
Survey of Parameter-Preserving

Reductions

Philipp Kuinke

Department of Computer Science

RWTH Aachen

A thesis submitted for the degree of

Bachelor of Science

2013

mailto:philipp.kuinke@rwth-aachen.de
http://tcs.rwth-aachen.de
http://www.rwth-aachen.de

Acknowledgements

I would like to acknowledge the work of my advisers Felix Reidl and

Somnath Sikdar who helped me find resources and provided constant

feedback and ideas for improvement. Secondly I would like to thank

Walter Unger, who has shown me that theory lectures do not have

to be dry and without whom I probably would not have chosen a

theoretical topic for my Bachelor thesis.

Abstract

In the world of fixed parameter algorithms problem instances are bro-

ken up into a parameter k and the usual input size n. A problem

is fixed parameter tractable if it can be solved in time O(f(k)g(n))

where f is some arbitrary function and g is a polynomial.

Analogous to polynomial time reductions in the case of NP-hard

problems, a type of reduction called parameter preserving is used to

establish relations between problems in the class FPT. Such reduc-

tions can not only be used to re-use algorithms but also establish an

internal hierarchy of running-times: informally, an increase of the pa-

rameter during the reduction hints at the target problem being harder

to solve than the source problem.

The goal of this thesis is to collect, categorize and develop parameter-

preserving reductions.

Contents

Contents vii

List of Figures x

1 Introduction 1

1.1 On complexity . 2

1.2 Parametrized complexity theory 2

1.2.1 Preliminary . 2

1.2.2 Reduction . 4

1.3 What is the point? . 6

2 Reductions 7

2.1 Reductions, polynomial but not parameter preserving 7

2.1.1 Independent Set ≤p Vertex Cover 8

2.1.2 Clique ≤p Constraint Bipartite Vertex Cover 9

2.2 Parameter preserving reduction in both directions 10

2.2.1 Short Non-deterministic Turing Machine Acceptance ≡pp

Independent Set . 10

2.2.2 Monotone Weighted SAT ≡pp Hitting Set 11

2.2.3 Partition into Cliques ≡pp Colouring 12

2.2.4 Spare Allocation ≡pp Constraint Bipartite Vertex Cover . . 14

2.2.5 Red-Blue Dominating Set ≡pp Set Cover 16

2.2.6 Red-Blue Dominating Set ≡pp Hitting Set 18

2.2.7 Vertex Cover ≡pp 2-Hitting Set 19

2.3 Parameter preserving reduction without parameter change 20

iii

CONTENTS

2.3.1 Monotone Weighted SAT ≤pp Weighted SAT 20

2.3.2 Vertex Cover ≤pp Dominating Set 21

2.3.3 Vertex Cover ≤pp Steiner Tree 23

2.3.4 Dominating Set ≤pp Hitting Set 25

2.3.5 Dominating Set ≤pp Monotone Weighted SAT 26

2.3.6 Dominating Set ≤pp Center 28

2.3.7 Coloured Red-Blue Dominating set ≤pp Red-Blue Domi-

nating Set . 29

2.3.8 Red-Blue Dominating set ≤pp Steiner Tree 31

2.3.9 Coloured Small Universe Hitting Set ≤pp Small Universe

Hitting Set . 33

2.3.10 Disjoint Factors ≤pp Vertex Disjoint Cycles 34

2.3.11 Independent Set ≤pp Induced Matching 36

2.3.12 Colouring ≤pp Partition Into Forests 38

2.3.13 Colourful Graph Motif ≤pp Group Steiner Tree 41

2.3.14 Colourful Graph Motif ≤pp Steiner Tree 42

2.4 Parameter preserving reduction with linear parameter change . . 44

2.4.1 Weighted SAT ≤pp Dominating Set 44

2.4.2 Red-Blue Dominating Set ≤pp Connected Vertex Cover . . . 47

2.4.3 Red-Blue Dominating set ≤pp Capacitated Vertex Cover . 49

2.4.4 Group Steiner Tree ≤pp Directed Steiner Out-Tree 51

2.4.5 Connected Vertex Cover ≤pp 2-deg-Connected Feedback

Vertex Set . 54

2.4.6 Connected Vertex Cover ≤pp 2-deg-Connected Odd Cycle

Transversal . 56

2.4.7 Steiner Tree ≤pp 2-deg-Steiner Tree 57

2.4.8 Colourful Graph Motif ≤pp Connected Dominating Set . . 59

2.5 Parameter preserving reduction with polynomial parameter change 61

2.5.1 Coloured Reduced Unique Coverage ≤pp Unique Coverage 61

2.6 Supposedly no parameter preserving reductions 62

3 Reduction-Graph 63

3.1 Interpretation . 63

iv

CONTENTS

4 Conclusions 66

4.1 Methods used . 66

4.2 Further work on visualisation and reduction search 67

References 68

Appendix: List of Problems 70

v

List of Figures

1.1 The difference between the two Vertex Cover Algorithms. 3

1.2 Illustration of the reduction from Independent Set to Clique 5

2.1 Illustration of Clique to Constraint Bipartite Vertex Cover 9

2.2 Illustration of Partition into Cliques to Colouring 12

2.3 Illustration of Spare allocation to Constraint Bipartite

Vertex Cover . 14

2.4 Illustration of Red-Blue Dominating Set to Set Cover. . . 16

2.5 Illustration of Vertex Cover to Dominating Set 21

2.6 Illustration of Vertex Cover to Steiner Tree 23

2.7 The graph G, that will be transformed to ϕ 26

2.8 Illustration of coloured Red-Blue Dominating Set to Red-

Blue Dominating Set. 29

2.9 Illustration of Red-Blue Dominating Set to Steiner Tree. 31

2.10 An example of the Disjoint Factors property not satisfied 34

2.11 Illustration of Disjoint Factors to Vertex Disjoint Cycles. 35

2.12 Illustration of Independent Set to Induced Matching 36

2.13 Illustration of Colouring to Partition Into Forests 38

2.14 The corresponding solution of Partition Into Forests 39

2.15 Illustration of Colourful Graph Motif to Connected Dom-

inating Set . 42

2.16 Illustration of Red-Blue Dominating Set to Connected Ver-

tex Cover. 47

2.17 Illustration of Red-Blue Dominating Set to Capacitated

Vertex Cover. 49

vi

LIST OF FIGURES

2.18 Illustration of Group Steiner Tree to Directed Steiner

Out-Tree. 52

2.19 Left: A solution of Group Steiner Tree Right: A solution of

Directed Steiner Out-Tree 53

2.20 Illustration of Connected Vertex Cover to 2-deg-Connected

Feedback Vertex Set . 54

2.21 Illustration of Steiner Tree to 2-deg-Steiner Tree 57

2.22 Illustration of Colourful Graph Motif to Connected Dom-

inating Set . 60

3.1 The first big connected component 64

3.2 The remaining six smaller connected components 65

vii

Chapter 1

Introduction

“You cannot proceed formally from an informal specification.”

(Jeremy Manson)

In this work we want to look at different combinatorial problems and how they

are related with respect to how fast or how hard we can find a solution. We

expect to find problems that are very similar and therefore behave similar, so we

can arrange them to some sort of class. Maybe we find problems that on the first

glance are very similar, but are in fact very different if observed more throughout

or problems that seem different, but are in their core very closely related. The

method of choice to conduct these comparisons will be the reduction.

1

1.1 On complexity

The main ‘unit’ to measure the quality of an algorithm is the efficiency. That

is, how long does it take to generate a solution for a given input. In this thesis

we only consider decision problems : For an input x we want to give the answer

yes or no based on a given characteristic, like for example “is the given number

n ∈ N a prime number?”. And of these problems we only look at those who are

decidable, which means there is an algorithm that can always find a solution in

finite time. The constraint finite is of course quite loose, and generally we want

fast solutions, that is why we need to measure the efficiency of the algorithm. For

that we use the ‘Big O notation’, please see [1] for a detailed definition. It creates

a ratio of run-times for different sized inputs by giving a function which maps

the input length of the algorithm to a number y ∈ R (the run-time) and it only

denotes worst-case run-times. Please note we are not interested in the runtime

itself, as in “given input n how many minutes does it take to find a solution y?”,

and therefore we don’t have any physical units attached, but rather in the growth

of the runtime if we increase the input length. In practice, polynomial -time algo-

rithms are considered efficient as opposed to exponential -time algorithms, which

are not.

Before we start we have to ask ourselves “What is parametrized complexity

theory?”. If we look at a NP-hard problem we assume there is no deterministic

algorithm that computes a solution in polynomial time. But of course we are

interested in a solution, so one can use methods like approximation, randomisa-

tion or heuristic functions. The problem here is that these methods are often not

exact or not provable (with respect to time complexity).

1.2 Parametrized complexity theory

1.2.1 Preliminary

Now let us take a look at a specific subclass of problems proposed by [7]: These

are defined as an input of an object x and a positive integer k and we want to

2

V is the number of vertices and C the size of the Vertex Cover.
Left O(1.19n) and right O(kn + 1.29k).

C\V 10 50 100
5 6 5989 35867090
10 6 5989 35867090
15 6 5989 35867090

C\V 10 50 100
5 54 254 504
10 553 2553 5053
15 8341 38341 75841

Figure 1.1: The difference between the two Vertex Cover Algorithms.

know if x has some property that depends on k. An example for this would be

Vertex Cover. The input is a graph G = (V,E) and a positive integer k and

the question is, does G have a vertex cover of size at most k. We know that this

problem can be solved in time O(1.19n) [8] which is exponential in the number

of vertices n. But another algorithm that was found by [13] has a running time

of O(kn + 1.29k). As we see this is polynomial in n but exponential in k, but

the assumption of k � n is natural in many cases and so the second algorithm is

faster for k ≤ 0.79n. See Figure 1.1 for comparison.

As we have seen it could be of interest to look for algorithms for NP-hard

problems that are exponential only in k but polynomial in the size n = |x| of the

input object x. These leads us to the definition of a new class of problems called

FPT containing all fixed-parameter tractable problems [5]:

• A parametrized problem is a language L ⊆ Σ∗ × N where Σ is a finite

alphabet.

• A parametrized problem L is fixed-parameter tractable if the question (x, k) ∈
L? can be decided in O(f(k)g(|x|)) where f is some arbitrary function and

g is a polynomial.

If g is linear the class is called FPL and it is easy to see that FPL ⊆ FPT .

Unlike the classes P and NP that only look at one single input length, FPT is

two-dimensional as it has two parameters which are handled separately.

3

1.2.2 Reduction

Definition

The core technique of this work will be the reduction. And because we are deal-

ing with parametrized problems, we will use the parameter-preserving reduction,

which is defined as follows. Suppose L1 and L2 are parametrized problems. Then

L1 can be polynomial-time parameter-preserving reduced to L2 (L1 ≤pp L2) iff

there exists a function f so that all of the following holds:

1. (x, k) ∈ L1 iff f((x, k)) = (y, l) ∈ L2

2. f has a runtime in O(p(|x|+ k)) where p is a polynomial

3. l is polynomial in k

This technique can be used to show whether problems, belong to the class FPT.

Lemma 1.2.1 ([5]) If L2 ∈ FPT and L1 ≤pp L2 then L1 ∈ FPT.

Corollary 1.2.2 If L1 6∈ FPT and L1 ≤pp L2 then L2 6∈ FPT

Definition We write L1 ≡pp L2 iff L1 ≤pp L2 and L2 ≤pp L1

Example

To get a first grasp of this reduction technique we will give a first example.

Consider these two Problems:

Independent Set

Input : A Graph G = (V,E) and a positive integer k.

Question: Is there a Subset I ⊆ V with |I| ≥ k so that for every v1

and v2 ∈ I, (v1, v2) 6∈ E?

Parameter : k

4

v1 v2

v3 v4

v1 v2

v3 v4

Figure 1.2: Illustration of the reduction from Independent Set to Clique

Clique

Input : A Graph G = (V,E) and a positive integer k.

Question: Is there a Subset C ⊆ V with |C| ≥ k so that for every v1

and v2 ∈ C, (v1, v2) ∈ E unless v1 = v2?

Parameter : k

One might see very easily that these two problems are basically equivalent.

Proposition 1.2.3 Independent Set ≡pp Clique.

Proof Independent Set ≤pp Clique

Let (G, k) be the input of Independent Set and (G′, k) a transformation of that

input, so that G′ = (V,E ′) where E ′ = {(u, v) | u, v ∈ V and u 6= v and (u, v) 6∈
E}. As illustrated in Figure 1.2

This has a running time polynomial in |E| and the parameter k has not been

changed.

(x, k) ∈ Independent Set

⇔ There exists a Subset I ⊆ V with |I| ≥ k so that for every v1, v2 ∈ I,

(v1, v2) 6∈ E

⇔ for every v1 and v2 ∈ I, (v1, v2) ∈ E ′

⇔ (G′, k) ∈ Clique

Clique ≤pp Independent Set

Analogous. �

5

1.3 What is the point?

One might ask, what the point is of this new theory concept and rightfully so, as it

looks counter-intuitive to learn a complete new theoretic model. But [3] pointed

out some of the ‘major highlights’ of parametrized complexity theory. The main

goal of parametrized complexity is to address complexity issues where we know

that certain parameters will most likely be bounded. If we look at relational

databases one deals, most of the time, with huge databases and queries that are

asked by actual people and therefore small and of low logical complexity. If we

now have two algorithms A and B and we know that A has the better run-time in

the combined input size of size of database + size of query that does not have to

mean that we should select A, if B has a better run-time for a small query size and

thus we can choose to interpret it as a constant. In these situations parametrized

complexity will help us choose the right algorithm for our (‘real life’) problem.

Further consider two algorithms that have both the input (n, k). The first one

has a run-time in O(n109) and the second one in O(2k +n). In classical complexity

theory the first one would be polynomial which is considered efficient, and the

second one not. But it is easy to see that the first one is not very practical and

that the second one is (for small k) way better. So parametrized complexity can

help us in specific situations where we can have reasonable assumptions about

the input data.

We can conclude that parametrized complexity is very suited for algorithm de-

sign for applied computer science like databases, genetics or historical linguistics,

where the nature of the data is well understood.

6

Chapter 2

Reductions

“Although problems and catastrophes may be inevitable, solutions

are not.” (Isaac Asimov)

This chapter is the core of this work. All the reductions are categorized by the

change to the parameter(s), which is either no change at all, linear change or

polynomial change. A separate section covers reduction which happen to be

possible in both directions, making the core of the problem equivalent.

2.1 Reductions, polynomial but not parameter

preserving

At first we take a look at polynomial reductions1 of parametrized problems that

do not work with the parameter preserving reduction. This is to show, that

certain problems seem to be closely related at first, but if we add more constrains

we see that the core of the problem has a different hardness with respect to the

parameter k.

1These are the same as parameter preserving reduction, but allow a blow-up of the param-
eter dependent of the input

7

2.1.1 Independent Set ≤p Vertex Cover

Independent Set

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset I ⊆ V with |I| ≥ k so that for every v1

and v2 ∈ I, (v1, v2) 6∈ E?

Parameter : k

Vertex Cover

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset C ⊆ V , with |C| ≤ k so that for every

(v, u) ∈ I, v ∈ C or u ∈ C?

Parameter : k1, k2

The non parameter preserving reduction from Independent Set to Vertex

Cover is rather easy. If C forms a vertex cover in G then I = V − C has

to be an independent set, because if there where an edge with both vertices in

I, C would not be a vertex cover. To obtain a reduction we simply transform

(G, k) to (G, k′) where k′ = |V | − k. However this is not a parameter preserving

reduction because k′ is not polynomial in k but only in |V |. So even though

Independent Set and Vertex Cover seem to be very similar they in fact,

from the parametrized viewpoint, are not.

8

v1 v2

v3 v4

v1 v2

v3 v4

ve1

ve2

ve3

ve4 ve5

Figure 2.1: Illustration of Clique to Constraint Bipartite Vertex Cover

2.1.2 Clique ≤p Constraint Bipartite Vertex Cover

Clique

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset C ⊆ V with |C| ≥ k so that for every v1

and v2 ∈ C, (v1, v2) ∈ E unless v1 = v2?

Parameter : k

Constraint Bipartite Vertex Cover

Input : A bipartite graph G = (V1∪V2, E) and positive integers k1, k2.

Question: Is there a subset Cb ⊆ V1 ∪ V2, with |C ∩ V1| ≤ k1 and

|C ∩ V2| ≤ k2, so that for every (v, u) ∈ E, v ∈ C or u ∈ C?

Parameter : k

The idea, as developed by [6] is to make the graph bipartite by adding an inter-

cepting node to every edge so that the vertices can be grouped into two sets Vold

and Vnew (Figure 2.1). Then we proceed to set k1 = k and k2 = |Vnew| − k(k−1)
2

.

But since k2 scales in |Vnew| which in turn is the same as |E| of the original graph

it is not polynomial in the parameter k.

9

2.2 Parameter preserving reduction in both di-

rections

2.2.1 Short Non-deterministic Turing Machine Acceptance

≡pp Independent Set

Short Non-deterministic Turing Machine Acceptance

Input : A non-deterministic single tape Turing Machine M and a pos-

itive integer k.

Question: Does M accept the empty word within at most k-steps?

Parameter : k

Independent Set

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset I ⊆ V with |I| ≥ k so that for every v1

and v2 ∈ I, (v1, v2) 6∈ E?

Parameter : k

This reduction creates a bridge to Turing machines, similar to classical complexity

theory.

Proposition 2.2.1 ([3]) Short NTM Acceptance ≡pp Independent Set

Proof Omitted.

10

2.2.2 Monotone Weighted SAT ≡pp Hitting Set

Monotone Weighted SAT

Input :A Boolean expression ϕ in conjunctive normal form without

negated literals, and a positive integer k.

Question: Is there a truth assignment of weight1 k that satisfies ϕ?

Parameter : k

Hitting Set

Input : A set family F over a universe U and a positive integer k.

Question: Is there a subset H ⊆ U of size at most k so that for every

S ∈ F, H ∩ S 6= ∅?

Parameter : k

These problems are equivalent because both times we want to have a set of

elements (the variables we set to true) that hits (satisfies) every set (clause). So

(x1 ∨ x2 ∨ x3)∧ (x4 ∨ x3)∧ (x2 ∨ x5) becomes {{x1, x2, x3}, {x4, x3}, {x2, x5}} and

vice versa, with H = {x3, x5} being a satisfying (hitting) set.

Proposition 2.2.2 Monotone Weighted SAT ≤pp Hitting Set

Proof Let (ϕ, k) be the input of Monotone Weighted SAT where ϕ has m

clauses and where Ci is the set of variables that are contained in clause i. Let

F = {C1, . . . , Cm} and U = C1 ∪ · · · ∪ Cm. This is polynomial in |ϕ| and the

parameter k has not been changed. It is easy to see that every set H of positive

variables that satisfies ϕ is a hitting set of F. Therefore

(ϕ, k) ∈Monotone Weighted SAT ⇔ (F, U, k) ∈ Hitting Set �

Proposition 2.2.3 Hitting Set ≤pp Monotone Weighted SAT

Proof Analogous.

1The amount of positive variables

11

v1

v2 v3

v4

v5 v6

v1

v2 v3

v4

v5 v6

Figure 2.2: Illustration of Partition into Cliques to Colouring

2.2.3 Partition into Cliques ≡pp Colouring

Partition into Cliques

Input : A graph G = (V,E) and a positive integer k.

Question: Can V be partitioned into k many cliques, that is exists

V1, . . . , Vk, with V =
k⋃

i=1

Vi where Vi ∩ Vj = ∅ and Vi is clique for all

i 6= j?

Parameter : k

Colouring

Input : A graph G = (V,E) and a positive integer k.

Question: Can the vertices of G be coloured using k different colours,

so that no two vertices that are incident to each other have the same

colour?

Parameter : k

The idea is to invert the edges of the graph to make independent sets out of the

cliques, so we can assign each clique its own colour (See Figure 2.2).

Proposition 2.2.4 Partition into Cliques ≤pp Colouring

Proof Let (G, k) be the input of Partition into Cliques and (G′, k) a trans-

formation of that input, so that G′ = (V,E ′) where E ′ = {(u, v) | u, v ∈

12

V and u 6= v and (u, v) 6∈ E}, as illustrated in Figure 2.2.

This has a running time polynomial in |E| and the parameter k has not been

changed.

(G, k) ∈ Partition into Cliques

⇒ V can be split into k many cliques

⇒ G′ has k many independent sets

⇒ every node of an independent set can have the same colour

⇒ G′ can be coloured using k many colours

⇒ (G′, k) ∈ Colouring

(G′, k) ∈ Colouring

⇒ G′ can be coloured using k many colours

⇒ every set of vertices of the same colour forms an independent set

⇒ there are k many independent sets in G′

⇒ Every independent set in G′ is a clique in G

⇒ (G, k) ∈ Partition into Cliques �

Proposition 2.2.5 Colouring ≤pp Partition into Cliques

Proof Analogous.

13

A =

1 0 0 1
0 1 0 0
1 0 0 0
0 1 1 0

R1 R2 R3 R4

C1 C2 C3 C4

Figure 2.3: Illustration of Spare allocation to Constraint Bipartite Ver-
tex Cover

2.2.4 Spare Allocation ≡pp Constraint Bipartite Vertex

Cover

Spare Allocation

Input : A binary matrix An×m representing an erroneous chip, with

ai,j = 1 iff the chip is faulty on position (i,j), and positive integers k1

and k2.

Question: Is there a reconfiguration strategy, i.e. a description of

which rows and columns of A have to be replaced by spares, that

repairs all faults and uses at most k1 spare rows and at most k2 spare

columns?

Parameter : k1, k2

Constraint Bipartite Vertex Cover

Input : A bipartite graph G = (V1∪V2, E) and positive integers k1, k2.

Question: Is there a subset Cb ⊆ V1 ∪ V2, with |C ∩ V1| ≤ k1 and

|C ∩ V2| ≤ k2, so that for every (v, u) ∈ E, v ∈ C or u ∈ C?

Parameter : k1, k2

These two problems are equivalent if we model it as followed. The rows of A form

one set of vertices R and the columns the other set C, and then we create an

edge between two vertices if the corresponding index of A is 1 (See Figure 2.3).

Proposition 2.2.6 Spare Allocation ≤pp Constraint Bipartite Vertex

Cover

14

Proof We transform (A, k1, k2) to (G, k1, k2), where G = (V,E) is a bipartite

graph with R∪C = V , where R = {ri | i ∈ {1, . . . , n}}, C = {ci | i ∈ {1, . . . ,m}}
and E = {(ri, cj) | ai,j = 1}. The parameters k1 and k2 have not been changed

and the transformation is constant if we interpret A as the adjacent matrix of G.

(A, k1, k2) ∈ Spare Allocation

⇔ There is a description D of which rows and columns of A have to be replaced

by spares, that repairs all faults and uses at most k1 spare rows and at most k2

spare column

⇔ D is a vertex cover in G that uses at most k1 many vertices of R and at most

k2 many vertices of C

⇔ G = (V,E) ∈ Constraint Bipartite Vertex Cover �

Proposition 2.2.7 Constraint Bipartite Vertex Cover ≤pp Spare

Allocation

Proof Analogous.

15

R = {v1, . . . , v4} and B = {v5, . . . , v8}

v1 v2 v3 v4

v5 v6 v7 v8

Figure 2.4: Illustration of Red-Blue Dominating Set to Set Cover.

2.2.5 Red-Blue Dominating Set ≡pp Set Cover

Red-Blue Dominating Set

Input : A bipartite graph G = (R ∪B,E) and a positive integer k.

Question: Is there a subset D ⊆ B, with |D| ≤ k, so that for every

v ∈ R, we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

Set Cover

Input : A set family F over a universe U and a positive integer k.

Question: Is there a sub-family F′ ⊆ F of size at most k, so that⋃
Si∈F′

Si = U?

Parameter : k

This reduction was proposed in [9] and the idea is to create an element for every

node of R in the universe U and then creating F so that it contains Sets for every

node of B containing al the adjacent nodes of R. So the graph in Figure 2.4

becomes: U = {e1, . . . , e4}, F = {{e1, e2}, {e2}, {e2, e3}, {e4}}.

Proposition 2.2.8 Red-Blue Dominating Set ≤pp Set Cover

16

Proof Let (G, k) be the input of Red-Blue Dominating Set with G = (R ∪
B,E). We transform this into (U,F, k) with U = {ei | vi ∈ R} and F = {{ei |
(vi, uj) ∈ E, vi ∈ R} | uj ∈ B}. This is polynomial in |G| and the parameter k

has not been changed.

(U,F, k) ∈ Set Cover

⇔ There is a sub-family F′ that covers U

⇔ The set of nodes corresponding to every set of F′ dominate R

⇔ (G, k) ∈ Red-Blue Dominating Set �

Proposition 2.2.9 Set Cover ≤pp Red-Blue Dominating Set

Proof Analogous.

17

2.2.6 Red-Blue Dominating Set ≡pp Hitting Set

Red-Blue Dominating Set

Input : A bipartite graph G = (R ∪B,E) and a positive integer k.

Question: Is there a subset D ⊆ B, with |D| ≤ k, so that for every

v ∈ R, we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

Hitting Set

Input : A set family F over a universe U and a positive integer k.

Question: Is there a subset H ⊆ U of size at most k so that for every

S ∈ F, H ∩ S 6= ∅?

Parameter : k

The idea is that the nodes of B will become our universe and for every vertex vi

of R we create a set Si consisting of all adjacent vertices to vi. Thus a hitting set

is a subset of B that dominates R.

Proposition 2.2.10 Red-Blue Dominating Set ≤pp Hitting Set

Proof Let (G, k) with G = (R∪B,E) be the input of Red-Blue Dominating

Set. We transform this into (F, U, k) with U = B and F = {S1, . . . , S|R|} where

Si = {vj | (vi, vj) ∈ E}. This is polynomial in |G| and the parameter k has not

been changed.

(G, k) ∈ Red-Blue Dominating Set

⇔ There is a set D ⊆ B of size at most k that dominates R

⇔ every vertex of R is adjacent to a vertex of D

⇔ D ⊆ U hits every set of F

⇔ (F, U, k) ∈ Hitting Set �

Proposition 2.2.11 Hitting Set ≤pp Red-Blue Dominating Set

Proof Analogous.

18

2.2.7 Vertex Cover ≡pp 2-Hitting Set

Vertex Cover

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset C ⊆ V , with |C| ≤ k, so that for every

(v, u) ∈ E, v ∈ C or u ∈ C?

Parameter : k

2-Hitting Set

Input : A set family F over a universe U where for every S ∈ F, |S| = 2

and a positive integer k.

Question: Is there a subset H ⊆ U of size at most k so that for every

S ∈ F, H ∩ S 6= ∅?

Parameter : k

It is easy to see that these two problems are equivalent if we set V = U and

E = F.

Proposition 2.2.12 Vertex Cover ≡pp 2-Hitting Set

Proof Omitted.

19

2.3 Parameter preserving reduction without pa-

rameter change

2.3.1 Monotone Weighted SAT ≤pp Weighted SAT

Monotone Weighted SAT

Input : A Boolean expression ϕ in conjunctive normal form without

negated literals, and a positive integer k.

Question: Is there a truth assignment of weight1 k that satisfies ϕ?

Parameter : k

Weighted SAT

Input : A Boolean expression ϕ in conjunctive normal and a positive

integer k.

Question: Is there a truth assignment of weight k that satisfies ϕ?

Parameter : k

This reduction is trivial because every monotone Boolean expression in conjunc-

tive normal form is already a Boolean expression in conjunctive normal form.

Proposition 2.3.1 Monotone Weighted SAT ≤pp Weighted SAT

Proof Omitted.

1The amount of positive variables

20

v1 v2

v3 v4

v1 v2

v3 v4

ve1

ve2

ve3

ve4

Figure 2.5: Illustration of Vertex Cover to Dominating Set

2.3.2 Vertex Cover ≤pp Dominating Set

Vertex Cover

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset C ⊆ V , with |C| ≤ k, so that for every

(v, u) ∈ E, v ∈ C or u ∈ C?

Parameter : k

Dominating Set

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset D ⊆ V , with |D| ≤ k, so that for every

v ∈ V , we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

The idea is to create edge vertices for every edge that are connected to the vertices

of that edge (Figure 2.5). That way we enforce that a dominating set has to be

a vertex cover. In turn a vertex cover is already a dominating set.

Proposition 2.3.2 Vertex Cover ≤pp Dominating Set

21

Proof Let (G, k) be the input for Vertex Cover. We transform that input to

(G′, k) where G′ = (V ′, E ′) with V ′ = V − {v | v ∈ V , and v is isolated} ∪ Vnew

where Vnew = {vei | ei ∈ E} and E ′ = E ∪ Enew where Enew = {(vei , v), (vei , u) |
ei = (v, u) ∈ E}. We remove the isolated vertices, so that the dominating set in

G′ coincides with the vertex cover. The parameter k has not been changed and

the transformation can be done in time polynomial in |E|.

(G, k) ∈ Vertex Cover

⇒ G has a vertex cover C of size at most k

⇒ G′ has a dominating set D with D = C of size at most k, because for every

ei = (u, v) ∈ E either v or u are in C and vei is adjacent to v and to u and v and

u are adjacent to each other.

⇒ (G′, k) ∈ Dominating Set

(G′, k) ∈ Dominating Set

⇒ G′ has a dominating Set D with D ⊆ V 1

⇒ for every vei one of its two neighbours is in D and this node covers the edge ei

⇒ G has a vertex cover C with C = D of size at most k

⇒ (G, k) ∈ Vertex Cover �

1If vei is picked we can replace it by one of its neighbours without changing the size

22

T = {x, e1, . . . , e5}

v1 v2

v3v4

v1 v2

v3v4

e1

e2

e3

e4 e5

x

Figure 2.6: Illustration of Vertex Cover to Steiner Tree

2.3.3 Vertex Cover ≤pp Steiner Tree

Vertex Cover

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset C ⊆ V , with |C| ≤ k, so that for every

(v, u) ∈ E, v ∈ C or u ∈ C?

Parameter : k

Steiner Tree

Input : A graph G = (V,E) a set T ⊆ V and a positive integer k.

Question: Is there a subset S ⊆ V − T , with |S| ≤ k, so that the

subgraph induced by T ∪ S is connected?

Parameter : k

The idea for this reduction is to create new vertices, one for each edge and one

extra vertex that is connected to every vertex of V . This last vertex will enforce

the connectivity of the Steiner tree. These new vertices will be the terminals

23

of the new graph. The Steiner points are then the vertex cover of the original

graph. This reduction can be considered folklore and happens to be parameter-

preserving.

Proposition 2.3.3 Vertex Cover ≤pp Steiner Tree

Proof Let (G, k) with G = (V,E) be the input of Vertex Cover. We trans-

form this into G′ = (V ′, E ′) where V ′ = V ∪ Ve ∪ {x} with Ve = {ve | e ∈ E}
and E ′ = {(v, ve), (ve, u) | e = (v, u) ∈ E} ∪ {(x, v) | v ∈ V }. Finally we set

T = Ve ∪ {x}. This is polynomial in |G| and the parameter k has not been

changed.

(G, k) ∈ Vertex Cover

⇒ There is a vertex cover C ⊆ V of size at most k

⇒ every vertex of Ve is adjacent to a node of C

⇒ every vertex of Ve ∪ {x} is connected to a vertex of C

⇒ For S = C T ∪ S induces a connected subgraph

⇒ (G, T, k) ∈ Steiner Tree

(G, T, k) ∈ Steiner Tree

⇒ There exists a subset S ⊆ V ′ − T of size at most k so that T ∪ S induces a

connected subgraph

⇒ Every vertex of Ve is connected to a node of S (since no two vertices of Ve are

connected)

⇒ C = S is a vertex cover in G

⇒ (G, k) ∈ Vertex Cover �

24

2.3.4 Dominating Set ≤pp Hitting Set

Dominating Set

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset D ⊆ V , with |D| ≤ k, so that for every

v ∈ V , we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

Hitting Set

Input : A set family F over a universe U and a positive integer k.

Question: Is there a subset H ⊆ U of size at most k so that for every

S ∈ F, H ∩ S 6= ∅?

Parameter : k

This reduction is straightforward, because one can easily see the similarity.

Proposition 2.3.4 Dominating Set ≤pp Hitting Set

Proof Let (G, k) with G = (V,E) be the input for Dominating Set, we trans-

form this into (F, U, k) with U = V and F = S1, . . . , S|V | where Si = {vi} ∪ {vj |
(vi, vj) ∈ E}. This is polynomial in |G| and the parameter k has not been

changed.

(G, k) ∈ Dominating Set

⇒ There is a dominating subset D ⊆ V of size at most k

⇒ for every vertex v either v is in D or one of its neighbours

⇒ D ⊆ U hits every set of F

⇒ (F, U, k) ∈ Hitting Set

(F, U, k) ∈ Hitting Set

⇒ There is a subset H ⊆ U that hits every set of F

⇒ Since every set Si contains the vertex vi and his closed neighbourhood, either

v ∈ H or v has a neighbour u ∈ H

⇒ H dominates V

⇒ (G, k) ∈ Dominating Set �

25

v1

v2

v3

v4

v5

Figure 2.7: The graph G, that will be transformed to ϕ

2.3.5 Dominating Set ≤pp Monotone Weighted SAT

Dominating Set

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset D ⊆ V , with |D| ≤ k, so that for every

v ∈ V , we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

Monotone Weighted SAT

Input : A Boolean expression ϕ in conjunctive normal form without

negated literals, and a positive integer k.

Question: Is there a truth assignment of weight1 k that satisfies ϕ?

Parameter : k

To reduce Dominating Set to Monotone Weighted SAT, we have to trans-

form a graph to a formula. Each vertex becomes a variable and the set of variables

set to true, should form a dominating set. To achieve this we form a clause for

each vertex that contains itself and its closed neighbourhood. Thus the graph in

Figure 2.7 becomes:

ϕ = (x1∨x2∨x3)∧(x2∨x1∨x3∨x5)∧(x3∨x1∨x2∨x4)∧(x4∨x3∨x5)∧(x5∨x4∨x2).

1The amount of positive variables

26

Proposition 2.3.5 Dominating Set ≤pp Monotone Weighted SAT

Proof Let (G, k) with G = (V,E) be the input for Dominating Set, then let

ϕ be a Boolean expression in conjunctive normal form with variables x1, . . . , xi

and clauses C1, . . . , Ci for i = |V | and

Cm = {xm → (xl0 ∨ · · · ∨ xlr) | 1 ≤ l0 < · · · < lr ≤
|V | and (vm, vl0), . . . , (vm, vlr) ∈ E} for m ∈ {1, . . . , |V |}

(xm → (xl0 ∨ · · · ∨xlr)) expresses, if xm is not in the dominating set (set to true),

then one of its neighbours must be. This can be converted to (xm∨xl0 ∨· · ·∨xlr)

using standard Boolean transformation. This transformation is polynomial in V

and E and the parameter k has not been changed

(G, k) ∈ Dominating Set

⇒ G has a dominating set D of size k

⇒ if we set exactly these xi to true with vi ∈ D each clause is satisfied, because

either the vertex itself or at least one of its neighbours are in D

⇒ (ϕ, k) ∈Monotone Weighted SAT

(ϕ, k) ∈Monotone Weighted SAT

⇒ there exist A = {xi1 , . . . , xik} that are set to true

⇒ D = {vi | xi ∈ A} is a dominating set, because through C1, . . . , C|V | every

vertex itself or at least on of its neighbours is in D

⇒ (G, k) ∈ Dominating Set �

27

2.3.6 Dominating Set ≤pp Center

Dominating Set

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset D ⊆ V , with |D| ≤ k, so that for every

v ∈ V , we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

Center

Input : A graph G = (V,E) a radius r ∈ Q+ a cost function c: E →
Q+ and a positive integer k.

Question: Is there a Z ⊆ V with |Z| ≤ k and rad(Z) ≤ r where

rad(Z) = maxv∈V dist(v, Z) with dist(v, Z) = minz∈Z dist(v, z)1?

Parameter : k

In the Center problem we are looking for a set of vertices Z so that every vertex

of V has a distance of at most r from the nearest vertex of Z. The Dominating

Set problem can be interpreted as a special case of Center with r = 1 and

c(e) = 1 for all e.

Proposition 2.3.6 Dominating Set ≤pp Center

Proof Let (G, k) with G = (V,E) be the input of Dominating Set. Let

c(e) = 1 for all e ∈ E and r = 1. The parameter k has not been changed.

(G, k) ∈ Dominating Set

⇔ there is a set D ⊆ V of size at most k that dominates V

⇔ Z = D is a center with radius at most 1

⇔ (G, r, c, k) ∈ Center �

1dist(v, u) is the length of the shortest path between v and u regarding the cost function c

28

T = {v1, . . . , v4} and N = {v5, . . . , v8}

v1 v2 v3 v4

v5 v6 v7 v8

v1 v2 v3 v4

v5 v6 v7 v8

z1 z2 z3

Figure 2.8: Illustration of coloured Red-Blue Dominating Set to Red-
Blue Dominating Set.

2.3.7 Coloured Red-Blue Dominating set ≤pp Red-Blue

Dominating Set

Coloured Red-Blue Dominating Set

Input : A bipartite graph G = (T∪N,E, col) with col : N → {1, . . . , k}
and a positive integer k.

Question: Is there a subset D ⊆ N , with |D| ≤ k and D contains

exactly one vertex of each colour, so that for every v ∈ T , we have

v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

Red-Blue Dominating Set

Input : A bipartite graph G = (T ∪N,E) and a positive integer k.

Question: Is there a subset D ⊆ N , with |D| ≤ k, so that for every

v ∈ T , we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

This reduction was proposed in [9] and the idea is to replace every colour by a

new node that is added to the set T . The new vertices are then connected to the

vertices that were assigned the colour which is represented by this new node (see

Figure 2.8).

29

Proposition 2.3.7 col RB Dominating Set ≤pp RB Dominating Set

Proof Let (G, col, k) with G = (T ∪ N,E) and col : N → {1, . . . , k} be the

input of coloured Red-Blue Dominating Set. We transform this into G′ =

(T ′∪N,E ′), where T ′ = T∪{z1, . . . , zk} and E ′ = {(za, v) | a ∈ {1, . . . , k} and v ∈
N and col(v) = a}. This is polynomial in |G| and k, and the parameter k has

not been changed.

(G, col, k) ∈ coloured Red-Blue Dominating Set

⇒ G has a set D ⊆ N with |D| ≤ k that dominates T and consists of exactly

one node of each colour

⇒ D dominates all vertices of T ′ since every zi has a neighbour in D, which is

that of the corresponding colour

⇒ (G′, k) ∈ Red-Blue Dominating Set

(G′, k) ∈ Red-Blue Dominating Set

⇒ G′ has a set D ⊆ N with |D| ≤ k that dominates T ′

⇒ No za has more then one neighbour in D, because then there would be a zx

without a neighbour in D since no vertex in N has more then one edge to one of

the new vertices

⇒ D dominates T and has exactly one node of each colour

⇒ (G, col, k) ∈ Red-Blue Dominating Set �

30

R = {v1, . . . , v4} and B = {v5, . . . , v8}

v1 v2 v3 v4

v5 v6 v7 v8

v1 v2 v3 v4

v5 v6 v7 v8

vnew

Figure 2.9: Illustration of Red-Blue Dominating Set to Steiner Tree.

2.3.8 Red-Blue Dominating set ≤pp Steiner Tree

Red-Blue Dominating Set

Input : A bipartite graph G = (R ∪B,E) and a positive integer k.

Question: Is there a subset D ⊆ B, with |D| ≤ k, so that for every

v ∈ R, we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

Steiner Tree

Input : A graph G = (V,E) a set T ⊆ V and a positive integer k.

Question: Is there a subset S ⊆ V − T , with |S| ≤ k, so that the

subgraph induced by T ∪ S is connected?

Parameter : k

This reduction was proposed in [9] and the idea is to create a new vertex that is

connected to all vertices of B so that every solution of Red-Blue Dominating

Set creates a connected subgraph (see Figure 2.9). Since we want to dominate

R, these vertices will become the terminals of the new graph.

Proposition 2.3.8 Red-Blue Dominating Set ≤pp Steiner Tree

31

Proof Let (G, k) with G = (R∪B,E) be the input of Red-Blue Dominating

Set. We transform this into G′ = (V ′, E ′) where V ′ = R ∪ B ∪ {vnew} and

E ′ = E ∪ {(vnew, vi) | vi ∈ B} and we set T = R. This is polynomial in |G| and

the parameter k has not been changed.

(G, k) ∈ Red-Blue Dominating Set

⇒ G has a set D ⊆ B with |D| ≤ k that dominates R

⇒ every node in D is connected to vnew, S = D ∪ {vnew} ⊆ V ′ − T and every

node of S is connected with at least one node of T

⇒ The subgraph induced by S ∪ T is connected

⇒ (G′, S, k) ∈ Steiner Tree

(G′, S, k) ∈ Steiner Tree

⇒ There is a set S ⊆ V − T so that the subgraph induced by T ∪ S is connected

⇒ since the nodes of R are not connected, every node of R has to have at least

one neighbour in S

⇒ D = S − {vnew} dominates R

⇒ (G, k) ∈ Red-Blue Dominating Set �

32

2.3.9 Coloured Small Universe Hitting Set ≤pp Small Uni-

verse Hitting Set

Coloured Small Universe Hitting Set

Input : A set family F over a universe U with |U | = d, a colour function

col : U → {1, . . . , k} and a positive integer k.

Question: Is there a subset H ⊆ U of size at most k such that for

every set S ∈ F, H ∩ S 6= ∅ and H contains at least one element of

each colour?

Parameter : k, d

Small Universe Hitting Set

Input : A set family F over a universe U with |U | = d and a positive

integer k.

Question: Is there a subset H ⊆ U of size at most k such that for

every set S ∈ F, H ∩ S 6= ∅?

Parameter : k, d

This reduction was proposed in [9] and what we want to do is, create sets for

each colour that contain the elements of this colour.

Proposition 2.3.9 Col Small Universe HS ≤pp Small Universe HS

Proof Let (F, U, col, d, k) be the input of Coloured Small Universe Hit-

ting Set we then construct (F′, U, d, k). Let Ui = {ej | col(ej) = i, ei ∈ U} be

the set of elements of colour i. Then F′ = F
⋃

i∈{1,...,k} Ui. This is polynomial in

k and d and the parameters k and d have not been changed.

(F, U, col, d, k) ∈ Coloured Small Universe Hitting Set

⇔ There is a subset H ⊆ U that contains at least one element of each colour,

that hits every set of F

⇔ H hits every set of F′

⇔ (F′, U, col, d, k) ∈ Small Universe Hitting Set �

33

w = 123235443513

F1 = 12323544351, F2 = 232, F3 = 3513, F4 = 44, F5 = 54435

w does not have the Disjoint Factors property, because F1 overlaps with all
other factors and F5 overlaps with F3 and F4.

Figure 2.10: An example of the Disjoint Factors property not satisfied

2.3.10 Disjoint Factors ≤pp Vertex Disjoint Cycles

Disjoint Factors

Input : A word w ∈ L∗k where Lk = {1, . . . , k} and a positive integer

k.

Question: Does w have the Disjoint Factors property?

Parameter : k

Vertex Disjoint Cycles

Input : A graph G = (V,A) and a positive inter k.

Question: Does G contain at least k vertex-disjoint cycles?

Parameter : k

The Disjoint Factor property is defined as followed: Fj is a factor of a word w

iff w consists of a sub-string > 1 that starts and ends with the letter j. If we

can find non overlapping (that is disjoint) factors F1, . . . , Fk of w then w has the

Disjoint Factor property (see Figure 2.10 for a counter example). This reduction

was proposed in [10] and the idea is to create a node for every letter in w that

is adjacent to every preceding and following letter and a node for every letter of

the alphabet Lk that is adjacent to every letter of the word that is the same. In

Figure 2.11 you can see how the graph is created and the colours of the vertices

represent the circles which correspond to the disjoint factors.

Proposition 2.3.10 Disjoint Factors ≤pp Vertex Disjoint Cycles

34

w = 12313414334242

v1

1

v2

2

v3

3

v4

1

v5

3

v6

4

v7

1

v8

4

v9

3

v10

3

v11

4

v12

2

v13

4

v14

2

x1 x2 x3 x4

Figure 2.11: Illustration of Disjoint Factors to Vertex Disjoint Cycles.

Proof Let (w, k) be the input of Disjoint Factors with w = w1 . . . wn over

L∗k. We transform this into (G, k) where G = (V,E) with V = {wi | wi ∈ w}∪{li |
li ∈ Lk} and E = {(wi, wi+1) | i ∈ {1, . . . , n − 1}} ∪ {(wi, lj) | wi = j}. This is

polynomial in n + k and the parameter has not been changed.

(w, k) ∈ Disjoint Factors

⇒ there exist disjoint factors F1, . . . , Fk

⇒ For each letter j ∈ Lk there is a cycle consisting of xj and the vertices corre-

sponding to the letters of Fj

⇒ there are k vertex disjoint cycles in G

⇒ (G, k) ∈ Vertex Disjoint Cycles

(G, k) ∈ Vertex Disjoint Cycles

⇒ G has disjoint cycles c1, . . . , ck

⇒ Since the vertices vi form a path, every cycle cj must consist of a vertex xj

⇒ The vertices adjacent to xj are the same letter in w and since a cycle has a

length of at least three the sub-path Fj without xj in cycle cj corresponds to a

disjoint factor of w

⇒ w has the Disjunct Factors property

⇒ (w, k) ∈ Disjoint Factors �

35

v1

v2

v3

v4 v1

v2

v3

v4v′1

v′2

v′3

v′4

Figure 2.12: Illustration of Independent Set to Induced Matching

2.3.11 Independent Set ≤pp Induced Matching

Independent Set

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset I ⊆ V with |I| ≥ k so that for every v1

and v2 ∈ I, (v1, v2) 6∈ E?

Parameter : k

Induced Matching

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset M ⊆ E, with |M | ≥ k so that no vertex

is incident to more than one vertex regarding M and between the

matched vertices there is no path of length more than one in G?

Parameter : k

The idea of this reduction is to create a new set of vertices that has a new vertex

v′ for every vertex v ∈ V that is only adjacent to this vertex. The independent

set of G is then an induced matching in G′ (Figure 2.12).

36

Proposition 2.3.11 Independent Set ≤pp Induced Matching

Proof Let (G, k) be the input of Independent Set with G = (V,E). We

transform this into (G′, k) with G′ = (V ′, E ′) where V ′ = V ∪ Vnew with Vnew =

{v′ | v ∈ V } and E ′ = E∪Enew with Enew = {(v, v′) | v ∈ V }. This is polynomial

in |G| and the parameter k has not been changed.

(G, k) ∈ Independent Set

⇒ G has an independent set I ⊆ V of size at least k

⇒ M = {(v, v′) | I} is an induced matching because the vertices of I are not

connected in G and G′

⇒ (G′, k) ∈ Induced Matching

(G′, k) ∈ Induced Matching

⇒ G′ has an induced matching M of size at least k

⇒ if (v, u) ∈ M then v′ and u′ are not matched, otherwise it would not been

induced, so we can replace (v, u) with (v, v′) for all vertices in M

⇒ let X be the vertices matched by M , since |M | ≥ k, |X| ≥ 2k and for

I = X − Vnew, we have |I| ≥ k and I is an independent set

⇒ (G, k) ∈ Independent Set �

37

v1

v2

v3

v4 v1

v2

v3

v4

c1 c2 c2

Figure 2.13: Illustration of Colouring to Partition Into Forests

2.3.12 Colouring ≤pp Partition Into Forests

Colouring

Input : A graph G = (V,E) and a positive integer k.

Question: Can the vertices of G be coloured using k different colours,

so that no two vertices that are incident to each other have the same

colour?

Parameter : k

Partition Into Forests

Input : A graph G = (V,A) and a positive inter k.

Question: Can V be partitioned into k sets V1, . . . , Vk so that the

subgraph induced by each Vi is a forest1?

Parameter : k

The idea of this reduction is to create new vertices for every colour, and the set

of vertices Vi of colour i is connected to the colour vertex ci. This set then forms

a tree and therefore a forest (see Figure 2.13). So the colouring V1, V2, V3 with

1That is a set of trees

38

v1

v2

v3

v4

c1 c2 c2

Figure 2.14: The corresponding solution of Partition Into Forests

V1 = {v1, v4}, V2 = {v2} and V3 = {v3} becomes the forest shown in Figure 2.14.

The standard reduction which is well known, happens to be parameter preserving.

Proposition 2.3.12 Colouring ≤pp Partition Into Forests

Proof Let (G, k) with G = (V,E) be the input of Colouring. We transform

this into (G′, k) with G′ = (V ′, E ′) where V ′ = V ∪ C with C = {c1, . . . , ck} and

E ′ = E ∪ {(ci, v) | v ∈ V, i ∈ {1, . . . , k}} ∪ {(ci, cj) | i 6= j ∈ {1, . . . , k}}. This is

polynomial in |G| and the parameter k has not been changed.

(G, k) ∈ Colouring ⇒ G can be coloured using k colours

⇒ There are k sets V1, . . . , Vk where Vi is the set of vertices of colour i

⇒ V ′i = Vi ∪ {ci} induces a tree in G′ since Vi is an independent set

⇒ G′ can be partitioned into k forests

⇒ (G′, k) ∈ Partition Into Forests

(G′, k) ∈ Partition Into Forests

⇒ G′ can be partitioned into k sets V1, . . . , Vk so that every Vi induces a forest

Now we have to do a case analysis to show that we have a correct colouring:

39

Case 1: ∃i with |Vi ∩ C| > 2

This cannot be since three nodes of C form a circle.

Case 2: ∀i: |Vi ∩ C| = 1

If every Vi has exactly one vertex ci of C then V ′i = Vi − {ci} for all i is a

colouring for G ⇒ (G, k) ∈ Colouring

Case 3: ∃i with |Vi ∩ C| = 0

Since every vertex of C has to be in one of the sets |Vi ∩C| = 0 implies the

existence of a set Vj = {ca, cb} with |Vj ∩ C| = 2

⇒ Vj ⊆ C because a vertex v ∈ V would create a circle with two vertices

of C

⇒ Since Vi induces a forest in G′ we can find a 2-colouring A ∪B = Vi

⇒ we can swap Vi and Vj with V ′i = A ∪ {ca} and Vj = B ∪ {cb} without

hurting the partition into forest property because A and B have to be

independent sets

⇒ since we can do this for every pair Vi, Vj we can create Case 2

⇒ (G, k) ∈ Colouring �

40

2.3.13 Colourful Graph Motif ≤pp Group Steiner Tree

Colourful Graph Motif

Input : A graph G = (V,E) a colour function col : V → {1, . . . , k}
and a positive integer k.

Question: Is there a connected subset S ⊆ V , with |S| ≤ k, so that

col|S is bijective, that is S contains exactly one vertex of each colour?

Parameter : k

Group Steiner Tree

Input : A graph G = (V,E), disjoint sets T1, . . . , Tk ⊆ V and a positive

integer p.

Question: Is there a subset S ⊆ V , so that G[S] is connected, |S| = p

and S ∩ Ti 6= ∅ for all i ∈ {1, . . . , k}?

Parameter : k

This reduction was proposed in [12] and the idea is to set the Ti to all vertices of

colour i. That way the questions become equivalent. But since it is not necessary

that T1 ∪ · · · ∪ Tk = V , we can not assume that Group Steiner Tree ≤pp

Colourful Graph Motif.

Proposition 2.3.13 Colourful Graph Motif ≤pp Group Steiner Tree

Proof Let (G, k, col) be the input of Graph Motif with G = (V,E). We

transform this into (G, p, T1, . . . , Tk, k) where p = k and Ti = col−1(i). This is

polynomial in the input length and the parameter k has not been changed.

We can now see, that Steiner Tree asks whether there is a connected set S

of size p = k so that S hits at every Ti. But because of |S| = k, S can only

contain exactly one vertex of each Ti. So we ask if there is a connected set S that

contains exactly one vertex of each colour. �

Proposition 2.3.14 ([12]) This reduction is d-degeneracy preserving1.

1A graph G is d-degenerate iff in every subgraph of G there is a vertex with degree of at
most d

41

T = {t1, t2, t3}

v1 v2

v3 v4

v1 v2

v3 v4

t1

t2

t3

Figure 2.15: Illustration of Colourful Graph Motif to Connected Dom-
inating Set

2.3.14 Colourful Graph Motif ≤pp Steiner Tree

Colourful Graph Motif

Input : A graph G = (V,E) a colour function col : V → {1, . . . , k}
and a positive integer k.

Question: Is there a connected subset S ⊆ V , with |S| ≤ k, so that

col|S is bijective, that is S contains exactly one vertex of each colour?

Parameter : k

Steiner Tree

Input : A graph G = (V,E), a set T ⊆ V and a positive integer k.

Question: Is there a subset S ⊆ V − T , with |S| ≤ k, so that the

subgraph induced by T ∪ S is connected?

Parameter : k

42

This reduction was proposed in [12] and the idea is to create terminals for each

colour and connect them to the vertices of this colour. A solution for Steiner

Tree is then the same as a solution for Colourful Graph Motif (see Figure

2.15).

Proposition 2.3.15 Colourful Graph Motif ≤pp Steiner Tree

Proof Let (G, col, k) with G = (V,E) be the input of Colourful Graph

Motif. We transform this into (G′, T, k) with G′ = (V ′, E ′) where V ′ = V ∪ T

with T = {ti | i ∈ {1, . . . , k}} and E ′ = E ∪ {(v, ti) | v ∈ col−1(i)}. This is

polynomial in the input length and the parameter k has not been changed.

(G, col, k) ∈ Colourful Graph Motif

⇒ There is a valid graph motif S of size at most k

⇒ S is connected and contains exactly one vertex of each colour

⇒ G′[S ∪ T] is connected

⇒ (G′, T, k) ∈ Steiner Tree

(G′, T, k) ∈ Steiner Tree

⇒ There is a valid solution S for Steiner tree in G′ of size at most k

⇒ Since G′[S∪T] is connected, S has to contain exactly one vertex of each colour,

otherwise the corresponding terminal could not been connected

⇒ Since all the terminals are leaves, S has to be connected regardless of T

⇒ S is a valid solution for graph motif

⇒ (G, col, k) ∈ Colourful Graph Motif �

Proposition 2.3.16 This reduction is d-degeneracy preserving, because if G is d-

degenerate then G′ is (d+1)-degenerate since the terminals T form an independent

set and we have only added one edge to each non-terminal.

43

2.4 Parameter preserving reduction with linear

parameter change

2.4.1 Weighted SAT ≤pp Dominating Set

Weighted SAT

Input : A Boolean expression ϕ in conjunctive normal form, and a

positive integer k.

Question: Is there a truth assignment of weight1 k that satisfies ϕ?

Parameter : k

Dominating Set

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset D ⊆ V , with |D| ≤ k, so that for every

v ∈ V , we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k

This reduction was proposed in [4] and what we want to do is, take the k variables

that are true and convert them to a dominating set D of size 2k. This dominating

set will contain the k vertices that tell what variables we set to true and the k

vertices that tell what intervals (considering mod n) of variables are false.

a[3, 4] ∈ D means the third variable chosen to be set to true is x4. The edges of E4

add the constraint that every vertex of D in the set B(3) has to belong to B(3, 4).

The index of the vertex of D in the subset B(3, 4) represents the difference (mod

n) between the indices of the third and fourth choices of a variable to receive the

value true, and thus the vertex represents a range of variables to receive the value

false. The edges of E5 and E9 enforce that the index t of the vertex of D in the

subset B(3, 4) represents the distance to the next variable to be set true, as it is

represented by the unique vertex of D in the set A(4).

1The amount of positive variables

44

Proposition 2.4.1 Weighted SAT ≤pp Dominating Set

Proof Let ϕ be a Boolean expression in conjunctive normal form consisting of

m clauses C1, . . . , Cm over the set of n variables x0, . . . , xn−1. We transform the

input (ϕ, k) of Weighted SAT to a graph G = (V,E) and a parameter k′ = 2k,

where V = V1 ∪ · · · ∪ V6 and E = E1 ∪ · · · ∪ E9 with:

• V1 = {a[r, s] | 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n− 1}

• V2 = {b[r, s, t] | 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n− 1, 1 ≤ t ≤ n− k + 1}

• V3 = {c[j] | 1 ≤ m}

• V4 = {a′[r, u] | 0 ≤ r ≤ k − 1, 1 ≤ u ≤ 2k + 1}

• V5 = {b′[r, u] | 0 ≤ r ≤ k − 1, 1 ≤ u ≤ 2k + 1}

• V6 = {d[r, s] | 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n− 1}

And with (implicitly quantified over all possible indices):

• E1 = {(c[j], a[r, s]) | xs ∈ Cj}

• E2 = {(a[r, s], a[r, s′]) | s 6= s′}

• E3 = {(b[r, s, t], b[r, s, t′]) | t 6= t′}

• E4 = {(a[r, s], b[r, s′, t]) | s 6= s′}

• E5 = {(b[r, s, t], d[r, s]) | s′ 6= s + t mod n}

• E6 = {(a[r, s], a′[r, u])}

• E7 = {(b[r, s, t], b′[r, u])}

• E8 = {(c[j], b[r, s, t]) | ∃i with xi ∈ Cj, s < i < s + t}

• E9 = {(d[r, s], a[r′, s]) | r′ = r + 1 mod n}

Additionally consider these subsets of the vertices:

• Ar = {a[r, s] | 0 ≤ s ≤ n− 1}

45

• Br = {b[r, s, t] | 0 ≤ s ≤ n− 1, 1 ≤ t ≤ n− k + 1}

• Br,s = {b[r, s, t] | 1 ≤ t ≤ n− k + 1}

We show that if (ϕ, k) ∈Weighted SAT then (G, k′) ∈ Dominating Set.

Let T be a truth assignment that satisfies ϕ and sets k variables to true, and

these are xi0 , . . . , xik−1
, with i0 < i2 < · · · < ik−1. Let dr = ir+1 mod k− ir mod n

for r ∈ {0, . . . , k − 1}. Then D = A ∪B with

A = {a[r, ir] | r ∈ {0, . . . , k − 1}} and B = {b[r, ir, dr] | r ∈ {0, . . . , k − 1}}

is a dominating set in G consisting of k′ = 2k vertices, because A dominates the

sets V1, V4, V3 and B the sets V2, V5, V6.

Now we show that if (G, k′) ∈ Dominating Set then (ϕ, k) ∈Weighted SAT.

Let D be a dominating set in G with size k′ = 2k. Since the closed neighbourhoods

of a′[0, 1], . . . , a′[k− 1, 1], b′[0, 1], . . . , b′[k− 1, 1] are disjointed D has to consist of

vertices in each of the closed neighbourhoods. Furthermore D does not consist

of vertices of V4 ∪ V5, because then 2k vertices would not suffice for none of the

vertices of V4 ∪ V5 are incident to each other and this set contains more then 2k

vertices. We conclude that D consists of exactly one vertex from each A(r) and

B(r) for r ∈ {0, . . . , k − 1}.
The edges of E4, E5 and E9 enforce that the 2k vertices in D must represent such

a choice consistently. The edges E1 and E8 insure that the truth assignment

represented by D satisfies ϕ. �

46

R = {v1, . . . , v4} and B = {v5, . . . , v8}

v1 v2 v3 v4

v5 v6 v7 v8

v1 v2 v3 v4

v5 v6 v7 v8

vnew

n1 n2 n3 n4 n5

Figure 2.16: Illustration of Red-Blue Dominating Set to Connected Ver-
tex Cover.

2.4.2 Red-Blue Dominating Set ≤pp Connected Vertex Cover

Red-Blue Dominating Set

Input : A bipartite graph G = (R ∪B,E) and a positive integer k.

Question: Is there a subset D ⊆ B, with |D| ≤ k, so that for every

v ∈ R, we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k, |R|

Connected Vertex Cover

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset C ⊆ V , with |C| ≤ k, so that for every

(v, u) ∈ E, v ∈ C or u ∈ C and the subgraph induced by C is

connected?

Parameter : k

Please note for this reduction to work we have to parametrize |R| as well, as our

transformed k will be dependent on this value. This reduction was proposed in

[9] and the idea is similar to the reduction to Steiner Tree (section 2.3.8),

47

but we also add leaf vertices to every vertex of R′. The vertex cover are now all

vertices of R′ plus those of B that dominate R (See Figure 2.16).

Proposition 2.4.2 Red-Blue Dominating Set ≤pp Connected Vertex Cover

Proof Let (G, k) with G = (R∪B,E) be the input of Red-Blue Dominating

Set. We transform this into G′ = (V ′, E ′) where V ′ = R ∪ B ∪ {vnew} ∪ L,

with L = {n1, . . . , n|R|+1} and E ′ = E ∪ {(vnew, vi) | vi ∈ B} ∪ {(ni, vi) | vi ∈
R} ∪ {(n|R|+1, vnew)}. Then we set k′ = |R| + 1 + k. This is polynomial in |G|
and the parameter has been changed linearly.

(G, k) ∈ Red-Blue Dominating Set

⇒ There is a set D ⊆ B of size at most k that dominates R

⇒ C = D ∪R ∪ {vnew} is a vertex cover since R ∪ {vnew} covers all vertices of L

and vnew covers all vertices of B

⇒ C is connected because D dominates R and has size |D| + |R| + |{vnew}| =

k + |R|+ 1 = k′

⇒ (G′, k′) ∈ Connected Vertex Cover

(G′, k′) ∈ Connected Vertex Cover

⇒ There is a vertex cover C of size k′ that is connected

⇒ R ∪ {vnew} has to be part of C because of the leaf vertices L. That leaves k

vertices of R to be part of C, we call those D

⇒ since C was connected and no two vertices of R are connected D has to

dominate R

⇒ (G, k) ∈ Red-Blue Dominating Set �

48

R = {r1, . . . , r4} and B = {b1, . . . , b3}

r1 r2 r3 r4

b1 b2 b3

c11

3
c21

1

c31

1
c41

1

c12

4
c22

1

c32

1
c42

1

c13

4
c23

1

c33

1
c43

1

c14

3
c24

1

c34

1
c44

1

b1

2

b2

2

b3

2

Figure 2.17: Illustration of Red-Blue Dominating Set to Capacitated
Vertex Cover.

2.4.3 Red-Blue Dominating set ≤pp Capacitated Vertex

Cover

Red-Blue Dominating Set

Input : A bipartite graph G = (R ∪B,E) and a positive integer k.

Question: Is there a subset D ⊆ B, with |D| ≤ k, so that for every

v ∈ R, we have v ∈ D or there is a u ∈ D, so that (v, u) ∈ E?

Parameter : k, |R|

Capacitated Vertex Cover

Input : A graph G = (V,E), a capacity function cap: V → N+ and a

positive integer k.

Question: Is there a subset C ⊆ V , with |C| ≤ k, so that for every

(v, u) ∈ E, v ∈ C or u ∈ C and a function f : E → C that maps every

edge to one of its endpoints, so that for all v ∈ C, |f−1(v)| ≤ cap(v)?

Parameter : k

Please note for this reduction to work we have to parametrize |R| as well, as our

transformed k will be dependent on this value. This reduction was proposed in

[9] and the idea is to convert every node of R to a clique consisting of four nodes.

49

The capacity is then set to one, for all clique nodes except the first one. The first

clique node gets the capacity deg − 1 and the remaining nodes the capacity deg

(see Figure 2.17). The capacity of a node is the amount of edges this node can

cover.

Proposition 2.4.3 Red-Blue Dominating Set ≤pp Capacitated Vertex

Cover

Proof Let (G, k) be the input of Red-Blue Dominating Set, with G = (R∪
B,E). We transform this into (G′, cap, k′) with G′ = (V ′, E ′) where V ′ = R′ ∪B
where R′ = {c1i , c2i , c3i , c4i | ri ∈ R} and E ′ = {(cji , cli) | j 6= l, cji , c

l
i ∈ R′}∪{(c1i , bj) |

(ri, bj) ∈ E, ri ∈ R, bj ∈ B} with

cap(vi) =

deg(vi) if vi ∈ B

deg(vi)− 1 if vi = c1i ∈ R′

1 otherwise

and finally k′ = 4|R|+k. This is linear in |G| and the parameter k′ is polynomial

in |R| and k.

(G, k) ∈ Red-Blue Dominating Set

⇒ G has a set D ⊆ B of size at most k that dominates R

⇒ C = D∪V ′−B where V ′−B are all the nodes of the cliques, is a vertex cover

of size at most |D|+ |V ′−B| = k + 4|R| = k′, the cover is capacitated according

to definition

⇒ (G′, k′) ∈ Capacitated Vertex Cover

(G′, k′) ∈ Capacitated Vertex Cover

⇒ There exists a capacitated vertex cover C ⊆ V ′ with size at most k′

⇒ Since the nodes c1i , . . . , c
4
i form a clique all these node have to be in C

⇒ Since cap(c0i) is too small to cover all edges at least one neighbour of c0i that

is in B has to be in C

⇒ The nodes of D = C ∩B dominate R

⇒ (G, k) ∈ Red-Blue Dominating Set �

50

2.4.4 Group Steiner Tree ≤pp Directed Steiner Out-Tree

Group Steiner Tree

Input : An undirected graph G = (V,E), vertex-disjoint subsets S1, . . . , Sk

and a positive integer p.

Question: Does G contain a tree of at most p vertices that contains

at least on vertex of each Si?

Parameter : k, p

Directed Steiner Out-Tree

Input : A directed graph D = (V,A), a distinguished vertex r ∈ V , a

set of terminals D ⊆ V and a positive inter p.

Question: Does D contain an out-tree1 of at most p vertices that is

rooted at r and contains all the vertices of T?

Parameter : k = |S|, p

This reduction was proposed in [11] and the idea is to create a directed graph out

of G that contains for every edge (v, u) two arcs (v, u), (u, v) and further adds

new nodes for every set Si that gets an arc (v, si) for v ∈ Si. Finally we add a

root node r that is connected to every node of V , not directly but over a path of

length |V | (see Figure 2.182). So for a solution for Group Steiner Tree (e.g.

left in Figure 2.19) we get a solution for Directed Steiner Out-Tree (right

in Figure 2.19).

Proposition 2.4.4 Group Steiner Tree ≤pp Directed Steiner Out-

Tree

Proof Let (G,S1, . . . , Sk, p) be the input of Group Steiner Tree. We trans-

form this as followed: Let S = {r, s1, . . . , sk} be a set of k + 1 new vertices.

1A directed graph in which, for a vertex r called the root and any other vertex v, there is
exactly one directed path from r to v.

2The path of r to a node v is a single arc for brevity

51

S1 = {v1, v2}, S2 = {v4, v5}, S3 = {v7, v8}, S4 = {v10, v11}

v1

v2 v3 v4

v5

v6

v7

v8

v9v10

v11

v12

v1

v2 v3 v4

v5

v6

v7

v8

v9v10

v11

v12

s1 s2

s3s4

r

Figure 2.18: Illustration of Group Steiner Tree to Directed Steiner Out-
Tree.

Further let A = {(u, v), (v, u) | (u, v) ∈ E} ∪
⋃k

i=1{(v, si) | v ∈ Si}. And

for every u ∈ V create a path Pr,u from r to u of length n = |V | that is

Vu = {u1, . . . , un} and Pr,u = {(r, u1), (un, u), (ui, ui+1) | i ∈ {1, . . . , n − 1}}. So

we get V ′ = V ∪S∪
⋃

u∈V Vu and A′ = A∪
⋃

u∈V Pr,u. Finally we set D = (V ′, A′)

and p′ = p+n+ 1 + k. This is polynomial in |G|+ k and p′ is linear in p,n,k and

the parameter k has only been increased by 1.

(G,S1, . . . , Sk, p) ∈ Group Steiner Tree

⇒ G contains a tree T of at most p vertices that includes at least one vertex of

each Si

⇒ There is a tree T ′ in D containing T with r as the root using one Path Pr,u

and for every vi ∈ Si ∩ T we can add si to T ′

⇒ T ′ is a directed out-tree of length p + n + 1 + k

⇒ (D,S, p′, k + 1) ∈ Directed Steiner Out-Tree

52

v2 v3 v4

v6

v7v9v10

v2 v3 v4

v6

v7v9v10

s1 s2

s3s4

r

Figure 2.19: Left: A solution of Group Steiner Tree Right: A solution of
Directed Steiner Out-Tree

(D,S, p′, k + 1) ∈ Directed Steiner Out-Tree

⇒ There exists an out-tree T of at most p + n + 1 + k vertices that contains r

and S

⇒ T contains only one path Pr,u since 2n + k > p + n + 1 + k

⇒ T ′ = T ∩ V is a sub-tree of V

⇒ T ′ has at most p vertices and forms a group Steiner tree

⇒ (G,S1, . . . , Sk, p) ∈ Group Steiner Tree �

53

v1

v2

v3

v4 v1

v2

v3

v4

e11

e12

e21

e22

e31

e32

e41

e42

Figure 2.20: Illustration of Connected Vertex Cover to 2-deg-Connected
Feedback Vertex Set

2.4.5 Connected Vertex Cover ≤pp 2-deg-Connected Feed-

back Vertex Set

Connected Vertex Cover

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset C ⊆ V , with |C| ≤ k, so that for every

(v, u) ∈ E, v ∈ C or u ∈ C and the subgraph induced by C is

connected?

Parameter : k

2-deg-Connected Feedback Vertex Set

Input : A 2-degenerate1 graph G = (V,A) and a positive integer k.

Question: Is there a S ⊆ V with |S| ≤ k so that the subgraph induced

by S is connected and the subgraph induced by V − S has no cycles?

Parameter : k

This reduction was proposed in [12] and the idea is to convert every edge of G

in a cycle of length 4, where the original vertices are not adjacent to each other

(see Figure 2.20).

1A graph G is d-degenerate iff in every subgraph of G there is a vertex with degree of at
most d

54

Observation 2.4.5 If in a graph G every edge has an endpoint of degree at most

2, G is 2-degenerate.

Proposition 2.4.6 Connected Vertex Cover ≤pp 2-deg-Connected

Feedback Vertex Set

Proof Let (G, k) with G = (V,E) be the input of Connected Vertex Cover.

We transform this into (G′, k′) with k′ = 2k + 1 and G′ = (V ′, E ′) where V ′ =

V ∪ {e1, e2 | e ∈ E} and E ′ = {(v, e1), (v, e2), (u, e1), (u, e2) | (v, u) ∈ E}. This is

polynomial in |G| and the parameter k has not been changed. G′ is 2-degenerate

(observation 2.4.5).

(G, k) ∈ Connected Vertex Cover

⇒ G has a connected vertex cover C ⊆ V of size at most k

⇒ G′[V ′−C] contains no cycles, because if V is an independent set in G′ a cycle

has to contain one ei, but this means both vertices adjacent to ei have to be in

the cycle as well, which contradicts the assumption that C was a vertex cover

since ei would not have been covered

⇒ We can connect S in G′ through finding a spanning tree in G[S] of at most

k − 1 edges and using one of the e1 for every edge in the spanning tree. We call

this Vst

⇒ S = C ∪ Vst is a connected feedback vertex set of size at most 2k − 1 = k′

⇒ (G′, k′) ∈ 2-deg-Connected Feedback Vertex Set

(G′, k′) ∈ 2-deg-Connected Feedback Vertex Set

⇒ There is a set S ⊆ V ′ of size at most k′ so that S is connected G′[V ′ − S] is

circle free

⇒ |S| ≥ 2 (|S|=1 is trivial) and |S ∩ V | ≤ k since otherwise they would form at

least k + 1 connected components, with E ′ connecting at most two of them, so S

could not be connected

⇒ for e = (u, v) ∈ E we have a cycle (u, e1, v, e2) in G′ so S has to contain at

least one of them. But as |S| ≥ 2 and S is connected it has to be either u or v

and e is covered

⇒ C = S ∩ V is a connected vertex cover

⇒ (G, k) ∈ Connected Vertex Cover �

55

2.4.6 Connected Vertex Cover ≤pp 2-deg-Connected Odd

Cycle Transversal

Connected Vertex Cover

Input : A graph G = (V,E) and a positive integer k.

Question: Is there a subset C ⊆ V , with |C| ≤ k, so that for every

(v, u) ∈ E, v ∈ C or u ∈ C and the subgraph induced by C is

connected?

Parameter : k

2-deg-Connected Odd Cycle Transversal

Input : A 2-degenerate1 graph G = (V,A) and a positive integer k.

Question: Is there a S ⊆ V with |S| ≤ k so that the subgraph induced

by S is connected and the subgraph induced by V −S is bipartite (that

is, contains no cycles of odd length)?

Parameter : k

This reduction was proposed in [12] and works the same way as seen in section

2.4.5, with the difference that we build a circle of length five for every edge

instead.

Proposition 2.4.7 Connected Vertex Cover ≤pp 2-deg-Connected Odd

Cycle Transversal

Proof Omitted.

1A graph G is d-degenerate iff in every subgraph of G there is a vertex with degree of at
most d

56

T = {v1, v4, v5, v6}

v1

v2 v3

v4

v5 v6

v1

v2 v3

v4

v5 v6

e1

e2

e3

e4

e5

Figure 2.21: Illustration of Steiner Tree to 2-deg-Steiner Tree

2.4.7 Steiner Tree ≤pp 2-deg-Steiner Tree

Steiner Tree

Input : A graph G = (V,E) a set T ⊆ V and a positive integer k.

Question: Is there a subset S ⊆ V − T , with |S| ≤ k, so that the

subgraph induced by T ∪ S is connected?

Parameter : k and t = |T |

2-deg-Steiner Tree

Input : A 2-degenerate1 graph G = (V,E) a set T ⊆ V and a positive

integer k.

Question: Is there a subset S ⊆ V − T , with |S| ≤ k, so that the

subgraph induced by T ∪ S is connected?

Parameter : k and t = |T |

This reduction was proposed in [12] and the idea is to subdivide each edge with

an edge-vertex, the new solution is then the old one plus those edge-vertices, so

that the graph is connected (see Figure 2.21).

Proposition 2.4.8 Steiner Tree ≤pp 2-deg-Steiner Tree

1A graph G is d-degenerate iff in every subgraph of G there is a vertex with degree of at
most d

57

Proof Let (G, k, T) with G = (V,E) be the input of Steiner Tree. We

transform this into (G′, k′, T) with G′ = (V ′, E ′) where V ′ = V ∪ Ve with

Ve = {ve | e ∈ E} and E ′ = {(v, ve), (ve, u) | e = (v, u) ∈ E} and k′ = 2k+|T |−1.

This is polynomial in |G| and the parameter has been changed linearly. G′ is 2-

degenerate by observation 2.4.5.

(G, k, T) ∈ Steiner Tree

⇒ There is a valid solution S so that G[S ∪ T] is connected

⇒ Let X be an arbitrary spanning tree of G[S ∪ T] and Etree the set of its edges

⇒ |Etree| ≤ k + |T | − 1 = |ES∪T |
⇒ Let VEtree be the set of vertices corresponding to Etree then S ′ = S ∪ VEtree is

a valid solution of G′ of size at most 2k + |T | − 1 = k′

⇒ (G′, k′, T) ∈ 2-deg-Steiner Tree

(G′, k′, T) ∈ 2-deg-Steiner Tree

⇒ There is a valid solution S in G′

⇒ S ′ = S ∩ V has a cardinality of at most k + |T | since |S ∪ T | ≤ 2k + 2|T | − 1

⇒ S ′ ∪ T is isolated in G′ and adding a single vertex from Ve connects at most

two components

⇒ |S ′| ≤ k and since S ∪ T is connected in G′, G[S ′ ∪ T] is connected

⇒ (G, k, T) ∈ Steiner Tree �

58

2.4.8 Colourful Graph Motif ≤pp Connected Dominating

Set

Colourful Graph Motif

Input : A graph G = (V,E) a colour function col : V → {1, . . . , k}
and a positive integer k.

Question: Is there a connected subset S ⊆ V , with |S| ≤ k, so that

col|S is bijective, that is S contains exactly one vertex of each colour?

Parameter : k

Connected Dominating Set

Input : A graph G = (V,E) and a positive integer p.

Question: Is there a subset D ⊆ V , so that G[S] is connected, |D| ≤ k

and that for every v ∈ V , we have v ∈ D or there is a u ∈ D, so that

(v, u) ∈ E?

Parameter : k

This reduction was proposed in [12] and what we want to do is, for every colour

i we create two new vertices ci and c′i that are connected. We then connect every

vertex v of colour i to ci (see Figure 2.22).

Lemma 2.4.9 ([12]) For k < 2 Colourful Graph Motif can be solved in

polynomial time.

Proposition 2.4.10 Colourful Graph Motif ≤pp Connected Dominating

Set

Proof Because of lemma 2.4.9 let k ≥ 2.

Let (G, col, k) with G = (V,E) be the input of Colourful Graph Motif. We

transform this into (G′, k′) with G′ = (V ′, E ′) with V ′ = V ∪Vc where Vc = {ci, c′i |
i ∈ {1, . . . , k}} and E ′ = E ∪ {(ci, c′i) | i ∈ {1, . . . , k}} ∪ {(v, ccol(v)) | v ∈ V } and

k′ = 2k. This is polynomial in the input and k has been changed linearly.

59

v1 v2

v3 v4

v1 v2

v3 v4

c1 c′1

c2 c′2

c3

c′3

Figure 2.22: Illustration of Colourful Graph Motif to Connected Dom-
inating Set

(G, col, k) ∈ d-deg-Colourful Graph Motif

⇒ There exists a valid solution S with size at most k

⇒ Let D = S∪X with X = {c1, . . . , ck}, since D dominates V and X dominates

Vc and D and X are connected

⇒ D is a valid solution of size 2k = k′ in G′

⇒ (G′, k′) ∈ Connected Dominating Set

(G′, k′) ∈ Connected Dominating Set ⇒ There exists a valid solution D of

size at most 2k

⇒ {c1, . . . , ck} = X ⊆ D because we have to dominate Y = {c′1, . . . , c′k}. If Y

where in D we would have to take X also because of connectivity

⇒ For every ci we have to take at least one neighbour v ∈ V , but since the

neighbourhood of each ci is disjoint and |D| ≤ 2k we have to take exactly one

vertex of every neighbourhood

⇒ S = D −X is a valid solution of size k in G

⇒ (G, col, k) ∈ Colourful Graph Motif �

Proposition 2.4.11 If G is d-degenerate, then G′ is d + 1-degenerate because

every vertex of V gets one new edge

60

2.5 Parameter preserving reduction with poly-

nomial parameter change

2.5.1 Coloured Reduced Unique Coverage ≤pp Unique Cov-

erage

Coloured Reduced Unique Coverage

Input : A set family F over a universe U with S ∈ F ⇒ |S| ≤ k − 1

and |U | ≤ k2, a colour function col : F → {1, . . . , k} and a positive

integer k.

Question: Is there a sub-family F′ ⊆ F so that at least k elements of

U are contained in exactly one set in F′ and F′ has exactly on set of

each colour?

Parameter : k

Unique Coverage

Input : A set family F over a universe U and a positive integer k.

Question: Is there a sub-family F′ ⊆ F so that at least k elements of

U are contained in exactly one set in F′?

Parameter : k

This reduction was proposed in [9].

Proposition 2.5.1 Coloured Reduced Unique Coverage ≤pp Unique

Coverage

Proof Let (F, U, col, k) be the input of Coloured Reduced Unique Cov-

erage, we transform this into (H, U ′, k′) with k′ = k(k2 + 1) + k and for ev-

ery colour i we add a set Si consisting of k2 + 1 new elements to U , that is

U ′ = U ∪
⋃

i∈{1,...,k} Si. Further for every set Ai ∈ F we set A′i = Ai ∪ Scol(Ai) and

finally H =
⋃

Ai∈F A
′
i. Notice that in order to cover at least k(k2 + 1) elements

uniquely one has to pick exactly one set of each colour. �

61

2.6 Supposedly no parameter preserving reduc-

tions

As we have seen, there are problems that can be reduced using the standard

reduction, but there has not been found a parameter-preserving reduction and

it is supposed that there in fact is none. Please note that these are hypotheses

that are not proven but very likely to hold (Like P 6= NP). Some of these are as

followed:

• Dominating set 6≤pp Independent Set [3]

• Weighted SAT 6≤pp Weighted 3-SAT [3]

• Independent Set 6≤pp Vertex Cover [2.1.1]

• Clique 6≤pp Constraint Bipartite Vertex Cover [2.1.2]

These are just a small excerpt of reductions that are (probably) not possible

with parameter-preserving reduction although conventional reductions are known.

This shows us, that parametrized complexity distinguishes stronger between prob-

lems than conventional complexity theory. The notion that two problems are

closely related does not have to hold if we take a closer look at the given param-

eters.

62

Chapter 3

Reduction-Graph

“An algorithm must be seen to be believed.” (Donald Knuth)

We think a nice way to illustrate the results of this work is to create a directed

graph, where the vertices are our problems and there is an edge from problem

A to problem B iff A ≤pp B. The text on the edges represents the parameter

increase through the reduction. If there is no text then the parameter has not

been changed. The reason this visual structure was chosen, is because of the

transitivity of the reduction, if we have a path from A to C we know that A ≤pp C

and it can be easily implemented as a data structure for further manipulation and

analysis.

3.1 Interpretation

The graph can bee seen in Figure 3.1 and Figure 3.2 respectively. Figure 3.1

shows the biggest connected component of the graph. Here we have Vertex

Cover and Colourful Graph Motif as the ‘hardest’ problems with no

parent vertices. This is of course not absolute, as this work does not claim

to be complete. Further we can see smaller circles of problems that seem to

63

Figure 3.1: The first big connected component

be of equal hardness with respect to parametrized complexity like Dominat-

ing Set, Weighted SAT and Hitting Set. We can now use the transi-

tivity of the reduction to infer additional statements that were not apparent at

first, like Dominating Set ≡pp Red-Blue Dominating Set (with a param-

eter increase of 2k in “←” direction), Dominating Set ≡pp Set Cover or

Vertex Cover ≤pp Set Cover (both times no parameter increase). Figure

3.2 shows something that was expected, as this work was more of a ‘breadth-first

search’ over different sources we have small ‘islands’ of problems that are not

connected. The question at hand is, if it possible to find the ‘missing-links’ to

create a connected graph. We think it is possible to create a lot of additional

connections between problems.

64

Figure 3.2: The remaining six smaller connected components

65

Chapter 4

Conclusions

“The question of whether computers can think is like the question of

whether submarines can swim.” (Edsger W. Dijkstra)

4.1 Methods used

The goal of this work was to find, collect and categorize parameter preserving

reductions. But first we wanted to give some motivation why this is a research

area worth looking at, so some papers on general parametrized complexity where

consulted. The results of this can be seen in Chapter 1, which helped us shape

our own view on the topic and why I think this work can be at least of some

use. The main source for the reductions where papers that showed the non-

existence for polynomial kernels of some problems by giving reductions from

problems already proven not to have polynomial kernels, general reductions that

we encountered before, that happen to be parameter preserving or parameter

preserving reductions I created myself.

66

4.2 Further work on visualisation and reduction

search

As seen in chapter 3 a directed graph is a nice way to visualize reductions, because

of the transitivity the search for a reduction can be as simple as a search for a

path in the graph. A great tool for researchers in the field of reductions could

be a web based application, that displays such a graph and has the possibilities

of search operations, so that you can for example enter a problem A and get two

lists, the first list is a list of all problems that can be reduced to this problem

and the second one is a list of all problems that you can reduce problem A to.

It would be possible to give every edge a weight which is the parameter increase

of the reduction, so that we can search for ‘shortest paths’, that is the smallest

possible parameter increase.

The success of Wikipedia shows that it could be a good idea to rely on crowd-

sourced content, so people can add new problems and edges, of course it would be

a necessity to reference a source for every edge added. Today there are a countless

number of problems and found reductions so I think that a central resource that

collects parametrized problems and reductions and first and foremost presents

them in a practical way would be a valuable addition to research in the field.

67

References

[1] N. G. De Bruijn. Asymptotic Methods in Analysis. Courier Dover Publica-

tions, 1970. 2

[2] M. Cesati. Compendium of Parameterized Problems, 2006.

[3] R. Downey. Parameterized Complexity for the Skeptic. Proceedings of The

18th IEEE Annual Conference on Computational Complexity, 2003. 6, 10,

62

[4] R. G. Downey; M. R. Fellows. Fixed-Parameter Tractability and Complete-

ness. 44

[5] R. G. Downey; M. R. Fellows. Parameterized Complexity. Springer, 1999. 3,

4

[6] S.Y. Kuo; W. K. Fuchs. Efficient Spare Allocation for Reconfigurable Arrays.

IEEE Design and Test, 1987. 9

[7] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Habilitation

thesis, University Tuebingen, 2002. 2

[8] J. M. Robson. Algorithms for Maximum Independent Sets. Journal of Al-

gorithms, 7, 1986. 3

[9] M. Dom; D. Lokshtanov; S. Saurabh. Incompressibility through Colors and

IDs, . 16, 29, 31, 33, 47, 49, 61

[10] N. Misra; V. Raman; S. Saurabh. Lower Bounds on Kernelization, . 34

68

REFERENCES

[11] N. Misra; G. Philip; V. Raman; S. Saurabh; S. Sikdar. FPT Algorithms for

Connected Feedback Vertex Set. 51

[12] M. Cygan; M. Pilipczuk; M. Pilipczuk; J. O. Wojtaszczyk. Kernelization

Hardness of Connectivity Problems in d-Degenerate Graphs. 41, 43, 54, 56,

57, 59

[13] J. Chen; I. A. Kanj; G. Xia. Improved Parameterized Upper Bounds for

Vertex Cover. Mathematical Foundations of Computer Science, 4162. 3

69

70

Appendix: List of Problems

Problem Reduced to

Coloured Red-Blue Dominating Set Red-Blue Dominating Set

Coloured Reduced Unique Coverage Unique Coverage

Coloured Small Universe Hitting

Set

Small Universe Hitting Set

Colourful Graph Motif Group Steiner Tree, Steiner Tree,

Connected Dominating Set

Colouring Partition Into Cliques, Partition

Into Forests

Connected Vertex Cover Connected Feedback Vertex Set,

Connected Odd Cycle Transversal

Constraint Bipartite Vertex Cover Spare Allocation

Disjoint Factors Vertex Disjoint Circles

Dominating Set Hitting Set, Monotone Weighted

SAT, Center

Group Steiner Tree Directed Steiner Out-Tree

Hitting Set Monotone Weighted SAT, Red-Blue

Dominating Set

Independent Set Induced Matching

Monotone Weighted SAT Hitting Set, Weighted SAT

Partition into Cliques Colouring

Red-Blue Dominating Set Set Cover, Hitting Set, Steiner

Tree, Connected Vertex Cover,

Capacitated Vertex Cover

Set Cover Red-Blue Dominating Set

Spare Allocation Constraint Bipartite Vertex Cover

Steiner Tree 2-deg Steiner Tree

Vertex Cover (2-)Hitting Set, Dominating Set,

Steiner Tree

Weighted SAT Dominating Set

71

	Contents
	List of Figures
	1 Introduction
	1.1 On complexity
	1.2 Parametrized complexity theory
	1.2.1 Preliminary
	1.2.2 Reduction

	1.3 What is the point?

	2 Reductions
	2.1 Reductions, polynomial but not parameter preserving
	2.1.1 Independent Set p Vertex Cover
	2.1.2 Clique p Constraint Bipartite Vertex Cover

	2.2 Parameter preserving reduction in both directions
	2.2.1 Short Non-deterministic Turing Machine Acceptance pp Independent Set
	2.2.2 Monotone Weighted SAT pp Hitting Set
	2.2.3 Partition into Cliques pp Colouring
	2.2.4 Spare Allocation pp Constraint Bipartite Vertex Cover
	2.2.5 Red-Blue Dominating Set pp Set Cover
	2.2.6 Red-Blue Dominating Set pp Hitting Set
	2.2.7 Vertex Cover pp 2-Hitting Set

	2.3 Parameter preserving reduction without parameter change
	2.3.1 Monotone Weighted SAT pp Weighted SAT
	2.3.2 Vertex Cover pp Dominating Set
	2.3.3 Vertex Cover pp Steiner Tree
	2.3.4 Dominating Set pp Hitting Set
	2.3.5 Dominating Set pp Monotone Weighted SAT
	2.3.6 Dominating Set pp Center
	2.3.7 Coloured Red-Blue Dominating set pp Red-Blue Dominating Set
	2.3.8 Red-Blue Dominating set pp Steiner Tree
	2.3.9 Coloured Small Universe Hitting Set pp Small Universe Hitting Set
	2.3.10 Disjoint Factors pp Vertex Disjoint Cycles
	2.3.11 Independent Set pp Induced Matching
	2.3.12 Colouring pp Partition Into Forests
	2.3.13 Colourful Graph Motif pp Group Steiner Tree
	2.3.14 Colourful Graph Motif pp Steiner Tree

	2.4 Parameter preserving reduction with linear parameter change
	2.4.1 Weighted SAT pp Dominating Set
	2.4.2 Red-Blue Dominating Set pp Connected Vertex Cover
	2.4.3 Red-Blue Dominating set pp Capacitated Vertex Cover
	2.4.4 Group Steiner Tree pp Directed Steiner Out-Tree
	2.4.5 Connected Vertex Cover pp 2-deg-Connected Feedback Vertex Set
	2.4.6 Connected Vertex Cover pp 2-deg-Connected Odd Cycle Transversal
	2.4.7 Steiner Tree pp 2-deg-Steiner Tree
	2.4.8 Colourful Graph Motif pp Connected Dominating Set

	2.5 Parameter preserving reduction with polynomial parameter change
	2.5.1 Coloured Reduced Unique Coverage pp Unique Coverage

	2.6 Supposedly no parameter preserving reductions

	3 Reduction-Graph
	3.1 Interpretation

	4 Conclusions
	4.1 Methods used
	4.2 Further work on visualisation and reduction search

	References
	*-20 mmAppendix: List of Problems

