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Abstract. Several different measures for digraph width have appeared in the last few
years. However, none of them shares all the “nice” properties of treewidth: First, being
algorithmically useful i.e. admitting polynomial-time algorithms for all MSO;-definable
problems on digraphs of bounded width. And, second, having nice structural properties
i.e. being monotone under taking subdigraphs and some form of arc contractions. As
for the former, (undirected) MSO; seems to be the least common denominator of all
reasonably expressive logical languages on digraphs that can speak about the edge/arc
relation on the vertex set. The latter property is a necessary condition for a width
measure to be characterizable by some version of the cops-and-robber game character-
izing the ordinary treewidth. Our main result is that any reasonable algorithmically
useful and structurally nice digraph measure cannot be substantially different from the
treewidth of the underlying undirected graph. Moreover, we introduce directed topolog-
ical minors and argue that they are the weakest useful notion of minors for digraphs.
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1 Introduction

An intensely investigated field in algorithmic graph theory is the design of graph width parameters
that satisfy two seemingly contradictory requirements: (1) graphs of bounded width should have a
reasonably rich structure; and, (2) a large class of problems must be efficiently solvable on graphs of
bounded width. For undirected graphs, research into width parameters has been extremely success-
ful with a number of algorithmically useful measures being proposed over the years, chief among
them being treewidth [16], clique-width [6], branchwidth [18] and related measures (see also [3]).
Many problems that are hard on general graphs turned out to be tractable on graphs of bounded
treewidth. These results were combined and generalized by Courcelle’s celebrated theorem which
states that a very large class of problems (MSO3) is tractable on graphs of bounded treewidth [4].

However, there still do not exist directed graph width measures that are as successful as
treewidth. This is because, despite many achievements and interesting results, most known digraph
width measures do not allow for efficient algorithms for many problems. During the last decade,
many digraph width measures were introduced, the prominent ones being directed treewidth [12],
DAG-width [2,14], and Kelly-width [11]. These width measures proved useful for some problems.
For instance, one can obtain polynomial-time (XP to be more precise) algorithms for HAMILTO-
NIAN PATH on digraphs of bounded directed treewidth [12] and for PARITY GAMES on digraphs
of bounded DAG-width [2] and Kelly-width [11]. But there is the negative side, too. HAMILTO-
NIAN PATH, for instance, likely cannot be solved on digraphs of directed treewidth, DAG-width,
or Kelly-width at most k£ in time O(f(k) - n®), where c is a constant independent of k. Note that
HAMILTONIAN PATH can be solved in such a running time for undirected graphs of treewidth at
most k [4].

Additionally, for the newly introduced [9] DAG-depth and Kenny-width® — digraph width mea-
sures that are much more restrictive than DAG-width — problems such as DIRECTED DOMINATING
SET, DIRECTED CUT and k-PATH remain NP-complete on digraphs of constant width [9]. In con-
trast, another recent digraph measure bi-rank-width [13] looks more promising. A Courcelle-like
MSO; theorem exists for digraphs of bounded bi-rank-width, and many other interesting problems
can be solved in polynomial (XP) time on these [13, 10]. For a recent survey on complexity results
for DAG-width, Kelly-width, bi-rank-width, and other digraph measures, see [9].

In this paper, we boldly ask whether there exist digraph width measures that are algorithmically
useful, and if so what properties can they be expected to satisfy. We first address the question of
what it means for a width measure to be algorithmically useful. While there is no formal definition of
this notion, we appeal to what is known about width measures for undirected graphs, in particular,
about treewidth. As mentioned earlier, Courcelle’s Theorem states that all problems expressible
in MSO; logic are (fixed-parameter, or FPT) tractable on graphs of bounded treewidth. It would
be nice to have such a strong result for a digraph width measure, but to this day there exists no
widely accepted logical language specifically aimed at digraphs at all. This fact then prompts us to
consider the least common denominator of all possible descriptive languages over digraphs that; a)
have sufficient expressive power (meaning they can quantify over sets, not only over singletons), and
b) can identify the arc/edge relation over the vertex set. Clearly, this least common denominator
includes at least the ordinary MSO; logic (see Section 2) of the underlying undirected graph.

We thus define algorithmic usefulness as the property of admitting polynomial-time (XP to be
precise) algorithms for all MSO;-definable problems on digraphs of bounded width as the parameter.
Note that we even relax the required time bound from FPT-time to XP-time (see in Section 2).
It is easy to see that algorithmically useful digraph width measures do indeed exist. Besides some

3 Kenny-width [9] is a different measure than Kelly-width [11].



simplistic examples, such as the measure that counts the number of vertices in the input graph,
there is the treewidth of the underlying undirected graph. In the latter case we can apply the rich
theory of (undirected) graphs of bounded treewidth, but we would not get anything substantially
new for digraphs. As such, we are interested in digraph width measures that are incomparable to
undirected treewidth.

Our second question is what properties can an algorithmically useful digraph width measure be
expected to satisfy. In particular, can we expect any such properties typical for undirected width
measures also in the directed case? An important feature of treewidth is that it allows a cops-
and-robber game characterization. In fact, several digraph width measures such as DAG-width [2,
14], Kelly-width [11], and DAG-depth [9] admit some variants of a cops-and-robber game charac-
terization. While there is no formal definition of a cops-and-robber game-based width measure, all
versions of the cops-and-robber game that have been considered share a basic property: shrinking
an induced (directed) path does not help the robber. To capture this phenomenon formally, we
introduce the notion of a directed topological minor in Section 5. Essentially what we show is that
a directed width measure that is “cops-and-robber-game-based” must be closed under directed
topological minors. We note that there exist algorithmically useful measures other than undirected
treewidth — digraph clique-width [6] and bi-rank-width [13] — which are not monotone even under
taking subdigraphs.

Our main result (Theorem 6.5) then states that an algorithmically useful digraph width mea-
sure that is closed under directed topological minors cannot be substantially different from the
treewidth of the underlying undirected graph. This implies that algorithmically useful digraph
width measures different from treewidth of the underlying undirected graph cannot be based on a
cops-and-robber game. One can ask whether an even stronger claim is true, namely whether closure
under just taking subdigraphs is enough to refute the existence of algorithmically useful digraph
width measures different from treewidth. We will show that this is not true by giving an explicit
example in Theorem 6.6. Another interesting example is then given in Theorem 6.8.

The paper is organized in four parts. In Section 3, we formally establish and discuss the (above
outlined) properties an algorithmically useful digraph width measure should have. In Section 4, we
begin with the technical prerequisites for our main results. Briefly sketching, we will show that the
structure of hard MSOq-definable graph problems is as rich for planar graphs of degree at most 3
as for general graphs. In Section 5, we will introduce the notion of a directed topological minor. We
will discuss its properties and consider complexity issues. In particular, we will show that it is hard
to decide for a fixed (small) digraph whether it is a directed topological minor of a given digraph.
In the last section, Section 6, we prove our main results which have already been outlined above.

Our proofs are based on some advanced techniques that are well known in undirected structural
graph theory, but we apply them in a novel setting of digraph width measures. Due to lack of space,
all the supplementary proofs can be found in the Appendix.

2 Definitions and notation

The graphs (both undirected and directed) that we consider in this paper are simple in that they
do not contain loops. Given a graph G, we let V(G) denote its vertex set and E(G) denote its
edge set, if G is undirected. If G is directed, we let A(G) denote its arc set. The symbol G usually
denotes undirected graphs and D denotes directed graphs. The arcs of a digraph D are ordered
pairs (u,v) € A(D) for u # v, where u is an in-neighbor of v and v is an out-neighbor of u. Given a
directed graph D, the underlying undirected graph U(D) of D is an undirected graph on the vertex
set V(D); and {u,v} is an edge of U(D) if and only if (u,v) € A(D) or (v,u) € A(D). A digraph
D is an orientation of an undirected graph G if U(D) = G.



For a vertex pair u,v of a digraph D, a sequence P = (u = xg,...,z, = v) is called directed
(u,v)-path of length r > 0 in D if the vertices zy, ..., z, are pairwise distinct and (z;,z;11) € A(G)
for every 0 < ¢ < r. We also write u —>B v if there exists a directed (u,v)-path in D, and u —7, v if
either u —>J]5 vor u=v. A directed cycle is defined analogously with the modification that x¢y = x,.
A digraph D is acyclic (a DAG) if D contains no directed cycle.

A parameterized problem @ is a subset of > x Ny, where Y is a finite alphabet. A parameterized
problem @ is said to be fized-parameter tractable if there is an algorithm that given (z,k) € X' x Ny
decides whether (z,k) is a yes-instance of @) or not in time f(k) - p(|z|) time where f is some
computable function of k alone, p is a polynomial and |z| is the size measure of the input. The class
FPT denotes the class of parameterized problems that are fixed-parameter tractable. The class XP
is the class of parameterized problems that admit algorithms with a run-time of O(|z|f*)) for some
computable f.

Monadic second-order (MSO in short) logic is a language particularly suited for description of
problems on “tree-like structured” graphs. For instance, the celebrated result of Courcelle [4], and
of Arnborg, Lagergren and Seese [1], states that all MSOs definable graph problems have linear-
time FPT algorithms when parameterized by the undirected treewidth. The expressive power of
MSOs, is very strong, as it includes many natural graph problems. In this paper we are, however,
interested primarily in another logical dialect commonly abbreviated as MSO;, whose expressive
power is noticeably weaker than that of MSOs. The weaker expressive power is not a handicap but
an advantage for our paper since we are going to use it in negative results. Similarly to the previous,
MSO; definable graph problems have FPT algorithms when parameterized by clique-width [5] and,
consequently, by rank-width.

Definition 2.1. The language of MSO; contains the logical expressions that are built from the
following elements:

— variables for elements (vertices) and their sets, and the predicate x € X,
— the predicate adj(u,v) with u and v vertex variables,
— equality for variables, the connectives A, V, -, — and the quantifiers V, 3.

Ezxample 2.2. For an undirected graph to have the 3-colorability property is an MSO{-expression:

Vi, Vo, Vs [Vo (v € Vi Vo € Vo Vo € Vs) /\/\_7123 Vo,w (v € ViVw ¢ V; V-adj(v, w)) |

A decision graph property P is MSO; definable if there exists an MSO; formula ¢ such that P
holds for any graph G if, and only if, G | ¢, i.e., ¢ is true on the model G. MSO; is analogously
used for digraphs and their properties, where the predicate arc(u,v) is used instead of adj(u,v).

3 Desirable digraph width measures

A digraph width measure is a function 0 that assigns each digraph a non-negative integer. To stay
reasonable, we expect that infinitely many non-isomorphic digraphs are of bounded width. We
consider what properties a width measure is expected to have. Importantly, one must be able to
solve a rich class of problems on digraphs of bounded width. But what does “rich” mean?

On one hand, looking at existing algorithmic results in the undirected case, it appears that a
good balance between the richness of the class of problems we capture and the possibility of positive
general algorithmic results is achieved by the class of MSO; expressible problems (Definition 2.1).
On the other hand, if we consider any logical language £ over digraphs that is powerful enough to
deal with sets of singletons (i.e. of monadic second order) and that can identify the adjacent pairs of
vertices of the digraph, then we see £ can naturally interpret also the MSO; logic of the underlying



digraph. Hence the following specification appears to be the most natural common denominator in
our context:

Definition 3.1. A digraph width measure § is powerful if, for every MSO; definable decision prop-
erty P, there is an XP algorithm deciding P on all digraphs D with respect to the parameter 6(D).

The traditional measures treewidth, branchwidth, clique-width, and more recent rank-width,
are all powerful [4, 5] for undirected graphs. For directed graphs, unfortunately, exactly the opposite
holds. The width measures suggested in recent years as possible extensions of treewidth — including
directed treewidth [12], D-width [20], DAG-width [14, 2], and Kelly-width [11] — all are not powerful.

Another concern is about “non-similarity” of our directed measure ¢ to the traditional treewidth
of the underlying undirected graph; we actually want to obtain and study new measures that signif-
icantly differ from treewidth, in the negative sense of the following Definition 3.2. This makes sense
because any measure § which bounds the treewidth of the underlying graph would automatically be
powerful but wouldn’t help solve any more problem instances than we already can with traditional
undirected measures.

Definition 3.2. A digraph width measure § is called treewidth-bounding if there exists a com-
putable function b such that, for every digraph D, §(D) < k implies that the treewidth of U (D) is
at most b(k).

To briefly outline the current state, we focus in the rest of this section on two of the treewidth-
like directed measures which seem to attract most attention nowadays — DAG-width [14, 2] and
Kelly-width [11]; and on another two not-much-known but significantly more successful (in the
algorithmic sense) measures — directed clique-width [6] and bi-rank-width [13]. Of course, none of
these measures is treewidth-bounding.

Since the definitions of DAG-width and Kelly-width are not short, we skip them here and refer
to [14, 2, 11] instead. Both DAG- and Kelly-width share some common properties important for us:

— Acyclic digraphs (DAGs) have width 0 and 1, respectively.

— If we replace each edge of a graph of treewidth k£ by a pair of opposite arcs, then the resulting
digraph has DAG-width k£ and Kelly-width &k + 1.

— Both of the measures are characterized by certain cops-and-robber games.

Proposition 3.3. Unless P = NP, DAG-width and Kelly-width are not powerful.

On the other hand, there is the clique-width measure [6] which, although originally considered
undirected, readily extends from graphs to digraphs. The clique-width of a graph G is the smallest
integer k such that G is the value of a k-expression. A k-expression is an algebraic expression with
the following four operations on vertex-labeled graphs using k labels: create a new vertex with label
i; take the disjoint union of two labeled graphs; add all edges (arcs in the directed variant) between
the vertices of label i and label j; and relabel all the vertices with label i to have label j.

Another noticeable directed measure is bi-rank-width [13], which is strongly related to clique-
width in the sense that one is bounded on a digraph class iff the other one is. Due to restricted
space we, however, only refer to [13] or [10] for its definition and properties.

Proposition 3.4 (Courcelle, Makowsky, and Rotics [5]). Directed clique-width, and conse-
quently bi-rank-width, are powerful measures.

For a better understanding of the situation, we note one important but elusive fact: Bounding the
undirected clique-width or rank-width of the underlying undirected graph does not generally help



solve directed graph problems. In particular, undirected clique-width or rank-width are not powerful
digraph measures. This is in a sharp contrast to the situation with treewidth where bounding the
treewidth of the underlying undirected graph allows all the algorithmic machinery to work also on
digraphs. A brief informal explanation of this antagonism lies in the facts that a “bag” in a tree
decomposition has bounded size and so there is only a bounded number of possible orientations
of the edges in it, while a single edge-addition operation in a clique-width expression creates a
bipartite clique of an arbitrary size which admits an unbounded number of possible orientations.
Consequently, there is no simple general relation between undirected measures and their directed
generalizations.

After all, comparing Propositions 3.3 and 3.4, we clearly see the advantages of directed clique-
width. There is, however, also the other side. Clique-width and bi-rank-width do not possess the nice
structural properties common to the various treewidth-like measures, such as being subgraph- or
contraction-monotone. This is due to symmetric orientations of complete graphs all having clique-
width 2 while their subdigraphs include all digraphs, even those with arbitrarily high clique-width.
This seems to be a drawback and a possible reason why clique-width- and rank-width-like measures
are not so widely accepted.

The natural question now is; can we take the better of each of the two worlds? In our search for
the answer, we will not study specific digraph width measures but focus on general properties of
possible width measures. The main result of this paper, Theorem 6.5, then answers this question
negatively: One cannot have a “nice” digraph width measure which is powerful, not treewidth-
bounding and, at the same time, monotone under taking subgraphs and directed topological minors
(see in Section 5). This strong and conceptually new result holds modulo technical assumptions
which prevent our digraph width measures from “cheating”, such as in Theorems 6.6 and 6.8.

4 Hard MSO; problems for {1, 3}-regular planar graphs

The purpose of this section is to show that one can find many MSO; definable problems which are
hard even on very restricted undirected graph classes such as on {1, 3}-regular planar graphs. For
a set S of natural numbers, an S-regular graph is a graph having every vertex degree in S. This
technical result will be essentially used in the proof of Theorem 4.1.

Theorem 4.1. For any simple undirected graph H and every MSOy formula ¢, there exist a {1,3}-
reqular planar graph G and an MSO; formula v, such that

a) HE p < GE, and

b) for every subdivision Gy of G, it is G1 ¢ <— G 1.

¢) Moreover, ¥ depends only on ¢, || = O(|¢|), and both G and v are computable in polynomial
time from H and @, respectively.

Our main tool for the proof of this theorem is the classical interpretability of logic theories [15].
To describe its simplified idea, assume that two classes of relational structures # and £ are given.
The basic idea of an interpretation I of the theory Thyso(#) into Thygo(-Z) is to transform
MSO formulas x over .# into MSO formulas x! over .Z, and conversely structures G € . into
structures G € ', in such a way that “truth is preserved”. Formal details are in the Appendix,
and a brief illustration follows:

x € MSO over ¢ I x! € MSO over .Z
Hex ’ GeZ
1
Gl=H — G



Definition 4.2. Let .# and .Z be classes of relational structures. Theory Thyso () is inter-
pretable in theory Thygo(-Z) if there exists an interpretation I as above, such that the following
two conditions are satisfied:

— For every structure H € %, there is G € £ such that G! = H, and

— for every G € .Z, the structure G! is isomorphic to some structure of %
Furthermore, Thygo (%) is efficiently interpretable in Thyso (%) if the translation of each y into
x! is computable in polynomial time, and also the structure G € .Z such that G! = H can be

computed from any H € % in polynomial time.

Since interpretability is clearly a transitive concept, we prove Theorem 4.1 in the following
sequence of three relatively easy claims.

Lemma 4.3. The MSO; theory of all simple undirected graphs is efficiently interpretable in the
MSO; theory of simple planar graphs.

Lemma 4.4. The MSO, theory of all simple undirected graphs is efficiently interpretable in the
MSO; theory of simple {1,3}-regular graphs. Moreover, this interpretation preserves planarity.

Lemma 4.5. For every MSO, formula ¢ there exists an efficiently computable MSO; formula o1
such that the following holds: For every {1,3}-reqular graph G and every subdivision Gy of G, it is

G1 E 1 if and only if G = ¢.

Proof (of Theorem 4.1). We apply the chain of interpretations Iy, Is, Is from Lemmas 4.3, 4.4,
and 4.5 in this order to the formula ¢, obtaining the resulting formula v = ((¢")2)’3. We also
construct, following the constructive proofs of the aforementioned lemmas, a graph G such that H =
(G*2)11 (notice the reverse order of the interpretations) Then part a) follows from Definition 4.2,
and specially part b) from Lemma 4.5. Lastly, c) is true since the interpretations I, s, I3 are
efficient (meaning all computable in polynomial time). O

5 Directed topological minors

Many “reasonable” measures (treewidth being the prime example [17]) for undirected graphs are
monotone under taking minors. In other words, the measure of a minor is not larger than the
measure of the graph itself. Graph H is a minor of a graph G if it can be obtained by a sequence of
applications of three operations: vertex deletion, edge deletion and edge contraction. (See e.g. [7].) It
is therefore only natural to expect that a “nice” digraph measure should also be closed under some
notion of a directed minor. However, there is currently no widely agreed definition of a directed
minor. One published, but perhaps too restrictive on subdivisions, notion is the butterfly minor [12].

In order to be as general as possible, we will consider directed topological minors. The topological
minor for undirected graphs is defined similarly to the usual minor, but an edge contraction can
only be applied to an edge e = {u, v} such that u or v has exactly two neighbors. In other words,
graph H is a topological minor of G iff a subdivision of H is isomorphic to a subgraph of G. To
define directed topological minors, we first need a notion of arc contraction for digraphs:

Definition 5.1. Let D be a digraph and a = (x,y) € A(D) be an arc. Then D/a = (V \{z,y})U
{va}, A’) is the digraph obtained by contracting arc a, where v, is a new vertex, and (u,v) € A" iff
one of the following holds:

(u,v) € A(D\{z,y})
v =1, and (u,x) € A or (u,y) € A
u =1, and (z,v) € A or (y,v) € A



Fig. 1. Arc contraction: digraphs D (left) and D/a.

See Fig. 1 for an example of a contraction. Note that contraction never produces arcs of the
form (x,z) (loops). Also the result of a contraction does not depend on the orientation of the
contracted arc. Finally, we treat contracting a pair of arcs (z,y) and (y,x) as a contraction of a
single bidirectional arc.

An important point of decision when defining a minor is; which arcs do we allow to contract?
In the case of undirected graph minors, any edge can be contracted. For topological minors, only
edges with at least one endvertex of degree two can be contracted. However, the situation is not
so obvious in the case of digraphs. Look again at Figure 1. If we contract the arc a, we actually
introduce a new directed path u —* v, whereas in undirected graphs no new (undirected) path is
ever created by the edge contraction.

On the other hand, simply never introducing a new directed path is not a good strategy either
(for reasons which are explained in Remark 6.7). We denote by V3(D) C V(D) the subset of vertices
having at least three neighbors in D. The middle ground we choose is to prohibit introducing a new
directed path between any two vertices from V(D). This is reflected in the following definition:

Definition 5.2. Let D be a digraph and a € A(D). An arc a = (u,v) € A(D) is 2-contractible if

— wu or v has exactly two neighbors, and
— (v,u) € A(D) or there is no pair of vertices z,y € V3(D) such that z —(p—qy¥ and u —={p_ Y.

A digraph H is a directed topological minor of D if there exist digraphs Dy, ..., D, = H such that
Dy is a subgraph of D, and for all 0 < ¢ < r — 1, D,y is obtained from D; by contracting a
2-contractible arc.

Proposition 5.3. Let D be a digraph and D’ be a digraph obtained from D by a sequence of vertex
deletions, arc deletions and contractions of 2-contractible arcs. Then D' is a directed topological
minor of D.

A useful notion in reasoning about directed topological minors is that of a 2-path. Let D be a
digraph and P = (z9,..., 7)) a sequence of vertices of D. Then P is a 2-path (of length k) in D if
P is a path in the underlying graph U (D) and all internal vertices z; for 0 < i < k have exactly two
neighbors in whole D. Obviously not every 2-path is a directed path. The following lemma explains
the close relationship between 2-paths and directed topological minors.

Lemma 5.4. Let D be a digraph and S = (xo,...,x) a 2-path of length k > 2 in D. Then there
exists a sequence of 2-contractions of arcs of S in D turning S into a 2-path of length two (or even
of length one if S was a directed path).

The obvious question is whether the known digraph measures are closed under taking directed
topological minors. The answer is given by the following proposition:

Proposition 5.5. DAG-width and Kelly-width are monotone under taking directed topological mi-
nors unless the width is 0 or 1, respectively. Directed clique-width and bi-rank-width are not.



In the second part of this section, we consider the complexity of deciding whether a given
digraph is a directed topological minor of another digraph. We show that this problem is hard
by giving a reduction from the 2-LINKAGE problem, which is the following problem. Let D be a
digraph and let si,s9,t1,t2 be pairwise different vertices of D. A 2-linkage for {(s1,t1), (s2,t2)} is
a pair (Py, P») of vertex-disjoint directed paths where P; is a (s;,t;)-path in D for ¢ € {1,2}.

Proposition 5.6 ([8]). The 2-LINKAGE problem, given a digraph D and {(s1,t1), (s2,t2)} where
1, S2,t1, to are pairwise different vertices of D, to decide whether D has a 2-linkage for {(s1,t1), (s2,t2)},
is NP-complete.

Theorem 5.7. There exists a digraph H such that the problem, given a digraph D, to decide
whether H is directed topological minor of D, is NP-complete.

The complexity result of Theorem 5.7 shows that it is already difficult for relatively simple
digraphs to decide whether they are directed topological minor of some given digraph. I.e. the
“directed topological minor” decision problem is not fixed-parameter tractable with the number of
vertices of the minor as a parameter.

A natural question is to ask how the “directed topological minor” problem behaves on restricted
input digraphs. It has been shown that the generalization of the 2-LINKAGE problem to arbitrary
numbers of given pairs, that is called the LINKAGE problem (given a digraph D and pairs of pairwise
different vertices, decide whether the pairs can be joined by vertex-disjoint directed paths) is NP-
complete on acyclic digraphs [21]. It is not difficult to see that the proof of Theorem 5.7 can be
extended to prove the next result. In particular, if the input digraph D is acyclic, all construction
steps yield again acyclic digraphs.

Theorem 5.8. The problem, given two acyclic digraphs D and H, to decide whether H is directed
topological minor of D, is NP-complete.

6 An (almost) optimal closure property result for digraph width measures

In this section we finally prove some “almost optimal” negative answers to the intrusive questions
raised in the Introduction and at the end of Section 3. To recapitulate, we have asked whether it
is possible to define a digraph width measure that is closed under some notion of a directed minor
and that is still powerful (such as ordinary treewidth in the undirected sense). Notions of a minor
and of possible directed minors have been surveyed in Section 5. We also recall the property of
being treewidth-bounding (which we want to avoid) from Definition 3.2.

Besides the aforementioned several properties we suggest one more technical property that a
desired nice directed width measure should posses to avoid “cheating” such as in the example of
Theorem 6.8. Informally, we do not want to allow the measure to keep “computationally excessive”
information in the orientation of edges:

Definition 6.1. A digraph width measure § is efficiently orientable if there exist a computable
function h, and a polynomial-time computable function r : 4 — 2 (from the class of all graphs to
that of digraphs), such that for every undirected graph G € ¢4, it is U(r(G)) = G and

0(r(@)) < h(min{o(D) : D a digraph s.t. U(D) = G}).
Proposition 6.2. DAG-width, Kelly-width, and digraph clique-width are all efficiently orientable.

Our main proof also relies on some deep ingredients from Graph Minors:



Theorem 6.3 ([19]). Let H be a planar undirected graph. There exists a number nyg such that for
every undirected graph G of treewidth at least ng, H is a minor of G.

Proposition 6.4 (folklore). If H is a minor of G and the maximum degree of H is three, then
H is a topological minor of G.

With all the ingredients at hand, we state and prove our main result:

Theorem 6.5. Let § be a digraph width measure with the following properties

a) 9 is not treewidth-bounding;
b) & is monotone under taking directed topological minors;
c) 0 is efficiently orientable.

Then P = NP, or § is not powerful.

Proof. We assume that § is powerful, and show a polynomial-time algorithm for solving any MSO4
definable property ¢ of undirected graphs, applying Theorem 4.1. Since, e.g. Example 2.2, there
are NP-hard such properties, it would follow that P = NP.

Let k be a suitable constant depending on 9, as specified below. Let 1 be the formula constructed
from our MSO; formula ¢, and let G be the {1,3}-regular graph constructed from an arbitrary
undirected graph H, both as in Theorem 4.1. Let moreover G; be the l-subdivision of G (i.e.
replacing every edge of G with a path of length two). We claim that, under assumptions a),b),
there exists an orientation D of G; such that 6(D) < k.

We postpone the proof of this claim, and show its implications first. By c¢) Definition 6.1, we
can efficiently construct an orientation D; of Gy such that §(D;) < h(k) (a constant). Let 11 be
the (directed) MSO; formula obtained from v by replacing adj(u,v) with (arc(u,v) V arc(v,u)).
Then, by Theorem 4.1, H |= ¢ iff Dy = 41, and hence we have got a polynomial reduction of the
problems H = ¢ onto Dy = 1. Since ¢ is assumed powerful, the latter problem can be solved by
an XP algorithm wrt. constant parameter h(k), i.e. in polynomial time.

Now we return back to our claim. Since a) ¢ is not treewidth-bounding, there is an integer k£ > 0
such that the class of all U(D), where D is a digraph of (D) < k, has unbounded treewidth. So
by Theorem 6.3, there exists Dy such that §(Dg) < k and U(Dyp) contains a Gp-minor. Since the
maximum degree of G is three, by Proposition 6.4 we have that some subdivision Go of G is
a subgraph of U(Dy), or that some digraph Dy, U(D3) = Ga, is a subdigraph of Dy. Then b)
d(D3) < k. Moreover, by Lemma 5.4 there exists a directed minor D3 of Dy such that U(Ds) = Gy,
and 6(D3) < k by b), too. We are done. O

Due to Theorem 6.5, a powerful digraph width measure essentially “cannot be stronger” than
ordinary undirected treewidth, unless P equals NP. Our result requires two assumptions about the
width measure § in consideration: ¢ should be closed under taking directed topological minors,
and it should be efficiently orientable. An interesting question is whether these conditions are
necessary, or, put differently, whether the result of Theorem 6.5 can be strengthened by weakening
these assumptions.

We address this question in the remaining part of this section — we show that Theorem 6.5
is almost strongest possible in the following Theorems 6.6 and 6.8. Specifically, we show that
if one relaxes either of these two conditions, then one can construct powerful measures which
definitely do not “look nice” (and, as such, one would not like to include them among the desired
directed measures). In the first round, we relax the condition of monotonicity under taking directed
topological minors just to subdigraphs:



Theorem 6.6. There exists a powerful digraph width measure § with the properties:

a) 9 is not treewidth-bounding;
b) & is monotone under taking subdigraphs;
c) 0 is efficiently orientable.

Remark 6.7. Theorem 6.6 can be slightly strengthened by claiming that ¢ is even monotone under
such contractions of arcs a € A(D) that create no new directed paths in D/a (compare to Defi-
nition 5.2 and the butterfly minors). In this modification we let §(D) = 1 if disty(p)(u,v) > g(2:
|V3(D)|) for all u#v € V3(D), and all the 2-paths between u,v € V3(D) have “alternately oriented”
arcs. Then every contraction in such D creates a new directed path.

In the second round, we take a closer look at the condition that ¢ is efficiently orientable. It is
not unreasonable to assume a digraph width measure to be efficiently orientable since most known
digraph measure are, e.g. Proposition 6.2. Furthermore, efficient orientability prevents digraph
measures from “keeping excessive information” in the orientation of arcs, such as (Theorem 6.8)
the information about 3-colorability of the underlying graph. To carefully explain our point, note
that there is nothing specially interesting in solving 3-colorability on digraphs; this claim is to show
that an “NP-completeness oracle” can be encoded in the orientation of arcs of a digraph in a way
that it is even preserved under taking directed topological minors, and hence efficient orientability
is a natural required property of a desirable directed measure.

Theorem 6.8. There exists a digraph width measure 6 such that

a) d is not treewidth-bounding;

b) & is monotone under taking directed topological minors;

c) for every k > 1, on any digraph D with §(D) < k, one can decide in time O(3* - n?) whether
U(D) is 3-colorable, and find a 3-coloring if it exists.

7 Conclusions

The main result of this paper shows that an algorithmically useful digraph width measure that is
substantially different from treewidth cannot be closed under taking directed topological minors.
Since cops-and-robber games behave invariantly on directed topological minors, we can conclude
that a digraph width measure that allows efficient decisions of MSO;-definable digraph properties
on classes of bounded width should not be definable using the “standard” cops-and-robber games.
This gives more weight to the argument [9] that bi-rank-width [13] is the best (though not optimal)
currently known candidate for a good digraph width measure.

Our main result also leaves room for other ways of overcoming the problems with the currently
existing digraph width measures. We have asked for width measures that are powerful, i.e., all
MSO;-definable digraph properties are decidable in polynomial time on digraphs of bounded width.
What happens if we relax this requirement? We can ask for more time, like subexponential running
time, or we can ask for restricted classes of MSO;-definable digraph properties. Currently, we are
not aware of any noticeable progress in this direction. Another interesting direction for future
research is a closer study of efficient orientability and directed topological minors.

Finally, we believe that the results and suggestions contained in our paper will lead to new ideas
and research directions in the area of digraph width measures — an area that seems to be stuck at
this moment.
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Appendix
Additions to Section 3

Additional remarks to Definition 3.1: Notice that we do not associate our abstract width measure
0 with any particular “decomposition” (which is a typical attribute of width measures). This is to
stay on the more general side, and a construction of such a decomposition for the aforementioned
measures is not a problem anyway.

We could have even imposed in Definition 3.1 a stronger requirement, that P is decidable by an
FPT algorithm. The undirected measures would stay powerful even in this stronger sense, but our
main goal is to give negative results for directed width measures and hence the weaker requirement
(of the existence of an XP algorithm) will actually make our conclusions stronger (cf. Theorem 6.5).

Proof (of Proposition 3.3). We take any NP-complete MSO; definable property P of undirected
graphs, such as the 3-colorability from Example 2.2, and define the digraph MSO; property P’ by
replacing every occurrence of the predicate adj(x,y) with (arc(m,y) Vv arc(y,a:)). Clearly, P holds
on a graph G if and only if P’ holds on any orientation D of G. If DAG-width or Kelly-width
were powerful, then by Definition 3.1 the property P’ would be decidable on all DAGs (width 0/ 1)
in polynomial time. Hence for any input graph G we could decide P by constructing an acyclic
orientation D of G, and then answering P’ on D in polynomial time. By standard arguments this
would mean that P = NP. O

Additions to Section 4

Details of an interpretation I of the theory Thyso (%) into Thyso ().

First one chooses a formula a(x) intended to define in each structure G € .Z a set of indi-
viduals (new domain) Gla] := {a : a € dom(G) and G = a(a)}, where dom(G) denotes the set
of individuals (domain) of G. Then one chooses for each s-ary relational symbol R from ¢ a
formula B%(x1,...,x,), with the intended meaning to define a corresponding relation G[3%] :=
{(a1,...,as) : a1,...,as € dom(G) and G |= B(ay,...,as)}. With the help of these formulas one
can define for each structure G € £ the relational structure G’ := (G[a], G[8"],...) intended to
correspond with structures in JZ".

There is also a natural way to translate each formula y (over %) into a formula x! (over .£),
by induction on the structure of formulas. The atomic formulas are substituted by corresponding
chosen formulas (such as BR) with the corresponding variables. Then one proceeds via induction
as follows:

)" = (D), aAxe)’ = ) A (xe),
Bz x(@) = 3y(aw) AX @), BXxX)' = 3 ().

We believe Lemma 4.3 is a known statement, but since we have not found an explicit reference, we
present an illustrating proof for it (in the Appendix).

Proof (of Lemma 4.3). For start, we define the formula deg,(z) = Yy, z[(adj(x,y) A adj(z, z)) —
y = z|] A Jy adj(x,y) expressing that x is of degree 1 (in the model G). Furthermore, the formula
con(u,v,X) = VY CX3y,z [(y EYVy=u)A(z €Y Vz=uv) Aadjy, z)] expresses the property
that the subgraph induced by X U{u, v} connects u to v, and mcon(u,v, X) = con(u,v, X)AVY (Y C
X — —con(u,v,Y)) says that X is a minimal connection (a path) between u, v.

11



Let ¢4 be the class of all simple graphs, and & the class of planar simple graphs. Following
Definition 4.2, the formula a; defining the domain (vertex set in this case) of a graph G! = H ¢ ¢4
inside G € & is given as

a1 (v) = —~deg; (v) AV (adj(z,v) — —deg; (z)) . (1)

The underlying idea is that we would like to use some vertices of a planar graph G € & to model
edge “crossings” of H = G, see in Figure 2. Hence we “mark” each of such supplementary vertices
with a new neighbor of degree 1.

e

Fig. 2. The crossing-gadget modeling, in planar G, an edge crossing of GT = H.

It remains to interpret the adjacency relation Bla dj (u,v) for G!. Notice that the crossing gadget
in Figure 2 uses a unique “marked” 4-cycle to model each crossing, and we can identify all such
4-cycles in G with a formula crgadg(C) = o A(|C| = 4)AVx € C—ay(z) where o routinely describes
the possible edge sets of a 4-cycle on a given set of vertices C. The shortcut |.| = 4 has an obvious
implementation in MSO. Then we use

fdj(u,v) = 3X[Vz € X (mai(z)) A mecon(u,v, X) A (2)
AVC ((crgadg(C)ANX NC #0) — [ X NC| = 3)].

The meaning of ﬁf dj (u,v) is that there exists a path P between u,v using only (besides u,v)
marked internal vertices X, and such that P intersects every crossing-gadget 4-cycle in exactly
three vertices which ensure that P is not “making a turn” at a crossing.

The last step in the proof is to verify the two conditions of Definition 4.2. While the second

condition is trivially true since Bla dj is a symmetric binary relation, the first one requires an efficient
algorithm constructing, for each H € ', a graph Gy € % such that GIILI =~ H. This is done as
follows:

1. A “nice” drawing of H in the plane is found (and fixed) such that no two edges cross more than
once, no three edges cross in one point, and no edge passes through another vertex.

2. For every degree-1 vertex w € V(H), the unique edge {z,w} € E(H) is replaced with a path of
length 3 on {x,w,w;,ws} where wy,wy are new vertices. (This is needed since degree-1 vertices
have special meaning in the interpretation.)

3. Finally, every edge crossing is naturally replaced with a copy of the gadget from Figure 2. The
resulting planar graph is named Gp.

It is routine to verify that G% =H. O

Proof (of Lemma 4.4). Let ¢ be the class of all simple graphs, and % denote the class of all simple
{1,3}-regular graphs. We start the proof by showing a construction, for H € ¥, of the graph
G = Gy € # such that G! = H in the intended interpretation I.
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For each vertex v € V(H) of degree d, we create a new vertex 7, adjacent to two (three if d = 0)
other new vertices of degree 1. If d > 0, then we also create a new bicolored (black—white) cycle C,
of length 2d + 2 such that each its black vertex is adjacent to a new vertex of degree 1, one of the
white vertices is adjacent to r,, and the d edges formerly incident with v in H are now one-to-one
attached to the remaining d white vertices of C,. See Figure 3. The resulting graph is our Gp.
Notice that if H is planar, then the cyclic order of edges incident with each C, can be preserved,
and so Gy will also be planar.

Fig. 3. The vertez-gadget, replacing vertices of H with {1, 3}-regular pieces in G.

The domain of H can be identified within Gy with the formula

a(v) = o,y |2 # y Aadj(v,z) A adj(v,y) A (3)
Vz((adj(z,z) V adj(z,y)) = z =v) |

meaning simply that v has (at least) two neighbors of degree 1.

Before interpreting the adjacency relation of H in G, we have to identify the cycles C,, from
our construction. Notice that these are the only induced cycles of Gz with the property that every
second of their consecutive vertices has a neighbor of degree 1 (for instance, each edge of G coming
from an edge of H has both ends with all neighbor of degree 3). In this sense we write

o(U) = cycle(U) A Va,y € U [adj(z,y) — ()
V., Fwvt (adi(z w) A (adjt,w) = = 2)) |

where cycle(U) is a routine MSO; predicate saying that U induces a cycle in the graph, and finally,

Qadj(u,w) = JU, W Juy,ue € U, w1, wy € W (5)
o(U) N o(W) A adj(ur, w) A adj(ug, u) A adj(ws, w) .

We have finished description of the intended interpretation I, and it is now straightforward that
Gg =~ H for every H € ¢4, cf. Definition 4.2. The proof is complete. O

Proof (of Lemma 4.5). An alternative view of the situation is that we are interpreting the MSO;
theory of {1, 3}-regular graphs in the class of all their subdivisions. Hence we construct ¢; as ¢! in
such an interpretation I: Since G is {1, 3}-regular, we simply identify the domain of G (its vertex
set) inside G; with ag(v) = —degy(v) where degy(v) routinely expresses that v is of degree two
in Gl.

We moreover recall an MSO; formula con(u, v, X) meaning that v is connected to v via the ver-

tices of X (in G1). The adjacency relation of G is then replaced with dej(u, v) = 3X (con(u,v, X)A

Vye X degz(y)). Clearly, G1 ﬁ?dj(u, v) if and only if v and v are connected with a path in Gy
created by subdividing an edge {u,v} of G. The rest follows trivially. O
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Additions to Section 5

Proof (of Proposition 5.3). From Definition 5.2 it follows that a 2-contractible arc cannot become
non-2-contractible by vertex and arc deletions. Therefore we can first do the arc and vertex deletions
by taking the corresponding subgraph D” of D, and then do the contractions in the original order.
Note that some of the arcs to be contracted may not be present in D” because they have been
removed by vertex deletions. O

Proof (of Lemma 5.4). If S is a directed path in D, then any edge of S is 2-contractible. Otherwise
S is not a directed path in D and therefore there are two arcs (z;, zit1), (zj,z-1) € A(D) for
some 4,7 s.t. 0 <i <k, 0<j<kandi+ 1z j. Then any other edge of S is 2-contractible, as
its contraction cannot produce a new directed path between any two vertices in D with more than
two neighbors. O

Proof (of Proposition 5.5, sketch). For DAG-width and Kelly-width this follows from the character-
ization by their corresponding cops-and-robber games: A 2-contraction does not create a new path
between two vertices of degree greater than 2 (vertices of degree 2 have to be handled separately).
The result for clique-width and bi-rank-width is a direct consequence of these two measures not
being closed under taking subgraphs. O

Proof (of Theorem 5.7). Since the problem is clearly solvable in non-deterministic polynomial time,
it remains to show that the problem is NP-hard. We reduce from the 2-LINKAGE problem. The
proof goes in two steps. We first show that the 2-LINKAGE problem remains hard on digraphs where
every vertex has at most three neighbors.

Let D,{(s1,t1),(s2,t2)} be an instance of the 2-LINKAGE problem. Let D’ be a digraph such
that V(D) = V(D) U {s},sh,t|,t5}, where s|,sh,t|,t, are new vertices, and A(D') = A(D) U
{(s}, s1), (85, 82), (t1,t}), (t2, t5)}. Obviously D has a 2-linkage for {(s1,t1), (s2,t2)} if and only if D’
has a 2-linkage for {(s],t}), (sh,t5)}. Next, we modify large-degree vertices. We obtain digraph D"
from D’ by iteratively executing, for every vertex x with dp/(z) > 4, the following sequence of
operations: delete x, introduce d p/(x) new vertices z1, . .. s Td ()5 add the arcs (z;,z;41) for 1 <i <
dp(z), assign the in-neighbors of z as in-neighbors to the vertices z1, . .., z; where j = [N, (z)|, and
assign the out-neighbors of z as out-neighbors to the remaining vertices. Observe that z is replaced
by a digraph with vertices of degree at most 3, and reachability is preserved. In particular, it holds
that D’ has a 2-linkage for {(s},t}), (s5,t5)} if and only if D" has a 2-linkage for {(s},t}), (s5,t5)}.
Since the construction of D” requires only polynomial time, this shows that 2-LINKAGE is NP-
complete on digraphs of maximum degree at most 3 due to Proposition 5.6.

For the second step of the proof, we continue with D" and {(s},t}), (sh,t5)}. We introduce three
new vertices and make them in-neighbors of ). Similarly, we make three new vertices out-neighbors
of t}, and four new vertices become in-neighbors of s, and another four new vertices become out-
neighbors of t,,. Let D* be the resulting digraph. It holds that s}, s),t},t, are the only vertices
of D* of degree more than 3. We want to show that D* has a 2-linkage for {(s},t}), (sh,t5)} if
and only if the digraph H depicted in Figure 7 is a directed topological minor of D*. For the first
implication, let D* have a 2-linkage for {(s/,t}), (s, t5)}. Thus, there are a directed (s},t})-path P
and a directed (s),t))-path P, in D* that are vertex-disjoint. Hence, D* has a subgraph F' that
contains the vertices of P, and P» and the fourteen new vertices for D*, that are connected only
to s}, sh,t),t,. By Lemma 5.4 we can contract both P; and P, to a single arc each. Therefore H
is a directed topological minor of D*. For the converse, let H be a directed topological minor of
D*. Due to the definition, there is a subgraph H’ of D* such that H is isomorphic to a digraph
that is obtained from H’ by only contracting 2-contractible arcs. Since all vertices of H have degree
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Fig. 4. Digraph H from the proof of Theorem 5.7.

different from 2, all arcs of H are either arcs of H' or result of a contraction. In particular, the
two vertices of degree 4 of H correspond to s] and t] of D*, and the two vertices of degree 5
of H correspond to s and ), of D*. That is because these four vertices are the only vertices of
D* of degree larger than 3. By definition of 2-contractible arc, a path between two vertices of a
degree greater than two can be contracted to an arc only if it directed path between these two
vertices. Hence, since H is obtained from H’ by only contracting contractible arcs, there are a
directed (s},t])-path P; and a directed (s),t))-path P, in H' that are vertex-disjoint. Since H’
is a subgraph of D*, P, and P» are directed paths in D*, and therefore, D* has a 2-linkage for
{(s],t)), (sh,t5)}. This completes the proof of the theorem. 0

Additions to Section 6

Proof (of Proposition 6.2, sketch). As noted in Section 3, DAG-width and Kelly-width attain their
globally minimum values on DAGs. On the other hand, clique-width attains an optimal value on
symmetric orientations of graphs (replacing each edge by a pair of opposite arcs). O

Proof (of Theorem 6.6).

To show the existence of efficient algorithms for the § we are going to define, we apply the
following modified version of Courcelle’s Theorem: There exists a computable function g such that
for all digraphs D and MSQO, definable digraph properties ¢, it can be decided in time O(g(|<,0| +
V3(D))) - [V(D)) whether D = .

Recall that V3(D) C V(D) denotes the subset of those vertices having at least three neighbors
in D. The original version of the above theorem gives actually a stronger result — using the quantifier
depth (rank) of ¢ instead of |¢|, and the treewidth of U (D) instead of |V3(D)|. Although Courcelle
explicitly speaks about undirected MSQO,, the same result is clearly valid also for digraph MSO,
(of course, with respect to the undirected treewidth), and for MSO;.

We give an explicit definition of §. For an undirected graph G, we denote by distg(u,v) the
length of a shortest path between vertices u and v in Gj if there is no (u,v)-path in G then
distg(u,v) = co. Let g be the function as in Courcelle’s theorem as stated previously. Without loss
of generality, we can assume that ¢ is non-decreasing. For a digraph D, we define

5(D) = 1, if distyr(py(u,v) > g(2 - [V3(D)]) for all pairs u,v € V3(D);
| |V(D)], otherwise.

We first show that ¢ fulfills the claimed properties. For start, notice that é does not depend on
the orientation of edges; formally, U(D;) = U(D32) readily implies 6(D1) = §(Dz). Hence, ¢) § is
efficiently orientable in linear time. If we take any undirected graph G (which can have arbitrarily
large treewidth) and subdivide every edge of G with g(2- |V (G)|) vertices, then 6(D) = 1 holds for
every orientation D of G = U(D). Therefore, a) § cannot be treewidth-bounding.

Third, concerning b), let D be a digraph and let F' be a subdigraph of D. We have to show that
d(D) > §(F). This is clearly true if (D) = |V(D)|, and so assume §(D) = 1. Take any vertex pair
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u,v € V3(F) C V3(D). Then by our assumption, disty(py(u,v) > g(2-|V3(D)|), and g(2-|V3(D)|) >
g(2 - [V3(F')|) by assumed monotonicity of g. Hence disty(g)(u,v) > disty(py(u,v) > g(2 - [V3(F)]),
and consequently 6(F) =1 < §(D).

It remains to show that ¢ is powerful. Let ¢ be an MSO; definable digraph property, and
let D be an input digraph. We simply apply Courcelle’s theorem to decide D | ¢ and prove
that this is an XP (even FPT) algorithm for the parameter 6(D). If (D) = |V (D)], then indeed
O(g(lel + [V3(D)]) - [V(D)]) = O(g(6(D)) - [V(D)|) for every fixed ¢. So assume 6(D) = 1. If
every component of U(D) contains at most one cycle, then the treewidth of D is at most two and
the case follows trivially. Otherwise, some two vertices of V3(D) are connected by a path and so
[V(D)| > g(2-|V3(D)|). Then the run-time bound of Courcelle’s theorem gives O( g(|¢|+|V53(D)|) -
V(D)) = O(maxig(2lg]), [V (D)} - [V(D)]) = O(V(D)?) for fixed . 0

Proof (of Theorem 6.8). We start by defining our digraph width measure ¢. For a digraph D,

5(D) = 1 if the arcs of D encode a 3-coloring of U(D)
| |V(D)| otherwise

We say that a digraph D encodes a 3-coloring if, for every directed path s —>}') t s.t. s,t € Va(D),
we have that s has no in-neighbors (i.e. s is a source) or t has no out-neighbors (i.e. t is a sink).
The crucial property of this definition is that if D encodes a 3-coloring, then U(D) is 3-colorable. A
3-coloring is a partition of vertices of V(D) into three independent sets (an independent set consists
of pairwise nonadjacent vertices). Let S1,S2,S3 be a partition of V3(D) such that S; contains all
sources, S3 contains all sinks, and Sy the remaining vertices. S; and S5 are obviously independent
(as they contain only source/sink vertices). So is independent since D encodes a 3-coloring. As
vertices of V(D) \ V3(D) have at most two neighbors, we can use straightforward greedy algorithm
to extend the (57, S2,S3) partition of V3(D) to a partition of whole V(D) into three independent
sets. Therefore U(D) is 3-colorable.

On the other hand let Sy, .52, .53 be a 3-coloring of a graph G. Then we create its orientation D
(such that U(D) = G) by directing the incident edges for each vertex in v € S away from v, and
the incident edges for each vertex in v € S3 towards v. As 51,55, 53 form a 3-coloring, this process
orients all edges and we get no conflicts. To see that D encodes a 3-coloring it is enough to note
that the directed paths in D have length at most two.

We now have to show that § fulfills the properties a,b,c. To prove that ¢ is not treewidth
bounding let us consider K, ,,, the symmetric complete bipartite graph on 2n vertices. Let D be a
digraph created by orienting the edges of K, ,, such that all sources are on one side of the bipartition.
Then §(D) =1, U(D) = K, 5, and it is a well known fact that tw(K,,) = n — 1. Since we can do
this construction for every n > 1, § is not treewidth bounding.

The next step is to show that § is monotone under taking directed topological minors for every
k > 1. Let D be a digraph. If §(D) > 2, then 6(D) = |V(D)| and thus §(H) < §(D) for every
directed topological minor H of D. Therefore let (D) = 1. Then D encodes a 3-coloring, and we
have to show that every topological minor H of D also encodes a 3-coloring. First note that every
subdigraph D’ of D obviously encodes a 3-coloring, too. So let a = (u,v) be a 2-contractible arc
in D. Then D' = D/a also encodes a 3-coloring, since this contraction does not create any new
directed path between vertices in V3(D'") C V3(D) U {vg}

To prove the third property, let D be a digraph. If 6(D) = k > 2, then n = |V(D)| = k. By
trying all possible colorings we can test 3-colorability in time O(3F - n2). On the other hand if
§(D) = 1, then D encodes a 3-coloring and we can compute a 3-coloring of U(D) in time O(n?),
as outlined above. O
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