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Parameterized Complexity

Tackling NP-Hardness

Many interesting optimization problems are NP-hard.

Traditional techniques
@ Heuristics (no performance guarantees)

@ Polynomial-time approximation algorithms (approximate
solutions)

New weapons (more than 20 years old)
e Moderately exponential algorithms (exact solutions, effective
for small inputs)

e Parameterized complexity (exact solutions, effective for small
parameters)



Parameterized Complexity

Parameterized Problems

Two components

@ input

@ parameter (fixed by the algorithm designer)
Example parameterizations

@ solution size: Does graph G have a vertex cover of size k,
parameter k7?

@ structural measure: Does graph G have a dominating set of
size k, parameter treewidth of G?

@ excess solution size: Given a CNF formula with m clauses, is

there an assignment that satisfies m/2+k clauses, parameter
k?



Parameterized Complexity

Fixed-Parameter Tractability

Running times are measured wrt both = and k.

Definition

A parameterized problem is fixed-parameter tractable if there is
an algorithm with running time O(f(k) - |z|°), where f is a
function of k£ alone and c is a constant.

Example running times

@ Vertex Cover (parameter: solution size):
0(1.2738% - k - |V (G)]) [Chen, Kanj, Xia, 2010.]

o Dominating Set (parameter: treewidth): O(3% - |V (G)|9M)
[van Rooij, Bodlaender, Rossmanith, 2009.]

o Max Sat (parameter: excess above m/2): O(¢%k +|F|), ¢ =
golden ratio [Mahajan and Raman, 1999 ]

A closely related concept: kernelization algorithm.
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Parameterized Complexity

Kernelization

A kernelization algorithm strips away easy parts of the input and
exposes the core (the kernel).

Definition

A kernelization algorithm transforms an instance (x, k) into an
equivalent instance (z/, k') in time polynomial in |z| 4+ & s.t.
o |2/|,k" < f(k), for some function f.

The function f is called the size of the kernel.




Parameterized Complexity

Example Kernelization

Vertex Cover: Does G have a vertex cover of size at most k7?
(Parameter: k).

Observation: Any vertex of degree at least k£ + 1 must be in a
solution.

Kernelization Algorithm

@ Delete all vertices of degree at least k£ + 1 from the graph. If
the number of such vertices is > k, report no-instance.

The remaining graph has at most O(k?) vertices.



Parameterized Complexity

Kernelization and Fixed-Parameter Tractability

A problem is fixed-parameter tractable (FPT) iff it has a
kernelization algorithm.

The kernel size obtained from a fixed-parameter algorithm is
usually exponential or worse.

Goal

To obtain polynomial (or even better, linear) kernels.

Basic Technique

@ devise reduction rules that preserve equivalence of
instances;

@ when reduction rules cannot be applied anymore, show that
the resulting instance has small size.
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Sparse Graph Classes

Why Sparse Graph Classes?

Many hard problems are fixed-parameter tractable on sparse
graphs.

@ Dominating Set on bounded-genus graphs.
@ Independent Set on planar graphs.

@ MSO-definable problems on bounded-treewidth graphs.

Meta-results showed that a large class of problems admit linear
kernels on certain sparse classes.

No polynomial kernels on general graphs for many problems

@ In particular: “connectivity” problems: Longest Path, Disjoint
Paths, Connected Vertex Cover, Steiner Tree, ...
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What Kind of Sparseness?

Requesting a linear number of edges not particularly useful.

We need graph classes that are uniformly sparse.

Definition

A graph class C is d-degenerate if for every G € C, every
subgraph of G contains a vertex of degree < d.
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Degenerate Graphs

Definition
A graph class C is d-degenerate if for every G € C, every
subgraph of G contains a vertex of degree < d.

Equivalent characterizations
@ Vertices can be ordered s.t. every vertex has at most d
neighbours to its right.
@ Edges can be oriented s.t. every vertex has out-degree at
most d.



Sparse Graph Classes

Degenerate Graphs

Definition
A graph class C is d-degenerate if for every G € C, every
subgraph of G contains a vertex of degree < d.

Equivalent characterizations
@ Vertices can be ordered s.t. every vertex has at most d
neighbours to its right.
@ Edges can be oriented s.t. every vertex has out-degree at
most d.
Useful properties
e |E(G)| <d-|V(G)|, therefore average degree < 2d.
o X(G)<d+1land w(G) <d+1.
o At most 27 - |V (G)] cliques.
@ Hereditary.
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results:
Any graph can be made degenerate by subdividing its
edges a lot.
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Sparse Graph Classes

Problems with Degeneracy

Degeneracy is a good start, but not strong enough for general
results:
Any graph can be made degenerate by subdividing its
edges a lot.

Problems such as Feedback Vertex Set, Treewidth are invariant
under edge subdivisions.

Degeneracy does not seem to provide a good handle to solve
problems.

We need structurally sparse classes.
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Hierarchy of Sparse Graphs

Star forests 4\ / Path forests

Bounded treedepth Forest
Outerplanar
Bounded treewidth Bounded degree
Planar
Bounded genus

Excluding a minor

Excluding a
topological minor

Bounded expansion



Sparse Graph Classes

Minors

@ Minor: take subgraph, contract vertex sets inducing connected
subgraphs (branch sets).

@ Topological minor: take subgraph, contract vertex-disjoint
two-paths between nail vertices.

@ Sparse = excludes a fixed graph as a (topological) minor.



Sparse Graph Classes

Overview of meta-results

Linear kernels in structurally sparse classes
@ Framework for planar graphs [Guo and Niedermeier: Linear problem

kernels for NP-hard problems on planar graphs.]

@ Meta-result for graphs of bounded genus [Bodlaender, Fomin,
Lokshtanov, Penninkx, Saurabh and Thilikos: (Meta) Kernelization.]

@ Meta-result for graphs excluding a fixed graph as a minor

[Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality and kernels.]

@ Meta-results for graphs excluding a fixed graph as a
topological minor [Kim, Langer, Paul, Reidl, Rossmanith, Sau, and S.:

Linear kernels and single-exponential algorithms via protrusion decompositions.)



Sparse Graph Classes

Trade-off: sparseness vs. problem requirements

Star forests 4\ / Path forests

Bounded treedepth Forest

Outerplanar

Bounded treewidth Bounded degree
Planar

Bounded genus

Excluding a minor

Excluding a
topological minor

Bounded expansion
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Overview

Main Theorem

Let H be a fixed graph. A parameterized graph problem that has

Q finite integer index, and
@ s treewidth-bounding,

both on the class of H-topological-minor-free graphs admits a
linear kernel on this graph class.




Overview

The Undefined Terms

A parameterized graph problem II is a set of pairs (G, k), where
GG is a graph and k£ a non-negative integer.

IT treewidth-bounding: for some constants ¢, t, yes-instances
(G, k) have a vertex subset X C V(G) s.t.

X| <c-kandtw(G—X) <t

Finite integer index allows us to apply a generic and powerful
reduction rule: protrusion reduction rule.



Overview

Protrusions

Finite integer index allows us to apply the protrusion reduction
rule.
@ allows us to replace a piece of the graph (satisfying certain
properties) by a canonical structure.



Overview

Protrusions

tricted Protrusion

Res!

Boundary

small treewidth

-
________

small size

———————

protrusion

Definition

W C V(G) is a t-protrusion if
@ (small boundary) |[N(W)\ W| <t,
@ (small treewidth) tw (G[IV]) < t.




Overview

Protrusion Reduction Rule

Boundary Reduction

Protrusion “Gadget”

Replace a large protrusion by a smaller canonical structure.

Finite integer index allows t-protrusions to be replaced by a
member of a finite set R;.
@ |R:| depends on t, the problem (and the graph class).

@ We assume that for each ¢, the set R; is given.

@ Non-uniform algorithms.
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Properties of H-Topological-Minor-Free Graphs

Topological minor: select a subgraph and contract vertex-disjoint
degree-two paths.
For a graph G excluding H as a topological minor,

@ not interested in structure of H, but its size r = |H|.

@ in particular: K, not a topological minor of G.



Overview

Properties of H-Topological-Minor-Free Graphs

Topological minor: select a subgraph and contract vertex-disjoint
degree-two paths.
For a graph G excluding H as a topological minor,

@ not interested in structure of H, but its size r = |H|.

@ in particular: K, not a topological minor of G.

Important properties
Q |E(G)| < 18r?|V(G)| (for some B8 < 10).
@ no. of cliques < 2771°27|V(G)| (for some T < 4.51).

© Closed under taking topological minors.
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Our Result and How it Works

Main Theorem and Kernelization Algorithm

Let H be a fixed graph. A parameterized graph problem that has

Q finite integer index, and
@ s treewidth-t bounding,

both on the class of H-topological-minor-free graphs admits a
linear kernel on this graph class.

Kernelization Algorithm

© Replace all (2t + r)-protrusions by their representatives from
Rotsr, where r = |V(H)|.

Time Taken O(n?(t+7),
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On Treewidth Boundedness

Definition
A problem is treewidth bounding if for some constants ¢, t,
yes-instances (G, k) have a vertex subset X C V(G) s.t.

Q [X[<c k

Q tw(G—X)<t.




Our Result and How it Works

On Treewidth Boundedness

Definition
A problem is treewidth bounding if for some constants ¢, t,
yes-instances (G, k) have a vertex subset X C V(G) s.t.

Q@ [X[<c- kK

Q tw(G—X)<t.

S usually is the solution set.
@ Vertex Cover, Feedback Vertex Set in general graphs.
@ Chordal Vertex Deletion in graphs with bounded clique-size.
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Proof Sketch by a Picture

Restricted protrusion

Boundary

small treewidth

small size

protrusion



Our Result and How it Works

Using sparseness

|Yo| = O(]X) and each cluster Y/, 1 <1 < ¢, has constant
size.

Contract each component of Y/ to an edge in X UY), doing
this for as many components as possible.

The neighborhood in X U Yy of each cluster that remains is a
clique.

The total number of cliques is O(|X| + |Yp|) and hence at
most these many components were contracted.

it Y] = O(1X U Ya)).
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The Proof: Main Components

Finite integer index

@ Allows use of the protrusion reduction rule.

Treewidth modulation

@ Allows a convenient decomposition into clusters each of which
is a protrusion.

Sparsity and protrusion reduction

@ Allows the total size of all clusters to be bounded.
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Examples

f’VERTEX DELETION

FEEDBACK LemeT
CHORDAL VERTEX VERTEX SET .-
DELETION B
INTERVAL VERTEX 5 CLUBTER VERTEX
DELETION | ELETION
PROPER INTERVAL c-TREEWIDTH VERTEX COVER®

VERTEX DELETION  VERTEX DELETION *

. COGRAPH VERTEX
c-CLIQUEWIDTH . DELETION
VERTEX DELETION

Cc-RANKWIDTH
VERTEX DELETION

CONNECTED CLUSTER
VERTEX DELETION
CONNECTED VERTEX COVER

CONNECTED COGRAPH
EDGE DOMINATING SET VERTEX DELETION
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Extensions

Overview of Sparse Graph Classes (Again!)

Star forests \ / Path forests

Bounded treedepth Forest
Outerplanar
Bounded treewidth Bounded degree
Planar
Bounded genus

Excludinf aminor

Excluding a
topological minor

Bounded expansion



Extensions

Beyond H-Minor-Free Graphs

Problems that have finite integer index on graphs of constant
treedepth admit linear kernels on graphs of bounded expansion if
parameterized by a modulator to constant treedepth.




Extensions

Beyond H-Minor-Free Graphs

Problems that have finite integer index on graphs of constant
treedepth admit linear kernels on graphs of bounded expansion if
parameterized by a modulator to constant treedepth.

o Kernelization algorithm runs in linear time.
@ Quadratic kernels on graphs of locally bounded expansion.
@ Polynomial kernels on nowhere dense graphs.



Extensions

Consequences

The problems. ..

Dominating Set, Connected Dominating Set, r-Dominating Set, Efficient
Dominating Set, Connected Vertex Cover, (Connected) Vertex Cover,
Hamiltonian Path/Cycle, 3-Colorability, Independent Set, Feedback Vertex Set,
Edge Dominating Set, Induced Matching, Chordal Vertex Deletion, Interval
Vertex Deletion, Odd Cycle Transversal, Induced d-Degree Subgraph, Min Leaf
Spanning Tree, Max Full Degree Spanning Tree, Longest Path/Cycle, Exact

s, t-Path, Exact Cycle, Treewidth, Pathwidth

... parameterized by a treedepth-modulator have ...
@ .. .linear kernels on graphs of bounded expansion.
@ ...quadratic kernels on graphs of locally bounded expansion.

@ ...polynomial kernels on nowhere-dense graphs.
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Conclusion

Kernelization Landscape for Sparse Graph Classes

Our Interpretation

@ Up until topo-minor-free graphs, treewidth boundedness
seems to the main ingredient of the meta-kernel results.

@ Beyond this, structural parameters are required (for a reason
not discussed here).

Open Problems

@ Which problems admit linear kernels beyond topo-minor-free
graphs (natural parameter)?



Thank You!
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