
′
i). Let m :=

|c̄1| + |c̄2| and for i ∈ {1, 2} let li = |c̄i| and Hi := [li]/≡c̄i
. Define a map

f : [m] → H1 ]H2 as follows: for all 1 ≤ j ≤ m, let f(j) = [k]c̄i iff dj = (i, k).

Then we define Ord(A1, c̄[A1], C̄ ∩A1)⊗d̄ Ord(A2, c̄[A2], C̄ ∩A2) as

Ord(H1 ⊗H2, f(1) . . . f(m), C̄ ′1 ∪ C̄ ′2).

Lemma 6. Let A1 and A2 be τ -structures and let ⊗ =⊗[g|f1, f2] for some t-

relabelings g, f1, f2. Let c̄ = c1, . . . , cm ∈ (A1∪A2)m and C̄ = C1, . . . , Cp, where

Cj ⊆ A1 ∪A2 for 1 ≤ j ≤ p. Also let d̄ = ind(A1, A2, c̄). Then

Ord(A1 ⊗A2, c̄, C̄) = Ord(A1, c̄[A1], C̄ ∩A1)⊗d̄ Ord(A2, c̄[A2], C̄ ∩A2).

Proof. For i ∈ {1, 2}, it holds

Ord(Ai, c̄i, C̄i) = (Hi, c̄
′
i, C̄
′
i) ∼= (Ai[c̄[Ai]], c̄[Ai], C̄ ∩Ai),
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a1

a2

a3a4

a5
{1, 5}

{2}

{3, 4}

c̄

c̄1 c̄2

{1, 2}

{1}

{2, 3}

{1, 2}

{1}

{2, 3}

d̄

Figure 3: G1 and G1 depicted on the top left are graphs such that G1 ⊕ G2 is the graph of

Figure 1; the gray edges being those created by the t-labeled composition operator ⊕. For c̄ =

a5a2a3a3a5 and c̄1 = c̄[G1], c̄2 = c̄[G2] the ordered induced substructures H1 = Ord(G1, c̄1)

and H2 = Ord(G1, c̄2) depicted in black on the bottom left. On these, we can take the t-

labeled composition H = H1⊕H2 and obtain the graph isomorphic to G1[c̄1]⊕G2[c̄2] on the

bottom right. We can now use the vector d̄ = (1, 1)(2, 1)(2, 2)(2, 3)(1, 2) to rename vertices in

H and obtain Ord(G , c̄) depicted on the top right. Note that c̄ and d̄ essentially describe the

same vertices.

where hi : ci,j 7→ [j]c̄i
, 1 ≤ j ≤ mi is the isomorphism of Definition 5 and c̄′i =

c′i,1, . . . , c
′
i,mi

= hi(1), . . . , hi(mi) ∈ Hmi
i . Let H = H1⊗H2 be the τ -structure

with universe H = H1 ]H2 = [m1]/≡c̄1 ] [m2]/≡c̄2 , where we assume without

loss of generality that H1 and H2 are disjoint (rename elements otherwise).

We want to show that in the following diagram we have Ord(A , c1 . . . cm) =

Ord(H , f(1) . . . , f(m)) (see also Figure 3 for a concrete example):

A1[c̄1] ⊗ A2[c̄2] = A [c̄] ∼= Ord(A , c1 . . . cm)

∼= ∼= =

H1 ⊗ H2 = H ∼= Ord(H , f(1) . . . , f(m))

Informally, what the above diagram says is that if A1[c̄1] ∼= H1 and A2[c̄2] ∼= H2542

then A1[c̄1]⊗A2[c̄2] and H1⊗H2 continue to be isomorphic. Therefore it does543

not matter whether we take the ordered induced structure of A [c̄] or take the544
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product of the ordered induced structures of A1[c̄1] and A2[c̄2]. A formal proof545

of this follows.546

For all 1 ≤ j ≤ m, it holds

f(j) =

h1(cj) if cj ∈ A1,

h2(cj) if cj ∈ A2,

where f : [m]→ H1]H2 is the map from Definition 9. If cj ∈ Ai, then cj = ci,k547

for some 1 ≤ k ≤ mi and therefore dj = (i, k). This implies hi(cj) = [k]c̄i
= f(j)548

by Definition 5 and Definition 10. Therefore, f(j1) = f(j2) iff cj1 = cj2 , which549

then implies lemma.550

551

We now describe how to construct the subtrees of R = RCq(A , c̄, C̄). At552

this point, recall that each edge of R corresponds to either a point move or a set553

move in a model-checking game on A and that |c̄| (|C̄|) denotes the number of554

point (set) moves made thus far. Similarly the edges of R1 = RCq(A1, c̄1, C̄∩ c̄1)555

and R2 = RCq(A2, c̄2, C̄ ∩ c̄2) correspond to moves in the model-checking game556

on the substructures A1 and A2, respectively. Recall also that A = A1 ] A2,557

where A, A1, and A2 are respectively the universes of A , A1, and A2. If a player558

makes a point move in A , then this corresponds to a point move in either A1 or559

in A2. Therefore in order to construct the subtrees of R corresponding to point560

moves, we take the cartesian product of the subtrees corresponding to point561

moves of R1 (“choose an element in A1”) with the tree R2 (“no element in562

A2”), and vice versa. A set move in A may be thought of as the disjoint union563

of a set move in A1 and a set move in A2, since each U ⊆ A may be written564

as U1 ] U2, where U1 ⊆ A1 and U2 ⊆ A2. Therefore in order to construct the565

subtrees of R corresponding to set moves, we take the cartesian product of the566

subtrees corresponding to set moves in R1 with those in R2.567

We formalize the notion of the cartesian product of trees next.568

Definition 10 (Tree Cross Product). Let A1 and A2 be τ -structures and let569

⊗ = ⊗[g|f1, f2] for some t-relabelings g, f1, f2. For a fixed constant q ≥ 0,570
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let m and p be nonnegative integers such that m+ p ≤ q. Let c̄ = c1, . . . , cm ∈571

(A1∪A2)m and C̄ = C1, . . . , Cp, where Cj ⊆ A1∪A2, 1 ≤ j ≤ p. For i ∈ {1, 2},572

let c̄i = ci,1, . . . , ci,mi
= c̄[Ai], qi ≥ q−m−p, and Ri = RCqi

(Ai, c̄i, C̄∩Ai) with573

root(Ri) = (Hi, c̄
′
i, C̄
′
i) = Ord(Ai, c̄i, C̄ ∩ Ai). We define the tree cross product574

of R1 and R2, R = R1 ×(q,⊗, d̄) R2, to be a finite, rooted tree such that575

• root(R) = root(R1)⊗d̄ root(R2), and576

• if m+ p+ 1 ≤ q, then subtrees(R) = S1 ∪ S2, where

S1 =
{

subtreeR1(u1) ×(q,⊗, d̄ · (1,m1 + 1)) R2

∣∣
u1 = (H ′

1 , c̄
′
1c, C̄

′
1) ∈ childrenR1(root(R1))

}
∪{

R1 ×(q,⊗, d̄ · (2,m2 + 1)) subtreeR2(u2)
∣∣

u2 = (H ′
2 , c̄
′
2c, C̄

′
2) ∈ childrenR2(root(R2))

}
and

S2 =
{

subtreeR1(u1) ×(q,⊗, d̄) subtreeR2(u2)
∣∣

ui = (H ′
i , c̄
′
i, C̄
′
iDi) ∈ childrenRi(root(Ri)), 1 ≤ i ≤ 2

}
.

We now show that R = R1 ×(q,⊗, d̄) R2, where R = RCq(A1 ⊗ A2, c̄, C̄)577

and Ri = RCqi(Ai, c̄i, C̄ ∩Ai).578

Lemma 7. Let A1 and A2 be τ -structures and let ⊗ =⊗[g|f1, f2] for some t-

relabelings g, f1, f2. For nonnegative integers q,m, p with m + p ≤ q, let c̄ =

c1, . . . , cm ∈ (A1∪A2)m and C̄ = C1, . . . , Cp, where Cj ⊆ A1∪A2 for 1 ≤ j ≤ p.

Also let d̄ = ind(A1, A2, c̄) and for 1 ≤ i ≤ 2 let qi ≥ q −m− p. Then

RCq(A1 ⊗A2, c̄, C̄) = RCq1(A1, c̄1, C̄ ∩A1) ×(q,⊗, d̄) RCq2(A2, c̄2, C̄ ∩A2).

Proof. The proof is an induction over q −m− p. By Lemma 6,

root(RCq(A1 ⊗A2, c̄, C̄)) = root(R1)⊗d̄ root(R2).
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If q−m− p = 0, then RCq(A1⊗A2, c̄, C̄) consists of a single root node and the

lemma holds. Otherwise, the set of subtrees is by definition

subtrees(RCq(A , c̄, C̄)) =
{

RCq(A , c̄d, C̄) | d ∈ A
}
∪{

RCq(A , c̄, C̄D) | D ⊆ A
}
.

Here, by the induction hypothesis

{
RCq(A , c̄d, C̄) | d ∈ A

}
=
{

RCq(A , c̄d, C̄) | d ∈ A1

}
∪
{

RCq(A , c̄d, C̄) | d ∈ A2

}
i.h.=
{

RCq(A1, c̄[A1]d, C̄ ∩A1) ×(q,⊗, d̄ · (1,m1 + 1)) R2 | d ∈ A1

}
∪{

R1 ×(q,⊗, d̄ · (2,m2 + 1)) RCq(A2, c̄[A2]d, C̄ ∩A2) | d ∈ A2

}
= S1

and, similarly,

{
RCq(A , c̄, C̄D) | D ⊆ A

}
i.h.=
{

RCq(A1, c̄[A1], C̄D ∩A1) ×(q,⊗, d̄) RCq(A2, c̄[A2], C̄D ∩A2)
∣∣

D ∈ U
}

= S2.

This concludes the proof.579

580

Lemma 8. Given R1 and R2, the tree cross product R1 ×(q,⊗, d̄) R2 can be581

computed time poly(|R1|, |R2|), where |Ri| denotes the number of nodes in Ri.582

Proof. An algorithm computing R1 ×(q,⊗, d̄) R2 may recursively traverse both583

trees top-down. For each pair of subtrees R′1 and R′2 of R1 and R2, the algorithm584

has to be called only once. The number of recursive calls is therefore bounded585

by |R1|·|R2| and each recursive call takes time dependent on q and the signature586

τ , and hence on the rankwidth t, only.587

588

27



We now finally prove the Main Theorem.589

The Main Theorem. [7, 12] Let ϕ be an MSO1-formula with qr(ϕ) ≤ q. There590

is an algorithm that takes as input a t-labeled parse tree decomposition T of a591

graph G and decides whether G |= ϕ in time O(f(q, t) · |T |), where f is some592

computable function and |T | is the number of nodes in T .593

Proof. It is no loss of generality to assume that G has at least one vertex.594

Otherwise deciding whether G |= ϕ takes constant time. By Lemmas 1, 2595

and 3, to prove that G |= ϕ it is sufficient to show that the verifier has a winning596

strategy in the model checking gameMC(RCq(G), ϕ, ε, ε). By Lemma 4, the size597

of the reduced characteristic tree RCq(G) of a t-labeled graph is at most f1(q, t)598

for some computable function f1 of q and t alone. By Lemma 8, the time taken to599

combine two reduced characteristic trees of size f1(q, t) is f(q, t) = poly(f1(q, t)).600

We claim that the total time taken to construct RCq(G) from its parse tree601

decomposition T is O(f(q, t) · |T |). The proof is by an induction on |T |. By602

Lemma 5, the claim holds when |T | = 1. Suppose that Ḡ = Ḡ1 ⊗[g|h1, h2] Ḡ2,603

where g, h1, h2 are t-relabelings and let T1 and T2 be parse trees of Ḡ1 and Ḡ2,604

respectively. Then |T | = |T1| + |T2| + 1, where T is a parse tree of Ḡ. By in-605

duction hypothesis, one can construct the reduced characteristic trees RCq(G1)606

and RCq(G2) in times O(f(q, t) · |T1|) and O(f(q, t) · |T2|), respectively. By607

Lemma 7, one can indeed construct RCq(G) given RCq(G1), RCq(G2) and d̄ = ε.608

By using Lemma 8, the time taken to construct RCq(G) is609

O(f(q, t) + f(q, t) · |T1|+ f(q, t) · |T2|) = O(f(q, t) · |T |),

thereby proving the claim.610

In order to check whether the verifier has a winning strategy in the model611

checking game MC(RCq(G), ϕ, ε, ε), one can use a very simple recursive algo-612

rithm (see also [14]). A position p = (ψ, x̄, X̄, u) of the model checking game613

can be identified with a call of the algorithm with arguments p. If ψ is uni-614

versal, then the algorithm recursively checks whether the verifier has a winning615

strategy from all positions u′ that are reachable from u in the model check-616

ing game. If otherwise ψ is existential, then the algorithm checks whether617
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there is one subsequent position in the game from which the verifier has a win-618

ning strategy. This algorithm visits each node of the reduced characteristic619

tree RCq(G) at most once. Therefore the time taken to decide whether G |= ϕ620

is O(f1(q, t) + f(q, t) · |T |) = O(f(q, t) · |T |), as claimed.621

622

6. Discussion and Conclusion623

The proof of the Main Theorem shows that deciding whether a graph models

an MSO1-sentence is linear-time doable if the rankwidth of the graph is bounded.

The theorem by Courcelle et al. [7] says something stronger: one can compute

the optimal solution to a linear optimization problem expressible in MSO1 in

linear time for graphs of bounded rankwidth. In its simplest form, a linear

optimization problem in MSO1 is a tuple

(ϕ(X1, . . . , Xl), a1, . . . , al, opt),

where ϕ(X1, . . . , Xl) is an MSO1-formula with the free set variables X1, . . . , Xl,624

ā = a1, . . . , al ∈ Zl, and opt is either max or min. The objective is, given an625

input graph G, to find (U1, . . . , Ul) ⊆ V (G)l such that G |= ϕ[X1/U1, . . . , Xl/Ul]626

and
∑l
i=1 ai|Ui| is optimized (maximized or minimized).627

One can use the techniques outlined in this paper to prove the stronger state-628

ment by first constructing reduced characteristic trees RCq(G, ε, U1, . . . , Ul), of629

which there are only a function of q and l. All that remains to do is simulate630

the model checking game on each of the reduced characteristic trees and output631

the tuple (U1, . . . , Ul) for which there is a winning strategy and
∑l
i=1 ai|Ui| is632

optimized.633

An interesting question is whether the Main Theorem can be extended to634

MSO2 formulas (with edge set quantifications) as can be done in Courcelle’s635

Theorem on graphs of bounded treewidth [4]. In this context, recall that P1636

and NP1 denote, respectively, the class of languages over a single letter (tally637

languages) that are in P and NP. Clearly P = NP implies P1 = NP1 but the638
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other direction is not known. What is known is that P1 = NP1 if and only if639

EXPTIME = NEXPTIME [3, 17]. It was shown in [7] that if P1 6= NP1 then640

there is an MSO2-definable decision problem over the class of cliques that is641

not solvable in polynomial time. Since cliques have rankwidth one, this result642

illustrates the difficulty of extending the Main Theorem for MSO2. Intuitively,643

the reason why our approach would fail for MSO2 formulas is as follows: The644

operation Ḡ1⊗ Ḡ2 in the parse tree “creates” an unbounded number m of edges645

between Ḡ1 and Ḡ2 for which there are 2m edge-subsets to be considered. It646

does not seem possible to enhance the model-checking game with respect to647

these edge-subsets within polynomial time.648

On the positive side, the results of this paper naturally extend to directed649

graphs and birankwidth. This allows us to conclude that any decision or opti-650

mization problem on directed graphs expressible in MSO1 is linear-time solvable651

on graphs of bounded birankwidth [7, 20]. Finally, the game-theoretic approach652

has already been used to prove Courcelle’s result for treewidth [4, 1, 9] with an653

emphasis on practical implementability [21].654
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