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Tackling NP-Hardness

Many interesting optimization problems are NP-hard.

Traditional techniques

Heuristics (no performance guarantees)

Polynomial-time approximation algorithms (approximate
solutions)

New weapons (more than 20 years old)

Moderately exponential algorithms (exact solutions, effective
for small inputs)

Parameterized complexity (exact solutions, effective for small
parameters)
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Parameterized Problems

Two components

input

parameter (fixed by the algorithm designer)

Example parameterizations

solution size: Does graph G have a vertex cover of size k,
parameter k?

structural measure: Does graph G have a dominating set of
size k, parameter treewidth of G?

excess solution size: Given a CNF formula with m clauses, is
there an assignment that satisfies m/2+k clauses, parameter
k?
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Fixed-Parameter Tractability

Running times are measured wrt both x and k.

Definition

A parameterized problem is fixed-parameter tractable if there is
an algorithm with running time O(f(k) · |x|c), where f is a
function of k alone and c is a constant.

Example running times

Vertex Cover (parameter: solution size):
O(1.2738k · k · |V (G)|) [Chen, Kanj, Xia, 2010.]

Dominating Set (parameter: treewidth): O(3tw · |V (G)|O(1))
[van Rooij, Bodlaender, Rossmanith, 2009.]

Max Sat (parameter: excess above m/2): O(φ6kk+ |F |), φ =
golden ratio [Mahajan and Raman, 1999.]

A closely related concept: kernelization algorithm.
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Kernelization

A kernelization algorithm strips away easy parts of the input and
exposes the core (the kernel).

Definition

A kernelization algorithm transforms an instance (x, k) into an
equivalent instance (x′, k′) in time polynomial in |x|+ k s.t.

|x′|, k′ ≤ f(k), for some function f .

The function f is called the size of the kernel.
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Example Kernelization

Vertex Cover: Does G have a vertex cover of size at most k?
(Parameter: k).

Observation: Any vertex of degree at least k + 1 must be in a
solution.

Kernelization Algorithm

Delete all vertices of degree at least k + 1 from the graph. If
the number of such vertices is > k, report no-instance.

The remaining graph has at most O(k2) vertices.
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Kernelization and Fixed-Parameter Tractability

Folklore

A problem is fixed-parameter tractable (FPT) iff it has a
kernelization algorithm.

The kernel size obtained from a fixed-parameter algorithm is
usually exponential or worse.

Goal

To obtain polynomial (or even better, linear) kernels.

Basic Technique

devise reduction rules that preserve equivalence of
instances;

when reduction rules cannot be applied anymore, show that
the resulting instance has small size.
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Why Sparse Graph Classes?

Many hard problems are fixed-parameter tractable on sparse
graphs.

Dominating Set on bounded-genus graphs.

Independent Set on planar graphs.

MSO-definable problems on bounded-treewidth graphs.

Meta-results showed that a large class of problems admit linear
kernels on certain sparse classes.

No polynomial kernels on general graphs for many problems

In particular: “connectivity” problems: Longest Path, Disjoint
Paths, Connected Vertex Cover, Steiner Tree, . . .
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What Kind of Sparseness?

Requesting a linear number of edges not particularly useful.

We need graph classes that are uniformly sparse.

Definition

A graph class C is d-degenerate if for every G ∈ C, every
subgraph of G contains a vertex of degree 6 d.
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Degenerate Graphs

Definition

A graph class C is d-degenerate if for every G ∈ C, every
subgraph of G contains a vertex of degree 6 d.

Equivalent characterizations

Vertices can be ordered s.t. every vertex has at most d
neighbours to its right.

Edges can be oriented s.t. every vertex has out-degree at
most d.

Useful properties

|E(G)| 6 d · |V (G)|, therefore average degree 6 2d.

χ(G) ≤ d+ 1 and ω(G) ≤ d+ 1.

At most 2d · |V (G)| cliques.

Hereditary.



Parameterized Complexity Sparse Graph Classes Overview Our Result and How it Works Extensions Conclusion

Degenerate Graphs

Definition

A graph class C is d-degenerate if for every G ∈ C, every
subgraph of G contains a vertex of degree 6 d.

Equivalent characterizations

Vertices can be ordered s.t. every vertex has at most d
neighbours to its right.

Edges can be oriented s.t. every vertex has out-degree at
most d.

Useful properties

|E(G)| 6 d · |V (G)|, therefore average degree 6 2d.

χ(G) ≤ d+ 1 and ω(G) ≤ d+ 1.

At most 2d · |V (G)| cliques.

Hereditary.



Parameterized Complexity Sparse Graph Classes Overview Our Result and How it Works Extensions Conclusion

Degenerate Graphs

Definition

A graph class C is d-degenerate if for every G ∈ C, every
subgraph of G contains a vertex of degree 6 d.

Equivalent characterizations

Vertices can be ordered s.t. every vertex has at most d
neighbours to its right.

Edges can be oriented s.t. every vertex has out-degree at
most d.

Useful properties

|E(G)| 6 d · |V (G)|, therefore average degree 6 2d.

χ(G) ≤ d+ 1 and ω(G) ≤ d+ 1.

At most 2d · |V (G)| cliques.

Hereditary.



Parameterized Complexity Sparse Graph Classes Overview Our Result and How it Works Extensions Conclusion

Problems with Degeneracy

Degeneracy is a good start, but not strong enough for general
results:

Any graph can be made degenerate by subdividing its
edges a lot.

Problems such as Feedback Vertex Set, Treewidth are invariant
under edge subdivisions.

Degeneracy does not seem to provide a good handle to solve
problems.

We need structurally sparse classes.
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Hierarchy of Sparse Graphs
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Minors

Minor: take subgraph, contract vertex sets inducing connected
subgraphs (branch sets).

Topological minor: take subgraph, contract vertex-disjoint
two-paths between nail vertices.

Sparse ⇒ excludes a fixed graph as a (topological) minor.
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Overview of meta-results

Linear kernels in structurally sparse classes

Framework for planar graphs [Guo and Niedermeier: Linear problem

kernels for NP-hard problems on planar graphs.]

Meta-result for graphs of bounded genus [Bodlaender, Fomin,

Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta) Kernelization.]

Meta-result for graphs excluding a fixed graph as a minor
[Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels.]

Meta-results for graphs excluding a fixed graph as a
topological minor [Kim, Langer, Paul, Reidl, Rossmanith, Sau, and S.:

Linear kernels and single-exponential algorithms via protrusion decompositions.]
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Trade-off: sparseness vs. problem requirements
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Main Theorem

Theorem

Let H be a fixed graph. A parameterized graph problem that has

1 finite integer index, and

2 is treewidth-bounding,

both on the class of H-topological-minor-free graphs admits a
linear kernel on this graph class.
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The Undefined Terms

A parameterized graph problem Π is a set of pairs (G, k), where
G is a graph and k a non-negative integer.

Π treewidth-bounding: for some constants c, t, yes-instances
(G, k) have a vertex subset X ⊆ V (G) s.t.

|X| ≤ c · k and tw (G−X) ≤ t.

Finite integer index allows us to apply a generic and powerful
reduction rule: protrusion reduction rule.
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Protrusions

Finite integer index allows us to apply the protrusion reduction
rule.

allows us to replace a piece of the graph (satisfying certain
properties) by a canonical structure.

Definition

W ⊆ V (G) is a t-protrusion if

1 (small boundary) |N(W ) \W | ≤ t,
2 (small treewidth) tw (G[W ]) ≤ t.
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Protrusion Reduction Rule

Replace a large protrusion by a smaller canonical structure.

Finite integer index allows t-protrusions to be replaced by a
member of a finite set Rt.

|Rt| depends on t, the problem (and the graph class).

We assume that for each t, the set Rt is given.

Non-uniform algorithms.
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Properties of H-Topological-Minor-Free Graphs

Topological minor: select a subgraph and contract vertex-disjoint
degree-two paths.

For a graph G excluding H as a topological minor,

not interested in structure of H, but its size r = |H|.
in particular: Kr not a topological minor of G.

Important properties

1 |E(G)| ≤ 1
2βr

2|V (G)| (for some β < 10).

2 no. of cliques ≤ 2τr log r|V (G)| (for some τ < 4.51).

3 Closed under taking topological minors.
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Main Theorem and Kernelization Algorithm

Theorem

Let H be a fixed graph. A parameterized graph problem that has

1 finite integer index, and

2 is treewidth-t bounding,

both on the class of H-topological-minor-free graphs admits a
linear kernel on this graph class.

Kernelization Algorithm

1 Replace all (2t+ r)-protrusions by their representatives from
R2t+r, where r = |V (H)|.

Time Taken O(nO(t+r)).
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On Treewidth Boundedness

Definition

A problem is treewidth bounding if for some constants c, t,
yes-instances (G, k) have a vertex subset X ⊆ V (G) s.t.

1 |X| ≤ c · k;

2 tw (G−X) ≤ t.

S usually is the solution set.

Vertex Cover, Feedback Vertex Set in general graphs.

Chordal Vertex Deletion in graphs with bounded clique-size.
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Proof Sketch by a Picture
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Using sparseness

|Y0| = O(|X|) and each cluster Y ′
i , 1 ≤ i ≤ `, has constant

size.

Contract each component of Y ′
i to an edge in X ∪ Y0, doing

this for as many components as possible.

The neighborhood in X ∪ Y0 of each cluster that remains is a
clique.

The total number of cliques is O(|X|+ |Y0|) and hence at
most these many components were contracted.∑l

i=1 |Y ′
i | = O(|X ∪ Y0|).
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The Proof: Main Components

Finite integer index

Allows use of the protrusion reduction rule.

Treewidth modulation

Allows a convenient decomposition into clusters each of which
is a protrusion.

Sparsity and protrusion reduction

Allows the total size of all clusters to be bounded.
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Examples
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Overview of Sparse Graph Classes (Again!)
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Beyond H-Minor-Free Graphs

Theorem

Problems that have finite integer index on graphs of constant
treedepth admit linear kernels on graphs of bounded expansion if
parameterized by a modulator to constant treedepth.

Kernelization algorithm runs in linear time.

Quadratic kernels on graphs of locally bounded expansion.

Polynomial kernels on nowhere dense graphs.
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Consequences

The problems. . .

Dominating Set, Connected Dominating Set, r-Dominating Set, Efficient

Dominating Set, Connected Vertex Cover, (Connected) Vertex Cover,

Hamiltonian Path/Cycle, 3-Colorability, Independent Set, Feedback Vertex Set,

Edge Dominating Set, Induced Matching, Chordal Vertex Deletion, Interval

Vertex Deletion, Odd Cycle Transversal, Induced d-Degree Subgraph, Min Leaf

Spanning Tree, Max Full Degree Spanning Tree, Longest Path/Cycle, Exact

s, t-Path, Exact Cycle, Treewidth, Pathwidth

. . . parameterized by a treedepth-modulator have . . .

. . . linear kernels on graphs of bounded expansion.

. . . quadratic kernels on graphs of locally bounded expansion.

. . . polynomial kernels on nowhere-dense graphs.
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Kernelization Landscape for Sparse Graph Classes

Our Interpretation

Up until topo-minor-free graphs, treewidth boundedness
seems to the main ingredient of the meta-kernel results.

Beyond this, structural parameters are required (for a reason
not discussed here).

Open Problems

Which problems admit linear kernels beyond topo-minor-free
graphs (natural parameter)?
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Thank You!
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