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Abstract

Many width measures for directed graphs have been proposed in the last few years in
pursuit of generalizing (the notion of) treewidth to directed graphs. However, none of these
measures possesses, at the same time, the major properties of treewidth, namely,

1. being algorithmically useful, that is, admitting polynomial-time algorithms for a large
class of problems on digraphs of bounded width (e.g. the problems definable in MSO1);

2. having nice structural properties such as being (at least nearly) monotone under taking
subdigraphs and some form of arc contractions (property closely related to characteri-
zability by particular cops-and-robber games).

We investigate the question whether the search for directed treewidth counterparts has
been unsuccessful by accident, or whether it has been doomed to fail from the beginning. Our
main result states that any reasonable width measure for directed graphs which satisfies the
two properties above must necessarily be similar to treewidth of the underlying undirected
graph.

1 Introduction

An intensely investigated field in algorithmic graph theory is the design of graph width param-
eters that satisfy two seemingly contradictory requirements: (1) a large class of problems must
be efficiently solvable on the graphs of bounded width and (2) graphs of bounded width should
have a nice, reasonably rich and natural structure.

For undirected graphs, research into width parameters has been extremely successful with
several algorithmically useful measures being proposed over the years, chief among them being
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Science Foundation (project P201/09/J021 till 2010). Currently, the Brno team is supported by the research
centre Institute for Theoretical Computer Science (CE-ITI), project P202/12/G061.
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treewidth [35], branchwidth [36] and clique-width [9] (see also [5, 21]). Many problems that
are hard on general graphs turned out to be tractable on graphs of bounded treewidth. These
results were combined and generalized into Courcelle’s celebrated theorem which states that a
(very) large class of problems, i.e. the class of all MSO2-definable problems, is tractable on
graphs of bounded treewidth [7]. Treewidth and branchwidth are closely related and their very
nice structural properties are well known. Furthermore, the tractability of all MSO2 problems
closely characterizes the class of graphs of bounded treewidth [28].

However, for directed graphs no single known width measure is as successful as treewidth is
for undirected graphs. We feel the reason for this is that all the currently known digraph width
measures fail on one of the aforementioned conditions (1) and (2).

During the last decade, many digraph width measures inspired by treewidth were introduced,
the prominent ones being directed treewidth [24], DAG-width [4, 32], and Kelly-width [23].
These width measures proved useful for some problems. For instance, one can obtain polynomial-
time (XP to be more precise, see Section 2) algorithms for Hamiltonian Path on digraphs of
bounded directed treewidth [24] and for Parity Games on digraphs of bounded DAG-width [4]
and Kelly-width [23]. But there is the negative side, too. Hamiltonian Path, for instance,
probably cannot be solved [29] on digraphs of directed treewidth, DAG-width, or Kelly-width
at most k in time O(f(k) ·nc), where c is a constant independent of k. Note that Hamiltonian
Path can be solved in such a running time for undirected graphs of treewidth at most k [7].

Moreover, for the former ones and even new [15] measures DAG-depth and Kenny-width1

which are much more restrictive than DAG-width; (1) problems such as Directed Dominating
Set, Directed Cut, Oriented Chromatic Number 4, Max/Min Leaf Outbranching,
or k-Path remain NP-complete on digraphs of constant width [15]. In contrast, clique-width
and the recent digraph measure bi-rank-width [25] look more promising on the algorithmic side:
A Courcelle-like [8] MSO1 theorems exist for digraphs of bounded directed clique-width and
bi-rank-width, and many other interesting problems can be solved in polynomial time (XP) on
digraphs of bounded directed clique-width and bi-rank-width [19, 26, 18]. Yet, (2) the latter
measures are not monotone even under taking subdigraphs. For a recent exhaustive survey
on complexity results for DAG-width, Kelly-width, bi-rank-width, and other digraph measures,
see [16].

In this paper, we show (under well-established complexity assumptions) that any reasonable
digraph width measure that is algorithmically useful (powerful ; Definition 3.1) and is closed
under a notion of directed topological minors (Definition 4.4) must upper-bound the treewidth
of the underlying undirected graph. In what follows, we explain and formalize this statement.
We start with the notion of algorithmic powerfulness and note what it is that makes treewidth
such a successful measure. Courcelle’s theorem [7] states that all MSO2-expressible problems are
linear-time decidable on graphs of bounded treewidth. To us it seems that an algorithmically
useful width measure must admit algorithms with running time O(nf(k)), at least for a smaller
class of all MSO1-expressible problems on n-vertex digraphs of width at most k, where f is some
computable function (that is, XP running time).

Algorithmically powerful digraph width measures do indeed exist. Candidates include the
number of vertices of the input graph and the treewidth of the underlying undirected graph.

1Kenny-width of [15] is a different measure than Kelly-width of [23].
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However, the former is not interesting at all, and in the latter case one can apply the rich theory
of undirected graphs of bounded treewidth but would not get anything substantially new for
digraphs. As such, we are interested in digraph width measures that are substantially different
(incomparable, Definition 3.3) from undirected treewidth.

We also take a look at the aforementioned structural side. To motivate our discussion of
directed topological minors in Section 4 and their role in our main results, we recall [39] that
treewidth has a nice alternative cops-and-robber game characterization. In fact, several digraph
width measures such as DAG-width [4, 32], Kelly-width [23], and DAG-depth [15] admit some
variants of this useful game-theoretic characterization. While there is no formal definition of
a cops-and-robber game-based width measure, all versions of the cops-and-robber game that
have been considered so far share a basic property in that shrinking induced paths does not
generally help the robber. What we actually argue is that a directed width measure that is
“cops-and-robber game based” should be nearly monotone under taking directed topological
minors (Theorem 4.7). On the other hand, we repeat that there exist algorithmically useful
measures more general than undirected treewidth—those are directed clique-width [9] and bi-
rank-width [25]—which are not monotone even under taking subdigraphs.

To be more specific about the words “nearly monotone”, we say that a digraph width measure
δ is closed under taking directed topological minors if there is an absolute constant c such that,
for each digraph D, the δ-width of any directed topological minor of D is at most δ(D) + c (to
account for possible sporadic cases). In summary, our main conceptual contribution which is
further explained in Section 3 and proved in Section 6 (Theorems 6.6 and 6.7), reads:

A digraph width measure that admits XP-time algorithms for all MSO1-problems wrt. the
width as a parameter and is closed under taking directed topological minors, cannot be
substantially different from ordinary undirected treewidth.

This in turn implies that in a search for an algorithmically useful digraph width measure, one
has to resign on demanding also nice structural properties, e.g. those related to cops-and-robber
game characterizations.

The paper is organized in six parts, starting with some standard definitions in Section 2.
Then in Section 3, we formally establish and discuss the properties an algorithmically useful
digraph width measure should have. In Section 4, we introduce the notion of a directed topolog-
ical minor, and discuss its properties, game-theoretic characterizations, and consider separate
complexity issues. In particular, we show that it is hard to decide for a fixed small digraph
whether it is a directed topological minor of a given digraph. In Section 5, we continue with
the technical prerequisites of our main result. There we show that the structure of hard MSO1-
definable graph problems is just as rich for subdivisions of planar graphs with degrees 1 or 3
as for general graphs. In Section 6, we prove our main results which have already been out-
lined above. We also provide examples showing that the prerequisites of our results cannot be
substantially weakened. We end with some concluding remarks in Section 7.
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2 Definitions and notation

The graphs (both undirected and directed) that we consider in this paper are simple, i.e. they
do not contain loops and parallel edges. Given a graph G, we let V (G) denote its vertex set
and E(G) denote its edge set, if G is undirected. We usually denote a directed graph (digraph
shortly) by D and its arc set by A(D). Given a directed graph D, the underlying undirected
graph U(D) of D is an undirected graph on the vertex set V (D) and {u, v} is an edge of U(D) if
and only if either (u, v) ∈ A(D) or (v, u) ∈ A(D). A digraph D is an orientation of an undirected
graph G if U(D) = G. If H is a sub(di)graph of G, then we denote this fact by writing H ⊆ G.

For a vertex pair u, v of a digraph D, a sequence P = (u = x0, . . . , xr = v) is called directed
(u, v)-path of length r > 0 in D if the vertices x0, . . . , xr are pairwise distinct and (xi, xi+1) ∈
A(G) for every 0 ≤ i < r. A directed cycle is defined analogously with the modification that
x0 = xr. A digraph D is acyclic (a DAG) if D contains no directed cycle.

Following Downey–Fellows [11], a parameterized problem Q is defined as a subset of Σ×N0,
where Σ is a finite alphabet and N0 = N ∪ {0}. The following is folklore:

Definition 2.1 (parameterized tractability, [11]) A parameterized problem Q is fixed-par-
ameter tractable if there is an algorithm that given 〈x, k〉 ∈ Σ × N0 decides whether 〈x, k〉 is a
yes-instance of Q in time f(k) · p(|x|), where f is some computable function of the parameter k
alone, p is a polynomial and |x| is the size measure of the input. The class of fixed-parameter
tractable problems is denoted by FPT.

Furthermore, let XP denote the class of parameterized problems Q that admit an algorithm
running in time O(|x|f(k)) for some computable function f , i.e. with polynomial run-time for
every fixed value of the parameter k. We refer to such an algorithm for Q as to an XP-time
algorithm with respect to k.

Some of the most successful kinds of parameterized problems are those of a form 〈x, k〉 where
an integer k is simply the value of a suitable structural width parameter of the input x. Such
as, the problem input is 〈G, k〉 where G is a graph and the parameter k is its treewidth. For
the sake of completeness, we review next the definitions of the aforementioned two basic (and
well-known) structural width parameters—of treewidth and clique-width.

Definition 2.2 (treewidth, [35]) A tree-decomposition of a graph G is a pair (T, β), where
T is a tree and β : V (T )→ 2V (G) is a mapping (of the “bags”) that satisfies the following;

• for each edge e = uv ∈ E(G), there is x ∈ V (T ) such that {u, v} ⊆ β(x),

• if x ∈ V (T ), and if y, z ∈ V (T ) are two nodes in distinct components of T − x, then
β(y) ∩ β(z) ⊆ β(x) (“interpolation”),

•
⋃
x∈V (T ) β(x) = V (G).

The width of (T, β) is the maximal value of |β(x)| − 1 over all x ∈ V (T ). The smallest width
over all tree-decompositions of the graph G is the treewidth tw(G) of G.

Definition 2.3 (clique-width, [9]) Let k be a positive integer. A pair (G, γ) is a k-labelled
graph if G is a simple graph and γ : V (G) → {1, 2, . . . , k} is a mapping. A k-expression is a
well formed expression t built using the four operators defined below. Let 1 ≤ i, j ≤ k. Then
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• [i] is a nullary operator which represents a graph with a single vertex labelled i,

• ηi,j, for i 6= j, is a unary operator which adds edges between all pairs of vertices where one
is labelled i and the other is labelled j,

• ρi→j is a unary operator which changes the labels of all vertices labelled i to j, and

• ⊕ is a binary operator which represents disjoint union of two k-labelled graphs.

Each k-expression t naturally generates a k-labelled simple graph G = G[t]. The smallest k such
that there exists a k-expression generating G is the clique-width of G.

Monadic second-order (MSO) logic is a language particularly suited for describing problems
on “tree-like structured” graphs. For instance, the celebrated result of Courcelle [7], and of
Arnborg, Lagergren, and Seese [2], states that all MSO2-definable graph problems have linear-
time FPT algorithms when parameterized by the treewidth. The expressive power of MSO2 is
very strong as it includes many natural graph problems. We are primarily interested in another
logical dialect commonly abbreviated as MSO1, whose expressive power is noticeably weaker (in
MSO1 one cannot speak about sets of edges) than that of MSO2. The weaker expressive power
is an advantage in this paper since we are going to use it to prove negative results.

Definition 2.4 (MSO1 logic) The language of MSO1 contains the logical expressions that are
built from the following elements:

• variables for elements (vertices) and their sets, and the predicate x ∈ X,

• the predicate adj(u, v) with u and v vertex variables,

• equality for variables, the connectives ∧,∨,¬,→, and the quantifiers ∀,∃ .

Example 2.5 For undirected graphs, the property of being 3-colorable can be expressed by the
MSO1 formula

∃V1, V2, V3
[
∀v (v ∈ V1 ∨ v ∈ V2 ∨ v ∈ V3) ∧

∧
i=1,2,3

∀v, w (v 6∈ Vi ∨ w 6∈ Vi ∨ ¬ adj(v, w))
]
.

A decision graph property P is MSO1-definable if there exists an MSO1 formula φ such that
P holds for any graph G if and only if G |= φ, i.e., φ is true on the model G. The language of
MSO1 can also be used for describing digraph properties by substituting the predicate arc(u, v)
for adj(u, v). Courcelle, Makowski and Rotics have shown that all MSO1-definable graph prob-
lems have FPT algorithms when parameterized by the clique-width of the input graph [8]. Since
clique-width and rank-width are equivalent measures in the sense that a graph has bounded
clique-width if and only if it has bounded rank-width [33], the latter result also holds when the
parameter is the rank-width of the input graph.

3 Desirable digraph width measures

A digraph width measure is a function δ that assigns each digraph a non-negative integer. To
stay reasonable, we expect that infinitely many non-isomorphic digraphs are of bounded width.
Following the informal discussion in Section 1, we consider what properties a useful width
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measure is expected to have. Importantly, one must be able to solve a rich class of problems on
digraphs of bounded width. But what does “rich” mean?

If we consider existing algorithmic metatheorems for undirected graphs, then we can see a
good balance between the class of problems considered (say, MSO2- or MSO1-definable) and the
existence of positive algorithmic results (linear-time decidability on graphs of bounded treewidth
or clique-width, respectively). To achieve such a balance for digraphs, it seems to us that the
class of MSO1-definable problems presents the most appropriate conservative choice. For if
we consider any logical language L over digraphs that is powerful enough to deal with sets of
singletons (i.e. of monadic second order) and that can identify the adjacent pairs of vertices of
the digraph, then L can naturally interpret the MSO1 logic of the underlying graph (notice that
this applies already to undirected MSO1). That is why the following specification appears to be
the most natural common conservative denominator in our context:

Definition 3.1 (algorithmic powerfulness) A digraph width measure δ is powerful if, for
every MSO1-definable undirected property P (Definition 2.4), there exists an XP-time algorithm
deciding P on all digraphs D (more formally, on U(D)) with respect to the parameter δ(D).

The traditional measures treewidth, branchwidth, clique-width, and the more recent rank-
width, are all powerful for undirected graphs [7, 8]. For directed graphs, unfortunately, exactly
the opposite holds. All the width measures suggested in recent years as possible extensions
of treewidth—including directed treewidth [24], D-width [38], DAG-width [32, 4], and Kelly-
width [23]—are not powerful. More generally, it holds:

Proposition 3.2 Assume a digraph width measure δ achieving only bounded values on the class
of all acyclic digraphs (DAGs). If P 6= NP, then δ is not powerful.

Proof. Let P be any NP-complete MSO1-definable property of undirected graphs, say, 3-
colourability. We construct the digraph property P ′ by replacing every occurrence of the predi-
cate adj(x, y) in P by

(
arc(x, y)∨ arc(y, x)

)
. Clearly, an undirected graph has the property P if

and only if any digraph D that is an orientation of G has the property P ′. If δ was powerful, then
by Definition 3.1, the property P ′ would be decidable on all DAGs in polynomial time. Hence
for any input graph G, we could decide whether G |= P in polynomial time by first constructing
an acyclic orientation D of G, and then deciding whether D |= P ′ (in polynomial time). This
would imply that P = NP.

Another important property one would like a digraph width measure to possess is that it
should not be comparable to the treewidth of the underlying undirected graph. To be more
precise, we do not want the width measure δ to upper-bound the treewidth of the underly-
ing undirected graph. This makes sense because any measure δ which makes the undirected
treewidth bounded is automatically powerful, but such δ would not help solve any more inputs
than what we already can with traditional undirected measures.

Definition 3.3 A digraph width measure δ is called treewidth-bounding if there exists a com-
putable function b such that for every digraph D with δ(D) ≤ k, we have tw(U(D)) ≤ b(k).
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Disparity between measures. In the rest of the section, we consider disparity between the
treewidth-like digraph measures – DAG-width [32, 4] and Kelly-width [23], and the algorithmi-
cally successful ones – directed clique-width [9] and bi-rank-width [25]. None of these measures
are treewidth-bounding. Since the definitions of DAG-width and Kelly-width are quite involved,
we skip them here and refer to [32, 4, 23]. Instead, we note that both DAG- and Kelly-width
share some common properties important for us:

• Acyclic digraphs (DAGs) have DAG-width 0 and Kelly-width 1 (cf. Proposition 3.2).

• If we replace each edge of a graph of treewidth k by a pair of opposite arcs, then the
resulting digraph has DAG-width k and Kelly-width k + 1.

• Each of these measures can be exactly characterized by some natural directed counterpart
of the cops-and-robber game for undirected treewidth [39] (cf. Proposition 4.2).

As for another type of digraph measures, aforementioned clique-width was originally defined
for undirected graphs [9], but Definition 2.3 readily extends to digraphs; simply replace the
operator ηi,j by the operator αi,j creating directed edges (arcs) from each vertex with label i to
each vertex with label j. Bi-rank-width was introduced by Kanté [25] and is related to directed
clique-width in the sense that one is bounded on a digraph class if and only if the other is. We
refer to [25, 19] for its definition and properties.

Theorem 3.4 (via Courcelle, Makowsky, and Rotics [8]) Directed clique-width, and hence
bi-rank-width, are powerful digraph measures. Actually, the problem of deciding any fixed directed
MSO1-definable property of digraphs belongs to the class FPT wrt. their directed clique-width or
bi-rank-width.

For a better understanding of the situation, we stress one important but elusive fact: Bound-
ing the undirected clique-width or rank-width of the underlying undirected graph does not gen-
erally help solve directed graph problems. Precisely, in analogy with Proposition 3.2 and its
proof, we can claim:

Proposition 3.5 If P 6= NP, then there exist MSO1-definable digraph properties that have no
XP-time algorithms with respect to undirected clique-width or rank-width.

Proof. We argue that there exist directed problems P which are NP-complete even on tour-
naments (orientations of complete graphs), i.e. on digraphs of undirected clique-width 2 and
rank-width 1. If such P had an XP-time algorithm, then this would immediately imply P = NP.
As a (random) example of the problem P we refer [6]; the problem whether a tournament has
a partition into two acyclic subtournaments which clearly has a directed MSO1 definition.

Proposition 3.5 is in a sharp contrast to the situation with treewidth where bounding the
treewidth of the underlying undirected graph allows all the algorithmic machinery to work also
on digraphs. A brief informal explanation of this antagonism lies in the facts that a “bag”
in a tree decomposition has bounded size and so there is only a bounded number of possible
orientations of the edges in it, while a single ηi,j (edge-addition) operation in a clique-width
expression creates a bipartite clique of an arbitrary size which admits an unbounded number of
possible orientations. As of now, there is no known non-trivial relationship between undirected
measures and their directed generalizations.
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A resolution? From Propositions 3.2 and 3.4, it seems that directed clique-width and bi-
rank-width are better possible candidates for a good digraphs width measure. Unfortunately,
clique-width and bi-rank-width do not possess the nice structural properties common to the
various treewidth-like measures, such as being subgraph- or contraction-monotone. This is due
to symmetric orientations of complete graphs all having clique-width two while their subdigraphs
include all digraphs, even those with arbitrarily high clique-width. This seems to be a drawback
and a possible reason why clique-width- and rank-width-like measures are not so widely accepted.

The natural question now is: can we take the better of each of the two worlds? In our search
for an answer, we do not study specific digraph width measures but focus on desirable properties
of all possible width measures in general. The core contribution of this paper, summarized in
Theorems 6.6 and 6.7, then answers this question negatively.

• One cannot have a digraph width measure that is powerful (Definition 3.1), not treewidth-
bounding (Definition 3.3) and closed under taking directed topological minors (Defini-
tion 4.4) at the same time.

• Consequently, “algorithmically useful” digraph width measures cannot possess “nice”
structural properties at the same time.

This strong and conceptually new result holds modulo well-established computational complexity
assumptions, namely, that NP 6= P and NP * P/poly. Further discussion of the necessary
technical details of this result can be all found in Section 6.

4 Games and directed topological minors

The third requirement (after being powerful and not treewidth-bounding) we impose above on a
desired “good” digraph width measure is for it to possess some nice structural properties similar
to those we often see in undirected graph measures.

Having an alternative characterization in terms of a cops-and-robber game is a trait common
to many widely known measures and proved to be very useful, often significantly simplifying
some of the proofs. Most of the directed graph measures (in fact all of the major ones), which
were proposed as a directed counterpart to treewidth, have a characterization in terms of some
variant of this cops and robber game, and indeed they were explicitly designed to have this
characterization.

The treewidth game. The original cops-and-robber game was introduced in [39] as an al-
ternative characterization of treewidth. The robber stands on a vertex of the graph, and can at
any time run at great speed to any other vertex along a path of the graph. He is not permitted
to run through a cop, however. There are k cops, each of whom at any time either stands on
a vertex or is in a helicopter. The goal of the player controlling the cops is to land a cop via a
helicopter onto a vertex currently occupied by the robber, and the robber’s objective is to elude
capture. (The point of the helicopter is that cops are not constrained to move along the edges
of the graph.) The robber can see the helicopter landing and may run to a new vertex before it
actually lands.
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More formally, the game is played on a graph G by two players: the cop player, and the
robber player. We denote (X, r) the position of the game where cops are placed at X ⊆ V (G)
and the robber is in r ∈ V (G). The game is played according to the following rules: At the
beginning the robber player chooses a vertex r0 ∈ V (G), giving us an initial game position (∅, r0).
Given a position (X, r), the cop player chooses a set X ′ ⊆ [V ]≤k, and then the robber player
chooses a vertex r′ ∈ V (G) \X ′ such that both r and r′ lie in the same connected component of
the graph G \ (X ∩X ′), giving us the next position (X ′, r′). A play is a maximal sequence γ of
positions formed from an initial game position according to the rule above.

The play is winning for the cop player if it is finite—i.e., for the final position (X, r) of
the play γ, it is true that there is X ′ ∈ [V ]≤k such that no vertex of the graph V (G) \ X ′ is
in the same connected component of the graph G \ {X ∩ X ′} as r (this immediately implies
r ∈ X). On the other hand the robber player wins if the play is infinite. The strategy for the
cop player is a function σ : (X, r; γ) 7→ X ′, which, for a position (X, r) of the game, gives us the
next position X ′ of the cops. Notice that in general a strategy σ depends also on the history γ
which is a subsequence of positions from the initial one to (X, r) in the current play. Without
loss of generality we can restrict ourselves to strategies where |X4X ′| = 1, i.e. we either place
or remove exactly one cop. The following theorem (often called the treewidth duality theorem)
relates cops-and-robber games and treewidth:

Theorem 4.1 ([39]) Graph G has treewidth k iff the minimum number of cops required to win
the cops-and-robber game is k + 1.

For directed graphs the game is naturally modified by additionally requiring that the robber
follows the direction of arcs: for any two consecutive robber positions r and r′, as above, there is
a directed path from r to r′ in G\{X∩X ′}. Several variants of the directed cops-and-robber game
were proposed for different digraph width measures. The most important variants restrict the
movement of cops and/or the robber. The cops may be required to play monotonely, meaning
that they can never revisit a vertex they have already left. The robber can be invisible to the
cops, requiring the cops to search the whole graph. Finally the robber can be lazy, i.e. he can
move only when a cop is just about to land on the vertex currently occupied by the robber (as
opposite to the eager robber in the original game). Formally, a game is;

• monotone if, whenever positions (Xi, ri), . . . (Xj , rj), . . . (Xk, rk) occur in this order (not
necessarily consecutive) in a play, then Xj ⊇ Xi ∩Xk;

• robber-invisible if the cop strategy, for any two valid play histories γ and γ′ which differ
(from each other) only in robber positions, fulfils σ(X, r; γ) = σ(X, r′; γ′).

• robber-lazy if a game position (X, r) is always succeeded by (X ′, r) (for some X ′) unless
r ∈ X ′.

Proposition 4.2 ([32, 4, 23, 3]) The most common digraph width measures are characterized
by the following cops-and-robber game variants:

measure cops robber

DAG-width monotone visible
Kelly-width monotone invisible,lazy
directed path-width monotone invisible
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Figure 1: Arc contraction: digraphs D (left) and D/a.

Introducing directed minors. In the realm of undirected graphs, characterizability by a
cops and robber game is closely related to monotonicity under taking minors. Recall that a
graph H is a minor of a graph G if it can be obtained by a sequence of applications of three
operations: vertex deletion, edge deletion and edge contraction. (See e.g. [10].) A measure is
monotone under taking minors if the measure of a minor is never larger than the measure of the
graph itself. Note that treewidth is monotone under taking minors. The relationship between
cops-and-robber games and taking a minor of a graph should now be obvious: Taking a subgraph
can never improve robber’s chances of evading k cops and, since the robber can move infinitely
fast and cops use helicopters, neither can edge contraction.

It is therefore only natural to expect that a “good” digraph measure, characterizable by a
directed cops-and-robber game, should also be (at least nearly) monotone under some notion of
a directed minor. However, there is currently no widely agreed definition of a directed minor in
general. One published (but perhaps too restrictive on subdivisions as we will see later) notion is
the butterfly minor [24]. Similarly, a traditional and more relaxed notion of digraph immersion
is still too restrictive on subdivisions for our purpose. We now refer to Proposition 6.9 for more
details.

To deal with directed minors, we first need a formal notion of an arc contraction for digraphs:

Definition 4.3 Let D be a digraph and a = (x, y) ∈ A(D) be an arc. The digraph obtained by
contracting arc a, denoted by D/a, is the digraph on the vertex (V (D) \ {x, y})∪ {va} where va
is a new vertex, and the arc set A′ such that (u, v) ∈ A′ iff one of the following holds

(u, v) ∈ A(D \ {x, y}), or

v = va, and (u, x) ∈ A or (u, y) ∈ A, or

u = va, and (x, v) ∈ A or (y, v) ∈ A.

See Fig. 1 for an example of a contraction. Note that contraction always produces simple
digraphs (that is, no arcs of the form (x, x)). The result of a contraction does not depend on the
orientation of the contracted arc, and we treat contraction of a pair of opposite arcs (x, y) and
(y, x) as a contraction of a single bidirectional arc. For simplicity, we also sometimes identify
the newly created vertex va with one of the former vertices x, y (depending on the context).

An important decision point when defining a minor is; which arcs do we allow to contract?
In the case of undirected graph minors, any edge can be contracted. However, the situation
is not so obvious in the case of digraphs. Look again at Figure 1. If we contract the arc a,
we actually introduce a directed path from u to v which was not present before, whereas in
undirected graphs no new (undirected) path is ever created by the edge contraction. On the
other hand, simply never introducing a new directed path (that is the butterfly minor of [24]) is
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Figure 2: Any arc contraction in this digraph introduces a new directed path.

not a good strategy either – since one can easily construct, see Figure 2, digraphs in which no
arc can be contracted without introducing a new directed path. Yet such digraphs can be “very
simple” with respect to usual cops-and-robber games, and arc contractions do not significantly
help the robber in the depicted situation of Figure 2.

In order to deal with the mentioned issue of contractibility of arcs, and to remain as general as
possible at the same time, we actually consider a specific kind of minors, i.e. directed topological
minors where we allow only those arc contractions that do not introduce any new directed path
between vertices of degree at least three (cf. Figure 2 again). This is again inspired by a related
notion in the realm of undirected graphs. A topological minor for undirected graphs is defined
similarly to the usual minor, but the edge contraction can only be applied to an edge e = {u, v}
such that u or v has exactly two neighbours. In other words, graph H is a topological minor of
G iff a subdivision of H is isomorphic to a subgraph of G.

Note that topological minors for digraphs have been defined before. In his thesis Hunter [22]
considers a definition of directed topological minor where an arc is contractible iff at least one
end vertex has both out- and in-degree one. This approach coincides with the notion of directed
subdivisions used, e.g., by Mader [30]. However, this definition deeply suffers from the same
problems (i.e. no arc is contractible in Fig. 2) as the butterfly minors. We will argue that our
definition is more relevant in the context of digraph widths and their game characterizations,
and justify our choice by the subsequent claims (see Lemma 4.6 and Theorem 4.7).

For simplicity, we sometimes write u→D v for (u, v) ∈ A(D), and u→+
D v for the transitive

closure of →D (a directed path from u to v). The index D may be omitted if it is clear from
the context. We also write u→∗D v if either u→+

D v or u = v.

Definition 4.4 Let V3(D) ⊆ V (D) denote the subset of vertices having at least three neighbours
in D. An arc a = (u, v) ∈ A(D) is 2-contractible in a digraph D if

• u or v has exactly two neighbours (particularly, {u, v} 6⊆ V3(D)), and

• (v, u) ∈ A(D) or there is no pair of vertices x, y ∈ V3(D), possibly x = y, such that
x→∗(D\a) v and u→∗(D\a) y.

A digraph H is a directed topological minor of D if there exists a sequence of digraphs D0, . . . , Dr

such that D0 ⊆ D and Dr
∼= H, and for all 0 ≤ i ≤ r − 1, one can obtain Di+1 from Di by

contracting a 2-contractible arc.

The essential idea in the above definition is that an arc is 2-contractible if its contraction
does not result in the creation of a new directed path between vertices of degree at least 3.
Robustness of the definition is justified as follows.
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Proposition 4.5 Given a digraph D, let D′ be obtained from D by a sequence of vertex dele-
tions, arc deletions and contractions of 2-contractible arcs (in any order). Then D′ is a directed
topological minor of D.

Proof. Let % be the sequence of vertex deletions, arc deletions and contractions of 2-contractible
arcs used to obtain D′. We process all three types of operation in a fixed order. We start by
vertex deletions. Let W be the smallest subset of V (D) created as follows: for each deletion
of a vertex v in % such that v ∈ V (D) the set W contains v. Otherwise v was created by a
contraction and W includes all vertices of V (D) which were contracted to form v′. We now put
D1 = D \W . Next we perform the arc deletions in % (note that some of the arcs may have
already been removed by the previous step). Let us call the resulting graph D2. Finally we
contract all remaining 2-contractible arcs which were contracted in %, in the same order, and
call the resulting graph D3.

Obviously D2 is a subgraph of D, and D3 was obtained from D2 by a series of contractions of
2-contractible arcs. We claim that D3 is isomorphic to D′. It is easy to check that all vertices and
arcs deleted in % are not present in D3, and no extra vertices and arcs were removed. The rest
follows from the fact that by Definition 4.4 a 2-contractible arc cannot become non-2-contractible
by vertex and arc deletions.

As mentioned above, the driving force in our definition of directed topological minors is to
always allow contraction of “long subdivisions”, as e.g. in Figure 2. We shall make this formally
precise now. Let D be a digraph and P = (x0, . . . , xk) a sequence of vertices of D. Then P
is a 2-path (of length k) in D if P is a path in the underlying graph U(D) and all its internal
vertices xi for 0 < i < k have exactly two neighbours (degree 2) in U(D). Obviously not every
2-path is a directed path. The following lemma explains the close relationship between 2-paths
and directed topological minors.

Lemma 4.6 Let D be a digraph and S = (x0, . . . , xk) a 2-path of length k > 2 in D. Then
there exists a sequence of 2-contractions of arcs of S in D turning S into a 2-path of length two
(or even of length one if S is a directed path).

Proof. If S is a directed path in D, then any arc of S is 2-contractible. Otherwise S is not a
directed path in D and therefore there exists an index 0 < i < k, such that (xi, xi−1), (xi, xi+1) ∈
A(D) or (xi−1, xi), (xi+1, xi) ∈ A(D). Then all other arcs of S are 2-contractible, as their
contraction cannot produce a new directed path between any two vertices in D with more than
two neighbours.

Monotonicity of the measures. The natural question is whether the known digraph mea-
sures are monotone under taking directed topological minors. This is not exactly true for certain
sporadic examples as shown, e.g., in Figure 3, but we prove that the measures (i.e., those men-
tioned by Proposition 4.2) cannot grow by more than two after taking any such minor:

Theorem 4.7 Let D be a digraph such that in the DAG-width (Kelly-width, directed path-width)
game, k ≥ 1 cops are enough to catch the robber. Let H be a directed topological minor of D.
Then at most k + 2 cops are needed to catch the robber on H in that same game.
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1 cop
 

2 cops 2 cops

 

4 cops

Figure 3: Two examples when the required number of cops grows by 1 and by 2, respectively,
after taking a directed topological minor. The right-hand side applies only to the path-width
game, and is a worst-case example according to Theorem 4.7.

We actually believe that a bound of k+ 1 cops is enough in Theorem 4.7 for the DAG-width
and Kelly-width games (and perhaps even a bound of k cops if k ≥ 3). The precise proof is,
however, surprisingly nontrivial and so we stick here with a much simpler argument for the
bound k + 2, which simultaneously covers all the three games.

To state our claims, we need some more notation. Throughout the proof, for a game position
(X, v) we denote by ReachD(v,X) = {x ∈ V (D) \X | v →∗D\X x} the set of vertices reachable

by the robber placed in v with cops positioned in X. The vertices not in ReachD(v,X) are
shortly called clear. Let γ denote a play

(
(Xi, ri) : i = 0, 1, 2, . . .

)
of our respective game,

which must be monotone by Proposition 4.2 (hence once cleared vertex will stay clear forever
in a cop-win play). For v ∈ V (D), we define indexγ(v) as the least index k such that v ∈ Xk

in the play γ. By MarginDγ (v) we denote the set of those vertices x ∈ V (D) \ V3(D) for
which v is the last (wrt. the play γ) non-clear vertex of V3(D) such that x is reachable from
v along a 2-path (including x = v). Formally, for v ∈ V3(D), and setting k = indexγ(v)
and ReachD2 (v) = ReachD

(
v, V3(D) \ {v}

)
, we have got MarginDγ (v) =

{
x ∈ ReachD2 (v) |

∀w ∈ V3(D) : x ∈ ReachD2 (w)→ w 6∈ ReachD(rk, Xk)
}

. As a special case, MarginD(∅) denotes
the vertices of D not reachable from any vertex of V3(D).

Note that MarginD(∅) contains only vertices of degree ≤ 2 in U(D). MarginDγ (v) consists
of the vertices of some 2-paths starting at v (up to the point where orientation of arcs admits
reachability from v). For such a 2-path P = (x0 = v, x1, . . . , xk), we say that the play γ
clears P in a leapfrogging manner from v if the following hold for some index ` of γ: It is
indexγ(v) < ` and v, x1 ∈ X`. Then, for i = 1, . . . , k − 1, it is X`+2i−1 = X`+2i−2 ∪ {xi+1} and
X`+2i = X`+2i−1 \ {xi}, unless possibly xi+1 ∈ X`+2i−2 in which case the former one step is
skipped. Finally, X`+2k−1 = X`+2k−2 \ {xk}.

Now, a monotone play γ =
(
(Xi, ri) : i = 0, 1, 2, . . .

)
is called 2-special if (1) whole

MarginD(∅) is cleared before any other vertex of D; and (2) for every v ∈ V3(D), each of
the 2-paths forming MarginDγ (v) is cleared by γ in a leapfrogging manner from v right after
a cop lands on v (precisely, before a cop subsequently lands on another vertex of V3(D)). The
order of clearing between these 2-paths is irrelevant. A monotone cop strategy is 2-special if
every play according to this strategy is 2-special.

Lemma 4.8 Let D be a digraph such that in the DAG-width (Kelly-width, directed path-width)
game, k ≥ 1 cops are enough to catch the robber. Then k+ 2 cops have (in the respective game)
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a 2-special monotone winning strategy against the robber in D.

Proof. We do the same proof for all the three games, and hence we neither look at robber’s
position, nor assume him to be lazy. We also do not explicitly invoke play history in subsequent
modifications. The proof closely follows the definition of 2-special. Let c1, c2 be the two addi-
tional cops. Namely, for a monotone winning cop strategy σ (not using c1, c2), we first add to the
beginning of σ an initial episode clearing whole MarginD(∅) with c1, c2 and one of the original
cops. This is always possible (even with an invisible robber) since the subgraph of U(D) induced
by MarginD(∅) consists of paths and cycles, and it is not reachable from the rest of D. Then
we continue with original σ, while for each v ∈ V3(D) we iteratively add “leapfrog episodes” (in
the aforementioned way) which clear whole MarginDγ (v) using c1, c2 in a leapfrogging manner
from v, right after an original cop lands on v (irrespectively of the robber moves).

Note that after each added episode, the cops c1, c2 are again free. Subsequently to an
added episode as above, we also skip from σ all (potential) future cop moves to the vertices
of MarginD(∅) or MarginDγ (v) \ {v}, respectively. Consequently, this makes our new strategy
monotone if σ is such.

So, the new strategy σ′ is 2-special monotone by its definition, and it remains to prove that
each play by σ′ is cop-win. The whole game would clearly be cop-win (but non-monotone) if
we only added episodes. Then, firstly, the initial episode clears MarginD(∅), and the robber
can never return there by its definition which justifies skipping of subsequent cop moves to
MarginD(∅) in σ′. Secondly, consider a play γ by σ′ and a vertex x ∈ MarginDγ (v) \ {v}
where v ∈ V3(D). Then x is cleared during the leapfrog episode at v, and x cannot be reached
from V3(D) otherwise then from v or possibly from another vertex cleared in γ before v, by the
definition of MarginD. Hence it follows from assumed monotonicity of σ that x will not be
reachable again by the robber in γ. Hence the robber is finally caught in γ.

Lemma 4.9 Let D be a digraph such that in the DAG-width (Kelly-width, directed path-width)
game, k ≥ 3 cops have a 2-special monotone winning strategy against the robber in D. If
D′ = D/(s, t) is obtained by contracting a 2-contractible arc (s, t) in D, then k cops have a
2-special monotone winning strategy against the robber in D′, too.

Proof. We refer to the proof of Lemma 4.8. If s, t ∈MarginD(∅), then the claim is clear since
3 cops are always enough for the initial episode of a 2-special strategy. If s, t ∈ MarginDγ (v)
for some v ∈ V3(D) (and possibly s = v or t = v), then the case is similarly easy for each such
play γ; the leapfrog episode from v simply gets shorter. Now assume s ∈ MarginD(∅) while
t ∈MarginDγ (v); in D′, the set MarginD

′
γ (v) increases by the vertices of MarginD(∅) reachable

from s, but that again is no problem for the leapfrog episode from v.
It remains to consider the interesting last case of s ∈MarginDγ (v) and t ∈MarginDγ (w) for

some v 6= w ∈ V3(D) in a play γ. Then (t, s) 6∈ E(D). Since t ∈ ReachD2 (v), by definition, w
is cleared in γ later than v. Let q be the vertex of D′ resulting from contraction of (s, t). By
Definition 4.4, q 6→∗(D′\w) v. Hence, for S = ReachD

′
2 (q)\MarginDγ (w), the new leapfrog episode

from v in D′ can safely skip the vertices of S; it is now MarginD
′

γ (v) = MarginDγ (v) \ S and

MarginD
′

γ (w) = MarginDγ (w) ∪ S. This already gives the desired 2-special monotone winning
strategy in D′.
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Proof. (Theorem 4.7) If k cops can catch the robber in a digraph D using strategy σ, they
can do so in any subdigraph H ⊆ D using the strategy σ|H, i.e. the strategy σ restricted to
H. We therefore focus on the case of arc contractions (cf. Proposition 4.5). We first build a
2-special monotone winning strategy for k + 2 ≥ 3 cops as in Lemma 4.8. Then we iteratively
apply Lemma 4.9 onto this case, and so finish the proof.

For the last claim, recall that “closed” means there is a constant c such that, for each digraph
D, the δ-width of any directed topological minor of D is at most δ(D) + c.

Corollary 4.10 DAG-width, Kelly-width and directed path-width are closed under taking di-
rected topological minors.

The résumé of this section is a strong suggestion that the property of being closed under
taking directed topological minors is indeed a natural requirement for any “cops-and-robber
based” digraph width measure. See Section 6 for the consequences.

Complexity of testing directed topological minors. In the rest of this section, we con-
clude our discussion of directed minors with considering the complexity of deciding whether a
given digraph is a directed topological minor of another digraph. We show that this problem
is hard by giving a reduction from the 2-Linkage problem, which is the following problem.
Let D be a digraph and let s1, s2, t1, t2 be pairwise different vertices of D. A 2-linkage for
{(s1, t1), (s2, t2)} is a pair (P1, P2) of vertex-disjoint directed paths where Pi is a (si, ti)-path in
D for i ∈ {1, 2}.

Proposition 4.11 ([13]) The 2-Linkage problem, given a digraph D and {(s1, t1), (s2, t2)}
where s1, s2, t1, t2 are pairwise different vertices of D, to decide whether D has a 2-linkage for
{(s1, t1), (s2, t2)}, is NP-complete.

Theorem 4.12 There exists a digraph H such that the problem, given a digraph D, to decide
whether H is directed topological minor of D, is NP-complete.

Proof. Since the problem is clearly solvable in non-deterministic polynomial time, it remains
to show that the problem is NP-hard. We reduce from the 2-Linkage problem. The proof goes
in two steps. We first show that the 2-Linkage problem remains hard on digraphs where every
vertex has at most three neighbours.

Let D, {(s1, t1), (s2, t2)} be an instance of the 2-Linkage problem. Let D′ be a digraph
such that V (D′) = V (D) ∪ {s′1, s′2, t′1, t′2}, where s′1, s

′
2, t
′
1, t
′
2 are new vertices, and A(D′) =

A(D) ∪ {(s′1, s1), (s′2, s2), (t1, t′1), (t2, t′2)}. Obviously D has a 2-linkage for {(s1, t1), (s2, t2)} if
and only if D′ has a 2-linkage for {(s′1, t′1), (s′2, t′2)}. Next, we modify large-degree vertices. We
obtain digraph D′′ from D′ by iteratively executing, for every vertex x with dD′(x) ≥ 4, the
following sequence of operations: delete x, introduce dD′(x) new vertices x1, . . . , xdD′ (x), add
the arcs (xi, xi+1) for 1 ≤ i < dD′(x), assign the in-neighbours of x as in-neighbours to the
vertices x1, . . . , xj where j = |N in

D′(x)|, and assign the out-neighbours of x as out-neighbours to
the remaining vertices. Observe that x is replaced by a digraph with vertices of degree at most 3,
and reachability is preserved. In particular, it holds that D′ has a 2-linkage for {(s′1, t′1), (s′2, t′2)}
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Figure 4: Digraph H from the proof of Theorem 4.12.

if and only if D′′ has a 2-linkage for {(s′1, t′1), (s′2, t′2)}. Since the construction of D′′ requires only
polynomial time, this shows that 2-Linkage is NP-complete on digraphs of maximum degree
at most 3 due to Proposition 4.11.

For the second step of the proof, we continue with D′′ and {(s′1, t′1), (s′2, t′2)}. We introduce
three new vertices and make them in-neighbours of s′1. Similarly, we make three new vertices
out-neighbours of t′1, and four new vertices become in-neighbours of s′2 and another four new
vertices become out-neighbours of t′2. Let D∗ be the resulting digraph. It holds that s′1, s

′
2, t
′
1, t
′
2

are the only vertices of D∗ of degree more than 3. We want to show that D∗ has a 2-linkage for
{(s′1, t′1), (s′2, t′2)} if and only if the digraph H depicted in Figure 4 is a directed topological minor
of D∗. For the first implication, let D∗ have a 2-linkage for {(s′1, t′1), (s′2, t′2)}. Thus, there are a
directed (s′1, t

′
1)-path P1 and a directed (s′2, t

′
2)-path P2 in D∗ that are vertex-disjoint. Hence,

D∗ has a subgraph F that contains the vertices of P1 and P2 and the fourteen new vertices for
D∗, that are connected only to s′1, s

′
2, t
′
1, t
′
2. By Lemma 4.6 we can contract both P1 and P2 to

a single arc each. Therefore H is a directed topological minor of D∗. For the converse, let H
be a directed topological minor of D∗. Due to the definition, there is a subgraph H ′ of D∗ such
that H is isomorphic to a digraph that is obtained from H ′ by only contracting 2-contractible
arcs. Since all vertices of H have degree different from 2, all arcs of H are either arcs of H ′

or result of a contraction. In particular, the two vertices of degree 4 of H correspond to s′1
and t′1 of D∗, and the two vertices of degree 5 of H correspond to s′2 and t′2 of D∗. That is
because these four vertices are the only vertices of D∗ of degree larger than 3. By definition of
2-contractible arc, a path between two vertices of a degree greater than two can be contracted
to an arc only if it directed path between these two vertices. Hence, since H is obtained from
H ′ by only contracting contractible arcs, there are a directed (s′1, t

′
1)-path P1 and a directed

(s′2, t
′
2)-path P2 in H ′ that are vertex-disjoint. Since H ′ is a subgraph of D∗, P1 and P2 are

directed paths in D∗, and therefore, D∗ has a 2-linkage for {(s′1, t′1), (s′2, t′2)}. This completes
the proof of the theorem.

The complexity result of Theorem 4.12 shows that it is already difficult for relatively simple
digraphs to decide whether they are directed topological minor of some given digraph. I.e. the
“directed topological minor” decision problem is not fixed-parameter tractable with the number
of vertices of the minor as a parameter.

A natural question is to ask how the “directed topological minor” problem behaves on re-
stricted input digraphs. It has been shown that the generalization of the 2-Linkage problem
to arbitrary numbers of given pairs, that is called the Linkage problem (given a digraph D
and pairs of pairwise different vertices, decide whether the pairs can be joined by vertex-disjoint
directed paths) is NP-complete on acyclic digraphs [40]. It is not difficult to see that the proof
of Theorem 4.12 can be extended to prove the next result. In particular, if the input digraph D
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is acyclic, all construction steps yield again acyclic digraphs.

Theorem 4.13 The problem, given two acyclic digraphs D and H, to decide whether H is
directed topological minor of D, is NP-complete.

5 Hard MSO1 problems for {1, 3}-regular planar graphs

In the proof of the core result of the paper, Theorem 6.6, we make use of the fact that there
exist MSO1-definable problems that are NP-hard even on a very restricted graph class, the class
of {1, 3}-regular planar graphs. We call an undirected graph {1, 3}-regular planar if it is planar
and all its vertices have degree either one or three.

Many problems that are hard on general graphs admit efficient algorithms on planar graphs
and particularly on {1, 3}-regular planar graphs; some variants of the Graph Colouring
problem being good examples. Recall that for k ≥ 1, a graph G is k-colorable if each vertex of
G can be assigned one of k colours such that adjacent vertices receive different colours. It is
well-known that every planar graph is 4-colorable and that it is NP-hard to decide whether a
planar graph is 3-colorable [20], while Brooks’ Theorem says that all {1, 3}-regular graphs are
3-colorable with a single exception of K4.

On the other hand, some other traditional hard problems such as Maximum Independent
Set remain NP-hard on {1, 3}-regular planar graphs. However, the decision version of this
problem is not MSO1-definable; it belongs to a wider class of problems called EMSO1—see [8].

To give an example of a natural graph problem that is hard on {1, 3}-regular planar graphs,
we observe the following: Deciding whether the square of a {1, 3}-regular planar graph is 4-
colorable is NP-hard [12]. Squares of planar graphs may not be planar, but the 4-colorability
problem of the square of a graph admits a reformulation as a colouring problem for the input
graph itself: given a graph G, decide whether G admits a 4-colouring such that the neighbours of
each vertex receive pairwise different colours. We call this NP-hard problem Fair 4-Colouring
of G, and it is easy to formulate it in the MSO1 language (cf. Definition 2.4).

Moreover, a similar topic has already been addressed by Makowsky and Mariño [31]; showing
that 3SAT reduces to a certain MSO1-definable property on planar graphs of degree ≤ 3. Their
reduction, however, uses also vertices of degree 2 while we need to avoid them here.

In this section, we thus show a stronger result covering a wide range of problems. We
prove that every MSO1 property ϕ efficiently translates into another MSO1 property ψ such
that a graph H satisfies ϕ if and only if a certain {1, 3}-regular planar graph G satisfies ψ.
The graph H can be an arbitrary graph, and the graph G is efficiently computable from H.
The constructed property ψ is, importantly, invariant under subdivisions of G. Consequently,
every MSO1-definable problem that is hard on general graphs translates into a hard problem for
{1, 3}-regular planar graphs and their arbitrary subdivisions. The formal statement is given by
Theorem 5.1 which we prove in this section.

Theorem 5.1 For every pair (H,ϕ) where H is an undirected graph and ϕ is an MSO1-definable
property, there exists a pair (G,ψ) that satisfies the following conditions:

a) G is a {1, 3}-regular planar graph and ψ is an MSO1-definable property,



5 HARD MSO1 PROBLEMS FOR {1, 3}-REGULAR PLANAR GRAPHS 18

φ ∈ MSO over K
H ∈ K

GI ∼= H
(s.t. GI |= φ)

I
−−−−−→

I
←−−−−−

φI ∈ MSO over L
G ∈ L

G
(s.t. G |= φI)

Figure 5: The concept of an interpretation I of ThMSO(K ) into ThMSO(L ) .

b) H |= ϕ if and only if G |= ψ,

c) for every subdivision G1 of G: G1 |= ψ if and only if G |= ψ,

d) and ψ depends only on ϕ and |ψ| = O(|ϕ|).

Furthermore, the pair (G,ψ) can be computed from (H,ϕ) by a polynomial-time algorithm.

Notice, particularly, the important technical condition c) of the theorem, which states that the
artificially constructed property ψ is invariant under any subdivisions of the graph G.

Our main tool for the proof of this theorem is the classical interpretability of logic theo-
ries [34]. To describe its simplified setting, assume that two classes of relational structures K
and L are given. The basic idea of an interpretation I of the theory ThMSO(K ) into ThMSO(L )
is to transform MSO formulas φ over K into MSO formulas φI over L in such a way that “truth
is preserved”:

• First one chooses a formula α(x) intended to define in each structure G ∈ L a set of
individuals (new domain) G[α] := {a : a ∈ dom(G) and G |= α(a)}, where dom(G)
denotes the set of individuals (domain) of G.

• Then one chooses for each s-ary relational symbol R from K a formula βR(x1, . . . , xs),
with the intended meaning to define a corresponding relation G[βR] := {(a1, . . . , as) :
a1, . . . , as ∈ dom(G) and G |= βR(a1, . . . , as)}. With the help of these formulas one can
define for each structure G ∈ L the relational structure GI :=

(
G[α], G[βR], . . .

)
intended

to correspond with structures in K .

• Finally, there is a natural way to translate each formula φ (over K ) into a formula φI

(over L ), by induction on the structure of formulas. The atomic formulas are substituted
by corresponding chosen formulas (such as βR) with the corresponding variables. Then
one proceeds via induction simply as follows:

(¬φ)I 7→ ¬(φI) , (φ1 ∧ φ2)I 7→ (φ1)
I ∧ (φ2)

I ,(
∃x φ(x)

)I 7→ ∃y
(
α(y) ∧ φI(y)

)
,

(
∃X φ(X)

)I 7→ ∃Y φI(Y ).

The concept is briefly illustrated in Figure 5.

Definition 5.2 Let K and L be classes of relational structures. Theory ThMSO(K ) is inter-
pretable in theory ThMSO(L ) if there exists an interpretation I as above, such that the following
two conditions are satisfied:
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H:

 

:G

Figure 6: The crossing-gadget modelling, in planar G, an edge crossing of GI ∼= H.

i) For every structure H ∈ K , there is G ∈ L such that GI ∼= H, and

ii) for every G ∈ L , the structure GI is isomorphic to some structure of K .

Furthermore, ThMSO(K ) is efficiently interpretable in ThMSO(L ) if the translation of each φ
into φI is computable in polynomial time, and also the structure G ∈ L such that GI ∼= H can
be computed from any H ∈ K in polynomial time.

Since interpretability is clearly a transitive concept, we prove Theorem 5.1 in the following
sequence of three relatively easy claims.

Lemma 5.3 The MSO1 theory of all simple (undirected) graphs is efficiently interpretable in
the MSO1 theory of simple planar graphs.

We believe that Lemma 5.3 is a known statement, but since we have not found an explicit
reference, we present an illustrating proof for it. (Alternatively, one can adjust the reduction of
[31] to achieve a similar goal.)

Proof. For start, we define the formula deg1(x) ≡ ∀y, z [(adj(x, y) ∧ adj(x, z)) → y = z] ∧
∃y adj(x, y) expressing that x is of degree 1 (in the model G). Furthermore, the formula

con(u, v,X) ≡ ∀Y ⊆X ∃ y, z
[
(y ∈ Y ∨ y = u) ∧ (z 6∈ Y ∨ z = v) ∧ adj(y, z)

]
(1)

expresses the property that the subgraph induced by X ∪ {u, v} connects u to v, and

mcon(u, v,X) ≡ con(u, v,X) ∧ ∀Y (Y ( X → ¬ con(u, v, Y )) (2)

says that X is a minimal connection (a path) between u, v.
Let G be the class of all simple graphs, and P the class of planar simple graphs. Following

Definition 5.2, the formula α1 defining the domain (vertex set in this case) of a graphGI ∼= H ∈ G
inside G ∈P is given as

α1(v) ≡ ¬ deg1(v) ∧ ∀x(adj(x, v)→ ¬deg1(x)) . (3)

The underlying idea is that we would like to use some vertices of a planar graph G ∈P to model
edge “crossings” of H ∼= GI , see in Figure 6. Hence we “mark” each of such supplementary
vertices with a new neighbour of degree 1.

It remains to interpret the adjacency relation βadj1 (u, v) for GI . Notice that the crossing
gadget in Figure 6 uses a unique “marked” 4-cycle to model each crossing, and we can identify
all such 4-cycles in G with a formula crgadg(C) ≡ σ ∧ (|C| = 4) ∧ ∀x ∈ C ¬α1(x) where σ
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routinely describes the possible edge sets of a 4-cycle on a given set of vertices C. The shortcut
| . | = 4 has an obvious implementation in MSO. Then we use

βadj1 (u, v) ≡ ∃X
[
∀x ∈ X (¬α1(x)) ∧mcon(u, v,X)∧ (4)

∧ ∀C
(
(crgadg(C) ∧X ∩ C 6= ∅)→ |X ∩ C| = 3

)]
.

The meaning of βadj1 (u, v) is that there exists a path P between u, v using only (besides u, v)
marked internal vertices X, and such that P intersects every crossing-gadget 4-cycle in exactly
three vertices which ensure that P is not “making a turn” at a crossing.

The last step in the proof is to verify the two conditions of Definition 5.2. While the second
condition is trivially true since βadj1 is a symmetric binary relation, the first one requires an
efficient algorithm constructing, for each H ∈ K , a graph GH ∈ L such that GIH

∼= H. This is
done as follows:

i. A “nice” drawing of H in the plane is found (and fixed) such that no two edges cross more
than once, no three edges cross in one point, and no edge passes through another vertex.

ii. For every degree-1 vertex w ∈ V (H), the unique edge {x,w} ∈ E(H) is replaced with a path
of length 3 on {x,w,w1, w2} where w1, w2 are new vertices. (This is needed since degree-1
vertices have special meaning in the interpretation.)

iii. Finally, every edge crossing is naturally replaced with a copy of the gadget from Figure 6.
The resulting planar graph is named GH .

It is routine to verify that GIH
∼= H.

Lemma 5.4 The MSO1 theory of all simple undirected graphs is efficiently interpretable in the
MSO1 theory of simple {1, 3}-regular graphs. Moreover, this interpretation preserves planarity.

Proof. Let G be the class of all simple graphs, and R denote the class of all simple {1, 3}-regular
graphs. We start the proof by showing a construction, for H ∈ G , of the graph G = GH ∈ R
such that GI ∼= H in the intended interpretation I.

For each vertex v ∈ V (H) of degree d, we create a new vertex rv adjacent to two (three if
d = 0) other new vertices of degree 1. If d > 0, then we also create a new bicolored (black–white)
cycle Cv of length 2d + 2 such that each its black vertex is adjacent to a new vertex of degree
1, one of the white vertices is adjacent to rv, and the d edges formerly incident with v in H are
now one-to-one attached to the remaining d white vertices of Cv. See Figure 7. The resulting
graph is our GH . Notice that if H is planar, then the cyclic order of edges incident with each
Cv can be preserved, and so GH will also be planar.

The domain of H can be identified within GH with the formula

α2(v) ≡ ∃x, y
[
x 6= y ∧ adj(v, x) ∧ adj(v, y) ∧ ∀z

(
(adj(z, x) ∨ adj(z, y))→ z = v

) ]
(5)

meaning simply that v has (at least) two neighbours of degree 1.
Before interpreting the adjacency relation of H in GH , we have to identify the cycles Cv

from our construction. Notice that these are the only induced cycles of GH with the property
that every second of their consecutive vertices has a neighbour of degree 1 (for instance, each
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H:

v  Cvrv

:G

Figure 7: The vertex-gadget of Lemma 5.4, replacing vertices of H with {1, 3}-regular parts in G.

edge of GH coming from an edge of H has both ends with all neighbours of degree 3). In this
sense we write

%(U) ≡ cycle(U) ∧ ∀x, y ∈ U
[
adj(x, y)→ (6)∨

z=x,y
∃w
(
adj(z, w) ∧ ∀t (adj(t, w)→ t = z)

) ]
where cycle(U) is an MSO1 predicate saying that U induces a cycle in the graph, and finally,

βadj2 (u,w) ≡ ∃U,W ∃u1, u2 ∈ U,w1, w2 ∈W (7)

%(U) ∧ %(W ) ∧ adj(u1, w1) ∧ adj(u2, u) ∧ adj(w2, w) .

We have finished description of the intended interpretation I, and it is now straightforward
that GIH

∼= H for every H ∈ G , cf. Definition 5.2. The proof is complete.

Lemma 5.5 For every MSO1 formula ϕ there exists an MSO1 formula ϕ1 such that the follow-
ing holds: For every {1, 3}-regular graph G and every subdivision G1 of G, it is G1 |= ϕ1 if and
only if G |= ϕ. Furthermore, |ϕ1| = O(|ϕ|) and ϕ1 is computable from ϕ in polynomial time.

Proof. An alternative view of the situation is that we are interpreting the MSO1 theory of
{1, 3}-regular graphs in the class of all their subdivisions. We construct ϕ1 as the formula ϕI

in such an interpretation I : Since G is {1, 3}-regular, we simply identify the domain of G (its
vertex set) inside G1 with α3(v) ≡ ¬deg2(v) where deg2(v) routinely expresses that v is of
degree two in G1.

We moreover recall (1) the MSO1 formula con(u, v,X) meaning that u is connected to v

via the vertices of X (in G1). The adjacency relation of G is then replaced with βadj3 (u, v) ≡
∃X
(
con(u, v,X)∧∀y∈X deg2(y)

)
. Clearly, G1 |= βadj3 (u, v) if and only if u and v are connected

with a path in G1 created by subdividing an edge {u, v} of G. The rest follows trivially.

Proof of Theorem 5.1. We apply the chain of interpretations I1, I2, I3 from Lemmas 5.3,
5.4, and 5.5 in this order to the formula ϕ, and obtain the resulting formula ψ ≡ ((ϕI1)I2)I3 .
Following the constructive proofs of the aforementioned lemmas, we construct a graph G such
that H ∼= (GI2)I1 . Notice that the interpretations are applied in reverse order (cf. Figure 5).
Then, part b) of the statement of Theorem 5.1 follows from Definition 5.2, and part c) follows
from Lemma 5.5. Part d) is true since the interpretations I1, I2, I3 are all efficient, i.e., are
computable in polynomial time, and each of the translated formulas grows linearly in size.
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6 Nonexistence of good digraph width measures

In this core section we finally prove some nearly optimal negative answers to the questions raised
in the Introduction and at the end of Section 3. To recapitulate, we have asked whether it is
possible to define a digraph width measure that is closed under some reasonable notion of a
directed minor (e.g., Definition 4.4) and that is still powerful (Definition 3.1) analogously to
ordinary treewidth. We also recall the property of being treewidth-bounding (which we want to
avoid) from Definition 3.3.

Recall that a digraph width measure δ is closed under taking directed topological minors
if there is an absolute constant c such that, for each digraph D, the δ-width of any directed
topological minor of D is at most δ(D) + c. The major existing ones are such by Corollary 4.10.
We moreover give the following relaxed definition to make our negative results slightly stronger:

Definition 6.1 A digraph width measure δ is weakly closed under taking directed topological
minors if there exists a computable function w such that, for each digraph D, the δ-width of any
directed topological minor of D is at most w

(
δ(D)

)
.

Although the aforementioned three requirements are enough to state the core nonexistence
result in latter Theorem 6.7, we mention one more technical property that a reasonable digraph
width measure should possess—we do not want to allow the measure to “keep computationally
excessive” information in the orientation of edges. This requirement is important in intermediate
Theorem 6.6. Formally:

Definition 6.2 A digraph width measure δ is efficiently orientable if there exist a computable
function h, and a polynomial-time computable function r : G → D (from the class of all graphs
to that of digraphs), such that for every undirected graph G ∈ G , we have U(r(G)) = G and

δ(r(G)) ≤ h( min{δ(D) : D a digraph s.t. U(D) = G}) .

To explain, a digraph width measure δ is efficiently orientable if, given any undirected graph G,
one can orient its edges in time polynomial in |G| to obtain a digraph with near-optimal δ-width.
Quite many width measures possess this natural property, as the following proposition shows.

Proposition 6.3 DAG-width, Kelly-width, digraph clique-width, and bi-rank-width are all effi-
ciently orientable.

Proof. As noted in Section 3, DAG-width and Kelly-width attain their globally minimum
values on DAGs. On the other hand, clique-width and bi-rank-width attain an optimal value
on symmetric orientations of graphs (replacing each edge by a pair of opposite arcs). Therefore
given an undirected graph, one can easily orient its edges to obtain a digraph whose width is
optimal wrt. to each of these width measures.

Furthermore, to better illustrate the practical meaning of the words “to keep computationally
excessive information in the orientation of edges”, we point out in advance the counteractive
example of Theorem 6.10: It is possible to encode the 3-colorability of a graph in a low-width
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orientation of its edges, and in this way to “cheat” when claiming fixed parameter tractability
of the 3-Colouring problem on general graphs wrt. such an artificial parameter.

Our coming proofs also rely on some ingredients from the Graph Minors:

Theorem 6.4 ([37]) If H is a planar undirected graph, then there exists a number nH such
that for every G of treewidth at least nH , H is a minor of G.

Proposition 6.5 (folklore) If H is a minor of G and the maximum degree of H is three, then
H is a topological minor of G.

With all the ingredients at hand, we now state and prove our first main result.

Theorem 6.6 Let δ be a digraph width measure with the following properties

a) δ is not treewidth-bounding;

b) δ is weakly closed under taking directed topological minors;

c) δ is efficiently orientable.

Then δ is not powerful unless P = NP.

Proof. We assume that δ is powerful and show that for every MSO1-definable property ϕ
of undirected graphs there exists a polynomial-time algorithm that decides, given as input an
undirected graph H, whether H |= ϕ. Since, by Example 2.5, there are MSO1 properties ϕ such
that deciding whether H |= ϕ is NP-hard, this would imply that P = NP.

Given an MSO1-formula ϕ and an undirected graph H, we construct a {1, 3}-regular planar
graph G and an MSO1-formula ψ as in Theorem 5.1. Let G1 be the 1-subdivision of G (i.e.
replacing every edge of G with a path of length two). We claim that, under the assumptions (a)
and (b), there exists an orientation D of G1 such that δ(D) ≤ k, for some constant k dependent
only on δ.

We postpone the proof of this claim, and show its implications first. Since δ is efficiently
orientable, by Definition 6.2 and the existence of such D, we can efficiently construct another
orientation D1 of G1 such that δ(D1) ≤ h(k), for some computable function h. Note that since k
is a constant, the width of D1 is at most a constant. Let ψ1 be the (directed) MSO1 formula
obtained from ψ by replacing adj(u, v) with (arc(u, v)∨arc(v, u)). Then, by Theorem 5.1, H |= ϕ
iff D1 |= ψ1, and hence we have a polynomial reduction of the problems H |= ϕ onto D1 |= ψ1.
Since δ is assumed to be powerful, the latter problem can be solved by an XP algorithm wrt.
the constant parameter h(k), that is, in polynomial time.

We now return to our claim. Since δ is not treewidth-bounding, there is k′ ≥ 0 such that
the class U = {U(D) : δ(D) ≤ k′} has unbounded treewidth. By Theorem 6.4, there exists D0

such that δ(D0) ≤ k′ and U(D0) contains a G1-minor. Since the maximum degree of G1 is
three, by Proposition 6.5, G1 is a topological minor of U(D0) and hence some subdivision G2 of
G1 is a subgraph of U(D0). Therefore there exists D2, a subdigraph of D0, with U(D2) = G2.
Finally, by Lemma 4.6 one can contract 2-paths in D2, if necessary, to obtain a digraph D3

with U(D3) = G1. Clearly D3 is a directed topological minor of D0 and since δ is weakly closed
under taking directed topological minors, we have δ(D3) ≤ k = h′(k′) for some computable
function h′ dependent on δ. This completes the proof of our claim and the theorem.
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Figure 8: Graph H6, the 1-subdivision of a 6× 6 cubic grid.

Secondly, we further strengthen Theorem 6.6 by removing even the assumption (c) of efficient
orientability as follows.

Theorem 6.7 Let δ be a digraph width measure with the following properties

a) δ is not treewidth-bounding;

b) δ is weakly closed under taking directed topological minors.

Then δ is not powerful unless NP ⊆ P/poly.

A small price we have to pay for the stronger formulation in Theorem 6.7 is the need for
a stronger complexity assumption, namely that NP 6⊆ P/poly instead of NP 6= P. Recall
that P/poly denotes the polynomial-time complexity class with a polynomially-bounded advice
function, i.e. the class of languages that have polynomial-size circuits. By the Karp-Lipton
theorem [27], NP ⊆ P/poly would imply that the polynomial hierarchy collapsed to the level
ΣP
2 (which is not considered likely).

Proof. (Theorem 6.7) We start the proof similarly to that of Theorem 6.6—assume that δ is
powerful and show that then for every MSO1-definable property ψ of undirected graphs there
exists a polynomial-time algorithm that, given as input an undirected graph G and a polynomial-
size advice depending only on |V (G)|, decides whether G |= ψ. By Theorem 5.1, we may assume
G to be {1, 3}-regular planar and ψ invariant under subdivisions of G.

To informally see how one can trade efficient orientability of the width measure δ for a
polynomially-bounded advice function A depending only on the input size, it is helpful to de-
construct the proof of Theorem 6.6: The crux of the former proof is in showing that, given a
{1, 3}-regular planar graph G, there exists an orientation D of the 1-subdivision G1 of G with
small δ-width. While the former existential proof of D subsequently needed efficient orientability
of δ to actually construct some (possibly different) orientation D1 with small δ-width, we now
bypass that point with a constructive argument for D. Precisely, we ask the advice A to give us
a δ-optimal orientation of a suitably-sized grid (a “generic picture”) in which we then find our
particular D as a topological minor.

Firstly, we recall the notion of a cubic grid (also known as a wall or hexagonal grid [10]),
and denote by Hr the 1-subdivision of the r × r cubic grid (see Figure 8). Note that Hr is
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always planar. The fact (a) that δ is not treewidth-bounding together with Theorem 6.4 and
Proposition 6.5 imply there exists a constant k′ ≥ 0 such that members of the class U =
{U(D) : δ(D) ≤ k′} contain Hr as topological minors for arbitrarily large values of r. So, for
any r some orientation D′r of a suitable subdivision of Hr is a subdigraph of some D+

r ∈ U .
Secondly, though this D′r may be very large, we can again use Lemma 4.6 about contracting

2-paths to argue that there exists a directed topological minor Dr of D′r such that U(Dr) = Hr.
Using (b), we get that δ(Dr) ≤ k = w(k′) is bounded irrespectively of r, and so is δ(Do) ≤ k for
any directed topological minor Do of Dr using Proposition 4.5.

And, thirdly, it is known that any cubic planar graph G on n vertices is a topological minor
of a cn × cn cubic grid where c is a universal constant [1], and that one can embed G in such
a grid in time O(n log n) [14]. This clearly extends to {1, 3}-regular planar graphs G. We can
now tie up the loose threads as follows.

Let G be a given {1, 3}-regular planar graph on n vertices. We ask our polynomially-bounded
advice function A to give us a digraph F = A(n) such that U(F ) = Hr where r = cn, and F
is a directed topological minor of some member of the aforementioned U . Then we construct
an embedding of G into Hr, and consequently obtain a subdigraph D1 of D such that U(D1)
is a subdivision of G. Hence δ(D1) ≤ k. Let, moreover, ψ1 be the (directed) MSO1 formula
obtained from ψ by replacing adj(u, v) with (arc(u, v)∨arc(v, u)). Since our ψ is invariant under
subdivisions of {1, 3}-regular graphs, G |= ψ is equivalent to D1 |= ψ1.

So far, the construction of D1 and ψ1 clearly falls into the complexity class P/poly. If δ
was powerful, then we could decide D1 |= ψ1 in XP time wrt. constant width δ(D1) ≤ k, i.e.
in P time. Hence we would get a P/poly time algorithm for deciding G |= ψ (equivalent to
D1 |= ψ1). To finish the proof it remains to note that (Theorem 5.1) there exists abundance of
formulas ψ for which the decision problem G |= ψ is NP-hard.

Remark 6.8 Note that the proof of Theorem 6.7 also shows another possible “intermediate”
reformulation of Theorem 6.6; one in which the condition (c) of efficient orientability is required
to hold only for subdivisions of cubic grids (instead of for all graphs).

Necessity of the assumptions. Discussing once again the core outcome of this section—
that a powerful digraph width measure essentially “cannot be stronger” than ordinary undirected
treewidth, unless NP 6⊆ P/poly —brings us to a natural question of whether the technical as-
sumptions of the result are necessary, or, put differently, whether our result can be strengthened
by weakening (some of) its essential assumptions. We address this question in the remainder of
this section.

First of all, the assumption (a) of δ not being treewidth-bounding is obviously unavoidable
in order to deal with the richer universe of digraphs (cf. Section 3).

Next, the assumption (b) of δ being closed under taking directed topological minors has been
intensively discussed in Section 4, namely in connection with the undirected case and cops-and-
robber game characterizations. Here we moreover argue that both Theorems 6.6 and 6.7 are the
strongest possible in that one cannot relax the condition (b) to “closed under subdigraphs” (or
even under well-studied butterfly minors or digraph immersions).

For that purpose we construct an example of an artificial width measure which attains its
“power” by subdividing every edge with a tower-exponential number of new vertices (and thus
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giving sufficient time margin for lengthy computation—an idea occurring, slightly differently
in the undirected setting, also in [31]). Since this is certainly not a desirable behaviour of a
width measure, it provides additional strong justification for condition (b) of both Theorems 6.6
and 6.7.

Proposition 6.9 There exists a powerful digraph width measure δ such that

a) δ is not treewidth-bounding;

b) δ is monotone under taking subdigraphs;

c) δ is efficiently orientable.

Moreover, the same remains true if we replace (b) with

b’) δ is monotone under taking subdigraphs of D and such contractions of arcs a ∈ A(D) that
create no new directed paths in D/a (i.e., under butterfly minors), or with

b”) δ is monotone under taking digraph immersions of D. A digraph H is an immersion of D if
V (H) is mapped injectively into V (D) such that the edges of H are mapped into edge-disjoint
directed paths of D connecting the respective vertex images.

Proof. We are going to apply the following modified version of Courcelle’s Theorem [7]: There
exists a computable function g such that for all digraphs D and MSO2 definable digraph prop-
erties ϕ, one can decide whether D |= ϕ in time O

(
g(|ϕ| + |V3(D)|) · |V (D)|

)
. Recall that

V3(D) ⊆ V (D) denotes the subset of those vertices having at least three neighbours in D. The
original version of Courcelle’s theorem states something stronger—it uses the quantifier depth
(rank) of ϕ instead of |ϕ| and the treewidth of U(D) instead of |V3(D)|—but for undirected
graphs. The extension to digraph MSO2 is straightforward (and not strictly needed here).

We give an explicit definition of δ. For an undirected graph G, we denote by distG(u, v)
the length of a shortest path between vertices u and v in G; if there is no such path in G then
distG(u, v) =∞. Let g be the function as in Courcelle’s theorem as stated previously. Without
loss of generality, we can assume that g is non-decreasing. For a digraph D, we define

δ(D) =

{
1, if distU(D)(u, v) ≥ g(2 · |V3(D)|) for all pairs u 6= v ∈ V3(D);

|V (D)|, otherwise .
(8)

We first show that δ fulfils the claimed properties. First, notice that δ does not depend on the
orientation of edges; that is, U(D1) = U(D2) readily implies δ(D1) = δ(D2). Hence, (c) δ is
efficiently orientable in linear time. Second, if we take any undirected graph G (of arbitrarily
large treewidth) and subdivide every edge of G with g(2 · |V (G)|) vertices, then δ(D) = 1 holds
for every orientation D of G = U(D). Therefore, (a) δ cannot be treewidth-bounding.

Third, concerning (b), let D be a digraph and let F be a subdigraph of D. We have to
show that δ(D) ≥ δ(F ). This is clearly true if δ(D) = |V (D)|, and so assume δ(D) = 1.
Take any vertex pair u, v ∈ V3(F ) ⊆ V3(D). Then by our assumption, distU(D)(u, v) ≥ g(2 ·
|V3(D)|), and g(2·|V3(D)|) ≥ g(2·|V3(F )|) by assumed monotonicity of g. Hence distU(F )(u, v) ≥
distU(D)(u, v) ≥ g(2 · |V3(F )|), and consequently δ(F ) = 1 ≤ δ(D).

It remains to show that δ is powerful. Let ϕ be an MSO1-definable (undirected) property,
and let D be an input digraph. We simply apply Courcelle’s theorem to decide U(D) |= ϕ, and
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prove that this is an XP (even FPT) algorithm wrt. the parameter δ(D). If δ(D) = |V (D)|,
then indeed O

(
g(|ϕ| + |V3(D)|) · |V (D)|

)
= O

(
g(δ(D)) · |V (D)|

)
for every fixed ϕ. So assume

δ(D) = 1. If every component of U(D) contains at most one cycle, then the treewidth of D is
at most two and the case follows trivially. Otherwise, some two vertices of V3(D) are connected
by a path and so |V (D)| > g(2 · |V3(D)|). Then the run-time bound of Courcelle’s theorem gives
O
(
g(|ϕ|+ |V3(D)|) · |V (D)|

)
= O

(
max{g(2|ϕ|), |V (D)|} · |V (D)|

)
= O(|V (D)|2) for fixed ϕ.

As for the condition (b’), we simply extend the previous arguments. Note that if a 2-path
P between u, v ∈ V3(D) has “alternately oriented” arcs (as in Figure 2), then no arc of P
is contractible without introducing new directed paths. If, informally, this happened for all
possible 2-paths in D, then taking butterfly minors in D would be almost equivalent to taking
subdigraphs of D.

Formally, let S(D) ⊆ V (D) denote the subset of those vertices s in D that either s has no
in-neighbours (i.e., s is a source) or s has no out-neighbours (i.e., s is a sink). Instead of (8) we
give the following modified definition:

δ′(D) =


1, if for all pairs u 6= v ∈ V3(D), every 2-path in D between u, v

has at least g(2 · |V3(D)|) internal vertices in S(D);
|V (D)|, otherwise .

(9)

This measure clearly again satisfies (a) and (c), and Courcelle’s algorithm on D is in FPT wrt.
the width δ′(D), too.

To prove (b’) for δ′, we proceed as follows. Let D be a digraph and let F be a subdigraph
of D. If δ(D) = |V (D)|, then clearly δ(F ) ≤ δ(D), and so assume δ(D) = 1. Take any 2-path
P between a pair u, v ∈ V3(F ) ⊆ V3(D). Then P is obtained by contracting some arcs in a
path (undirected) Q ⊆ D. Since Q is a union of (at least one) 2-paths in D, by the assumption
δ(D) = 1 we have |V (Q)∩S(D)| ≥ g(2 · |V3(D)|) ≥ g(2 · |V3(F )|). Notice that if a is an arc in D
with both ends in S(D), then its contraction necessarily creates a new path in D/a and so such a
contraction of a is not allowed in (b’). Therefore, |V (P )∩S(F )| ≥ |V (Q)∩S(D)| ≥ g(2·|V3(F )|),
and consequently δ(F ) = 1 ≤ δ(D).

Finally, (b”) has the same proof as (b’) since a vertex which is a source or a sink cannot be
immersed in a digraph by definition.

Lastly, we take a closer look at the property of δ being efficiently orientable. Though this
condition (c) of Theorem 6.6 is, after all, completely avoided in stronger Theorem 6.7, it nev-
ertheless deserves further discussion in our opinion: It is not unreasonable to assume a digraph
width measure to be efficiently orientable since most known digraph measure are, e.g. Proposi-
tion 6.3. Furthermore, efficient orientability prevents digraph measures from “keeping excessive
information” in the orientation of arcs, such as in the following example:

Proposition 6.10 There exists a digraph width measure δ such that

a) δ is not treewidth-bounding;

b) δ is monotone under taking directed topological minors;

c) for every 3-colorable graph G there exists an orientation D, U(D) = G, such that δ(D) = 1;
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d) and for every k ≥ 1, on any digraph D with δ(D) ≤ k, one can decide in (FPT) time
O(3k · n2) whether U(D) is 3-colorable, and find a 3-colouring if it exists.

To briefly comment on this result, we emphasize the following. On the one hand, there is
nothing specially interesting in solving the 3-colorability problem on digraphs—this is taken just
as an example of an NP-complete problem, and it is no surprise that solutions to NP-complete
problems can be somehow encoded in the orientation of arcs.

On the other hand, it is in our opinion really unexpected that one can naturally encode an
“excessive information” (an NP-completeness oracle, to be precise) in the orientation of arcs
such that this encoding is invariant (b) under taking directed topological minors.

Proof. (Theorem 6.10) We start by defining our digraph width measure δ. For a digraph D,

δ(D) =

{
1, if the arcs of D encode a 3-colouring of U(D);

|V (D)|, otherwise.
(10)

We say that the arcs of a digraph D encode a 3-colouring if, for every directed (s, t)-path in D
with s, t ∈ V3(D), we have that either s has no in-neighbours (i.e. s is a source) or t has no
out-neighbours (i.e. t is a sink).

The crucial property of this definition (10) is that if δ(D) = 1, then U(D) is 3-colorable.
To see this, assume that the arcs of D encode a 3-colouring, and let S1, S2, S3 be a tripartition
of V3(D) such that S1 is the set of all sources, S3 is the set of all sinks, and S2 the remaining
vertices. The sets S1 and S3 are obviously independent in U(D) as they contain only source/sink
vertices. If S2 was not independent, then there would be an arc a = (u, v) forming a directed
path of length 1 between u, v ∈ S2 ⊆ V3(D), and so one of u, v would actually belong to S1∪S3,
a contradiction. As the remaining vertices of V (D) \ V3(D) have at most two neighbours each,
we can use a straightforward greedy algorithm to extend the partition (S1, S2, S3) of V3(D) into
a partition of V (D) into three independent sets. Therefore U(D) is 3-colorable.

We now have to show that δ fulfils all the four conditions of Theorem 6.10. We start with
(c); assume a graph G with a proper 3-colouring c : V (G)→ {1, 2, 3}. We construct an acyclic
orientation D, U(D) = G, by directing every edge {u, v} ∈ E(G) as (u, v) ∈ A(D) such that
c(u) < c(v). Then δ(D) = 1 since D actually has no directed path of length three. Consequently,
for the complete bipartite graph Kn,n there is an orientation D′ such that δ(D′) = 1 and
U(D′) = Kn,n, but the treewidth of Kn,n is n. Hence also (a); δ is not treewidth-bounding.

To prove (d); let D be any digraph. If δ(D) = k ≥ 2, then n = |V (D)| = k. By trying all
possible 3-colourings we can solve the task in time O(3k · n2). On the other hand if δ(D) = 1,
then (10) D encodes a 3-colouring, and we can compute a valid 3-colouring of U(D) in time
O(n2), as outlined above.

The last step is to show (b); that δ is monotone under taking directed topological minors
for every k ≥ 1. Let D be a digraph. If δ(D) ≥ 2, then δ(D) = |V (D)| and thus δ(F ) ≤
δ(D) for every directed topological minor F of D. Therefore let δ(D) = 1, i.e. D encodes a
3-colouring. For a directed topological minor F of D, assume any directed (s, t)-path in F
with s, t ∈ V3(F ) ⊆ V3(D). By Definition 4.4, no (s, t)-path can be created by contractions of
2-contractible arcs in D, and so a directed (s, t)-path exists in D. Then, up to symmetry, s is a
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source in D since δ(D) = 1. Again by the definition of 2-contractible arcs, s must be a source
in F , too. Consequently δ(F ) = 1 ≤ δ(D), and the condition is proved.

7 Conclusions

Looking at the main result of this paper (Theorem 6.7) from a yet slightly different perspective
than in Section 3, one can conclude the following:

Any algorithmically useful digraph width measure δ that is substantially different from
undirected treewidth must possess the following property: There exist digraphs of low
δ-width such that δ grows very high on their directed topological minors.

Since “standard” cops-and-robber games remain closed on directed topological minors, we con-
clude that a digraph width measure that allows efficient decisions of MSO1-definable digraph
properties on classes of bounded width cannot be defined or (even asymptotically) characterized
using such games. All this gives more weight to the argument [15] that bi-rank-width [25] and its
generalizations are the best (though not optimal) currently known candidates for a good digraph
width measure from the algorithmic perspective.

Nevertheless, the area of treewidth-like digraph width measures (and of the related cops-
and-robber games) remains a very interesting topic in pure combinatorics, with solid structural
foundations and abundance of fundamental open questions. We believe that the results and
suggestions contained in our paper will also lead to new ideas and research directions in this
combinatorial area of digraph width measures—an area that seems to be stuck at this moment.

Finally, our main result also leaves room for other ways of overcoming the problems with the
currently existing digraph width measures. We have asked for width measures that are powerful,
i.e., all MSO1-definable digraph properties are decidable in polynomial time on digraphs of
bounded width. What happens if we relax this requirement? We can ask for more time, like
subexponential running time, or we can ask for restricted classes of MSO1-definable digraph
properties. Currently, we are not aware of any noticeable progress in this direction.

On the other hand, could it still be possible to relax a bit the requirement of monotonicity
under taking directed topological minors? Theorem 6.9 suggests a strict negative answer, but
one can also take an approach analogous to Kreutzer–Tazari’s [28] for undirected graphs; say,
a directed measure δ is nearly treewidth-bounding if tw(U(D)) ≤ b(δ(D)) · logc |V (D)| for some
constant c and computable function b. Then, with a stronger condition (a’) that δ is not nearly
treewidth-bounding and weaker (b’) δ is monotone under taking subdigraphs, a claim analogous
to Theorem 6.7 could still be true. Indeed, the latter has been proved true just very recently
in [17] with a suitable stronger complexity assumption.
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[19] R. Ganian, P. Hliněný, and J. Obdržálek. Unified approach to polynomial algorithms on
graphs of bounded (bi-)bank-width. European J. Combin., 2012. To appear. Available from
http://dx.doi.org/10.1016/j.ejc.2012.07.024.

[20] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theor. Comput. Sci., 1:237–267, 1976.
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